Abstract

Compared with two-photon point-scanning microscopy, line-scanning temporal focusing microscopy breaks the limitation on imaging rate and maintains the axial resolution, which makes it promising for various biomedical studies. However, for deep tissue imaging, it suffers from reduced axial resolution and increased background noise due to sample induced wavefront distortion. Here, we propose a spatio-spectral focal modulation technique to enhance axial resolution and background rejection by simply subtracting an aberrated image, which is induced by a spatial light modulator, from an unaberrated image. The proposed technique could improve the axial resolution by a factor of 1.3 in our implementation, verified by both simulations and experiments. Besides, we show that compared with spatial modulation alone, spatio-spectral modulation induces less peak intensity loss caused by image subtraction. We further demonstrate the performance of our technique on the enhanced axial resolution and background rejection by deep imaging of cleared mouse brains and in vivo imaging of living mouse brains.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Overcoming tissue scattering in wide-field two-photon imaging by extended detection and computational reconstruction

Yuanlong Zhang, Tiankuang Zhou, Xuemei Hu, Xinyang Li, Hao Xie, Lu Fang, Lingjie Kong, and Qionghai Dai
Opt. Express 27(15) 20117-20132 (2019)

Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination

Heejin Choi, Elijah Y. S. Yew, Bertan Hallacoglu, Sergio Fantini, Colin J. R. Sheppard, and Peter T. C. So
Biomed. Opt. Express 4(7) 995-1005 (2013)

Scattering reduction by structured light illumination in line-scanning temporal focusing microscopy

Yi Xue, Kalen P. Berry, Josiah R. Boivin, Dushan Wadduwage, Elly Nedivi, and Peter T. C. So
Biomed. Opt. Express 9(11) 5654-5666 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  3. W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
    [Crossref] [PubMed]
  4. A. Song, A. S. Charles, S. A. Koay, J. L. Gauthier, S. Y. Thiberge, J. W. Pillow, and D. W. Tank, “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).
    [Crossref] [PubMed]
  5. N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
    [Crossref] [PubMed]
  6. W. Yang, J. E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, and D. S. Peterka, “Simultaneous Multi-plane Imaging of Neural Circuits,” Neuron 89(2), 269–284 (2016).
    [Crossref] [PubMed]
  7. L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
    [Crossref] [PubMed]
  8. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [Crossref] [PubMed]
  9. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
    [Crossref] [PubMed]
  10. Y. Meng, W. Lin, C. Li, and S. C. Chen, “Fast two-snapshot structured illumination for temporal focusing microscopy with enhanced axial resolution,” Opt. Express 25(19), 23109–23121 (2017).
    [Crossref] [PubMed]
  11. O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).
    [Crossref] [PubMed]
  12. C. Y. Chang, Y. Y. Hu, C. Y. Lin, C. H. Lin, H. Y. Chang, S. F. Tsai, T. W. Lin, and S. J. Chen, “Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy,” Biomed. Opt. Express 7(5), 1727–1736 (2016).
    [Crossref] [PubMed]
  13. D. Oron and Y. Silberberg, “Temporal focusing microscopy,” Cold Spring Harb. Protoc. 2015(2), 145–151 (2015).
    [Crossref] [PubMed]
  14. R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
    [Crossref] [PubMed]
  15. T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, “Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light,” Nat. Methods 10(10), 1013–1020 (2013).
    [Crossref] [PubMed]
  16. J. N. Yih, Y. Y. Hu, Y. D. Sie, L. C. Cheng, C. H. Lien, and S. J. Chen, “Temporal focusing-based multiphoton excitation microscopy via digital micromirror device,” Opt. Lett. 39(11), 3134–3137 (2014).
    [Crossref] [PubMed]
  17. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
    [Crossref] [PubMed]
  18. Z. Li, J. Hou, J. Suo, C. Qiao, L. Kong, and Q. Dai, “Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy,” Opt. Express 25(25), 32010–32020 (2017).
    [Crossref] [PubMed]
  19. H. Dana, N. Kruger, A. Ellman, and S. Shoham, “Line temporal focusing characteristics in transparent and scattering media,” Opt. Express 21(5), 5677–5687 (2013).
    [Crossref] [PubMed]
  20. J. K. Park, C. J. Rowlands, and P. T. C. So, “Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device,” Micromachines (Basel) 8(3), 85 (2017).
    [Crossref] [PubMed]
  21. G. Sela, H. Dana, and S. Shoham, “Ultra-deep penetration of temporally-focused two-photon excitation,” 8588, 858824 (2013).
  22. B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
    [Crossref]
  23. H. Dana, A. Marom, S. Paluch, R. Dvorkin, I. Brosh, and S. Shoham, “Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks,” Nat. Commun. 5, 3997 (2014).
    [Crossref] [PubMed]
  24. A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18(19), 19645–19655 (2010).
    [Crossref] [PubMed]
  25. A. Leray and J. Mertz, “Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging,” Opt. Express 14(22), 10565–10573 (2006).
    [Crossref] [PubMed]
  26. N. Chen, C.-H. Wong, and C. J. Sheppard, “Focal modulation microscopy,” Opt. Express 16(23), 18764–18769 (2008).
    [Crossref] [PubMed]
  27. S. Piazza, P. Bianchini, C. Sheppard, A. Diaspro, and M. Duocastella, “Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping,” J. Biophotonics 11(2), e201700050 (2018).
    [Crossref] [PubMed]
  28. A. Leray, K. Lillis, and J. Mertz, “Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy,” Biophys. J. 94(4), 1449–1458 (2008).
    [Crossref] [PubMed]
  29. D. Oron and Y. Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express 13(24), 9903–9908 (2005).
    [Crossref] [PubMed]
  30. M. E. Durst, A. A. Straub, and C. Xu, “Enhanced axial confinement of sum-frequency generation in a temporal focusing setup,” Opt. Lett. 34(12), 1786–1788 (2009).
    [Crossref] [PubMed]
  31. T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: flexible software for operating laser scanning microscopes,” Biomed. Eng. Online 2(1), 13 (2003).
    [Crossref] [PubMed]
  32. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181(3), 253–259 (1996).
    [Crossref] [PubMed]
  33. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
    [Crossref] [PubMed]
  34. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  35. H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
    [Crossref] [PubMed]
  36. E. Wolf and M. Born, Principles of optics (Pergamon Press, 1980).
  37. C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
    [Crossref] [PubMed]
  38. J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
    [Crossref] [PubMed]
  39. L. C. Cheng, C. Y. Chang, C. Y. Lin, K. C. Cho, W. C. Yen, N. S. Chang, C. Xu, C. Y. Dong, and S. J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
    [Crossref] [PubMed]
  40. O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express 2(3), 696–704 (2011).
    [Crossref] [PubMed]

2018 (2)

B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
[Crossref]

S. Piazza, P. Bianchini, C. Sheppard, A. Diaspro, and M. Duocastella, “Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping,” J. Biophotonics 11(2), e201700050 (2018).
[Crossref] [PubMed]

2017 (6)

J. K. Park, C. J. Rowlands, and P. T. C. So, “Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device,” Micromachines (Basel) 8(3), 85 (2017).
[Crossref] [PubMed]

W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
[Crossref] [PubMed]

A. Song, A. S. Charles, S. A. Koay, J. L. Gauthier, S. Y. Thiberge, J. W. Pillow, and D. W. Tank, “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).
[Crossref] [PubMed]

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref] [PubMed]

Y. Meng, W. Lin, C. Li, and S. C. Chen, “Fast two-snapshot structured illumination for temporal focusing microscopy with enhanced axial resolution,” Opt. Express 25(19), 23109–23121 (2017).
[Crossref] [PubMed]

Z. Li, J. Hou, J. Suo, C. Qiao, L. Kong, and Q. Dai, “Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy,” Opt. Express 25(25), 32010–32020 (2017).
[Crossref] [PubMed]

2016 (6)

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
[Crossref] [PubMed]

W. Yang, J. E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, and D. S. Peterka, “Simultaneous Multi-plane Imaging of Neural Circuits,” Neuron 89(2), 269–284 (2016).
[Crossref] [PubMed]

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).
[Crossref] [PubMed]

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

C. Y. Chang, Y. Y. Hu, C. Y. Lin, C. H. Lin, H. Y. Chang, S. F. Tsai, T. W. Lin, and S. J. Chen, “Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy,” Biomed. Opt. Express 7(5), 1727–1736 (2016).
[Crossref] [PubMed]

2015 (2)

D. Oron and Y. Silberberg, “Temporal focusing microscopy,” Cold Spring Harb. Protoc. 2015(2), 145–151 (2015).
[Crossref] [PubMed]

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

2014 (2)

H. Dana, A. Marom, S. Paluch, R. Dvorkin, I. Brosh, and S. Shoham, “Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks,” Nat. Commun. 5, 3997 (2014).
[Crossref] [PubMed]

J. N. Yih, Y. Y. Hu, Y. D. Sie, L. C. Cheng, C. H. Lien, and S. J. Chen, “Temporal focusing-based multiphoton excitation microscopy via digital micromirror device,” Opt. Lett. 39(11), 3134–3137 (2014).
[Crossref] [PubMed]

2013 (3)

H. Dana, N. Kruger, A. Ellman, and S. Shoham, “Line temporal focusing characteristics in transparent and scattering media,” Opt. Express 21(5), 5677–5687 (2013).
[Crossref] [PubMed]

T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, “Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light,” Nat. Methods 10(10), 1013–1020 (2013).
[Crossref] [PubMed]

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2010 (2)

A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18(19), 19645–19655 (2010).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

N. Chen, C.-H. Wong, and C. J. Sheppard, “Focal modulation microscopy,” Opt. Express 16(23), 18764–18769 (2008).
[Crossref] [PubMed]

A. Leray, K. Lillis, and J. Mertz, “Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy,” Biophys. J. 94(4), 1449–1458 (2008).
[Crossref] [PubMed]

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
[Crossref] [PubMed]

2006 (2)

2005 (3)

2003 (1)

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: flexible software for operating laser scanning microscopes,” Biomed. Eng. Online 2(1), 13 (2003).
[Crossref] [PubMed]

1996 (1)

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181(3), 253–259 (1996).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Aguet, F.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Anselmi, F.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Athey, B.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181(3), 253–259 (1996).
[Crossref] [PubMed]

Aubé, B.

Aumayr, K.

T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, “Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light,” Nat. Methods 10(10), 1013–1020 (2013).
[Crossref] [PubMed]

Baltuska, A.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

Bègue, A.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Bianchini, P.

S. Piazza, P. Bianchini, C. Sheppard, A. Diaspro, and M. Duocastella, “Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping,” J. Biophotonics 11(2), e201700050 (2018).
[Crossref] [PubMed]

Bliton, A. C.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181(3), 253–259 (1996).
[Crossref] [PubMed]

Booth, M. J.

B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
[Crossref]

Brakenhoff, G. J.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181(3), 253–259 (1996).
[Crossref] [PubMed]

Brosh, I.

H. Dana, A. Marom, S. Paluch, R. Dvorkin, I. Brosh, and S. Shoham, “Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks,” Nat. Commun. 5, 3997 (2014).
[Crossref] [PubMed]

Cai, R.

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

Carrillo-Reid, L.

W. Yang, J. E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, and D. S. Peterka, “Simultaneous Multi-plane Imaging of Neural Circuits,” Neuron 89(2), 269–284 (2016).
[Crossref] [PubMed]

Chang, C. Y.

Chang, H. Y.

Chang, N. S.

Charles, A. S.

A. Song, A. S. Charles, S. A. Koay, J. L. Gauthier, S. Y. Thiberge, J. W. Pillow, and D. W. Tank, “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).
[Crossref] [PubMed]

Chen, N.

Chen, S. C.

Chen, S. J.

Cheng, L. C.

Cho, K. C.

Côté, D.

Cui, M.

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref] [PubMed]

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Dai, Q.

Dana, H.

H. Dana, A. Marom, S. Paluch, R. Dvorkin, I. Brosh, and S. Shoham, “Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks,” Nat. Commun. 5, 3997 (2014).
[Crossref] [PubMed]

H. Dana, N. Kruger, A. Ellman, and S. Shoham, “Line temporal focusing characteristics in transparent and scattering media,” Opt. Express 21(5), 5677–5687 (2013).
[Crossref] [PubMed]

G. Sela, H. Dana, and S. Shoham, “Ultra-deep penetration of temporally-focused two-photon excitation,” 8588, 858824 (2013).

de Sars, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Delcour, J. E.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Diaspro, A.

S. Piazza, P. Bianchini, C. Sheppard, A. Diaspro, and M. Duocastella, “Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping,” J. Biophotonics 11(2), e201700050 (2018).
[Crossref] [PubMed]

Dichgans, M.

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

Dong, C. Y.

Duocastella, M.

S. Piazza, P. Bianchini, C. Sheppard, A. Diaspro, and M. Duocastella, “Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping,” J. Biophotonics 11(2), e201700050 (2018).
[Crossref] [PubMed]

Durst, M. E.

Dvorkin, R.

H. Dana, A. Marom, S. Paluch, R. Dvorkin, I. Brosh, and S. Shoham, “Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks,” Nat. Commun. 5, 3997 (2014).
[Crossref] [PubMed]

Ellman, A.

Emiliani, V.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Ertürk, A.

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

Fernández, A.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

Fidelin, K.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).
[Crossref] [PubMed]

Freeman, J.

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
[Crossref] [PubMed]

Gauthier, J. L.

A. Song, A. S. Charles, S. A. Koay, J. L. Gauthier, S. Y. Thiberge, J. W. Pillow, and D. W. Tank, “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).
[Crossref] [PubMed]

Germain, R. N.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Ghasemigharagoz, A.

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

Glückstad, J.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Golshani, P.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

Heberle, J.

B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
[Crossref]

Hellal, F.

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hernandez, O.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).
[Crossref] [PubMed]

Hou, J.

Hu, Y. Y.

Huang, B. S.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

Isacoff, E. Y.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Jesacher, A.

B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
[Crossref]

Ji, N.

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
[Crossref] [PubMed]

Kirshner, H.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Koay, S. A.

A. Song, A. S. Charles, S. A. Koay, J. L. Gauthier, S. Y. Thiberge, J. W. Pillow, and D. W. Tank, “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).
[Crossref] [PubMed]

Kong, L.

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref] [PubMed]

Z. Li, J. Hou, J. Suo, C. Qiao, L. Kong, and Q. Dai, “Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy,” Opt. Express 25(25), 32010–32020 (2017).
[Crossref] [PubMed]

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Koninck, P. D.

Kruger, N.

Lämmermann, T.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Leray, A.

A. Leray, K. Lillis, and J. Mertz, “Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy,” Biophys. J. 94(4), 1449–1458 (2008).
[Crossref] [PubMed]

A. Leray and J. Mertz, “Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging,” Opt. Express 14(22), 10565–10573 (2006).
[Crossref] [PubMed]

Li, C.

Li, Z.

Lien, C. H.

Lillis, K.

A. Leray, K. Lillis, and J. Mertz, “Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy,” Biophys. J. 94(4), 1449–1458 (2008).
[Crossref] [PubMed]

Lin, C. H.

Lin, C. P.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Lin, C. Y.

Lin, T. W.

Lin, W.

Little, J. P.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Lourbopoulos, A.

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

Marom, A.

H. Dana, A. Marom, S. Paluch, R. Dvorkin, I. Brosh, and S. Shoham, “Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks,” Nat. Commun. 5, 3997 (2014).
[Crossref] [PubMed]

Matryba, P.

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

Meng, Y.

Mertz, J.

A. Leray, K. Lillis, and J. Mertz, “Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy,” Biophys. J. 94(4), 1449–1458 (2008).
[Crossref] [PubMed]

A. Leray and J. Mertz, “Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging,” Opt. Express 14(22), 10565–10573 (2006).
[Crossref] [PubMed]

Miller, J. E.

W. Yang, J. E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, and D. S. Peterka, “Simultaneous Multi-plane Imaging of Neural Circuits,” Neuron 89(2), 269–284 (2016).
[Crossref] [PubMed]

Nöbauer, T.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

Norris, T.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181(3), 253–259 (1996).
[Crossref] [PubMed]

Oron, D.

Pagès, S.

Paluch, S.

H. Dana, A. Marom, S. Paluch, R. Dvorkin, I. Brosh, and S. Shoham, “Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks,” Nat. Commun. 5, 3997 (2014).
[Crossref] [PubMed]

Pan, C.

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

Paninski, L.

W. Yang, J. E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, and D. S. Peterka, “Simultaneous Multi-plane Imaging of Neural Circuits,” Neuron 89(2), 269–284 (2016).
[Crossref] [PubMed]

Papagiakoumou, E.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Park, J. H.

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref] [PubMed]

Park, J. K.

J. K. Park, C. J. Rowlands, and P. T. C. So, “Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device,” Micromachines (Basel) 8(3), 85 (2017).
[Crossref] [PubMed]

Pernía-Andrade, A. J.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

Peterka, D. S.

W. Yang, J. E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, and D. S. Peterka, “Simultaneous Multi-plane Imaging of Neural Circuits,” Neuron 89(2), 269–284 (2016).
[Crossref] [PubMed]

Piazza, S.

S. Piazza, P. Bianchini, C. Sheppard, A. Diaspro, and M. Duocastella, “Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping,” J. Biophotonics 11(2), e201700050 (2018).
[Crossref] [PubMed]

Pillow, J. W.

A. Song, A. S. Charles, S. A. Koay, J. L. Gauthier, S. Y. Thiberge, J. W. Pillow, and D. W. Tank, “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).
[Crossref] [PubMed]

Plesnila, N.

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

Pnevmatikakis, E.

W. Yang, J. E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, and D. S. Peterka, “Simultaneous Multi-plane Imaging of Neural Circuits,” Neuron 89(2), 269–284 (2016).
[Crossref] [PubMed]

Pologruto, T. A.

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: flexible software for operating laser scanning microscopes,” Biomed. Eng. Online 2(1), 13 (2003).
[Crossref] [PubMed]

Prevedel, R.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, “Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light,” Nat. Methods 10(10), 1013–1020 (2013).
[Crossref] [PubMed]

Qiao, C.

Quacquarelli, F. P.

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

Roider, C.

B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
[Crossref]

Rowlands, C. J.

J. K. Park, C. J. Rowlands, and P. T. C. So, “Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device,” Micromachines (Basel) 8(3), 85 (2017).
[Crossref] [PubMed]

Sabatini, B. L.

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: flexible software for operating laser scanning microscopes,” Biomed. Eng. Online 2(1), 13 (2003).
[Crossref] [PubMed]

Sage, D.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Salter, P. S.

B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
[Crossref]

Schmidt, M.

B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
[Crossref]

Schrödel, T.

T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, “Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light,” Nat. Methods 10(10), 1013–1020 (2013).
[Crossref] [PubMed]

Sela, G.

G. Sela, H. Dana, and S. Shoham, “Ultra-deep penetration of temporally-focused two-photon excitation,” 8588, 858824 (2013).

Shank, C. V.

Sheppard, C.

S. Piazza, P. Bianchini, C. Sheppard, A. Diaspro, and M. Duocastella, “Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping,” J. Biophotonics 11(2), e201700050 (2018).
[Crossref] [PubMed]

Sheppard, C. J.

Shoham, S.

H. Dana, A. Marom, S. Paluch, R. Dvorkin, I. Brosh, and S. Shoham, “Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks,” Nat. Commun. 5, 3997 (2014).
[Crossref] [PubMed]

H. Dana, N. Kruger, A. Ellman, and S. Shoham, “Line temporal focusing characteristics in transparent and scattering media,” Opt. Express 21(5), 5677–5687 (2013).
[Crossref] [PubMed]

G. Sela, H. Dana, and S. Shoham, “Ultra-deep penetration of temporally-focused two-photon excitation,” 8588, 858824 (2013).

Sie, Y. D.

Silberberg, Y.

Smith, S. L.

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
[Crossref] [PubMed]

So, P. T. C.

J. K. Park, C. J. Rowlands, and P. T. C. So, “Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device,” Micromachines (Basel) 8(3), 85 (2017).
[Crossref] [PubMed]

Song, A.

A. Song, A. S. Charles, S. A. Koay, J. L. Gauthier, S. Y. Thiberge, J. W. Pillow, and D. W. Tank, “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).
[Crossref] [PubMed]

Squier, J.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181(3), 253–259 (1996).
[Crossref] [PubMed]

Straub, A. A.

Strauss, J.

B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Sun, B.

B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
[Crossref]

Suo, J.

Svoboda, K.

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: flexible software for operating laser scanning microscopes,” Biomed. Eng. Online 2(1), 13 (2003).
[Crossref] [PubMed]

Tal, E.

Tanese, D.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).
[Crossref] [PubMed]

Tang, J.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Tank, D. W.

A. Song, A. S. Charles, S. A. Koay, J. L. Gauthier, S. Y. Thiberge, J. W. Pillow, and D. W. Tank, “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).
[Crossref] [PubMed]

Therrien, O. D.

Thiberge, S. Y.

A. Song, A. S. Charles, S. A. Koay, J. L. Gauthier, S. Y. Thiberge, J. W. Pillow, and D. W. Tank, “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).
[Crossref] [PubMed]

Tsai, S. F.

Unser, M.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Vaziri, A.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, “Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light,” Nat. Methods 10(10), 1013–1020 (2013).
[Crossref] [PubMed]

A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18(19), 19645–19655 (2010).
[Crossref] [PubMed]

Verhoef, A. J.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

Wade, M. H.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181(3), 253–259 (1996).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weisenburger, S.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

Wong, C.-H.

Wyart, C.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).
[Crossref] [PubMed]

Xu, C.

Yang, W.

W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
[Crossref] [PubMed]

W. Yang, J. E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, and D. S. Peterka, “Simultaneous Multi-plane Imaging of Neural Circuits,” Neuron 89(2), 269–284 (2016).
[Crossref] [PubMed]

Yen, W. C.

Yih, J. N.

Yu, Y.

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

Yuste, R.

W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
[Crossref] [PubMed]

W. Yang, J. E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, and D. S. Peterka, “Simultaneous Multi-plane Imaging of Neural Circuits,” Neuron 89(2), 269–284 (2016).
[Crossref] [PubMed]

Zhou, Y.

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref] [PubMed]

Zhu, G.

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
[Crossref] [PubMed]

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
[Crossref] [PubMed]

Zimmer, M.

T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, “Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light,” Nat. Methods 10(10), 1013–1020 (2013).
[Crossref] [PubMed]

Biomed. Eng. Online (1)

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: flexible software for operating laser scanning microscopes,” Biomed. Eng. Online 2(1), 13 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (1)

A. Leray, K. Lillis, and J. Mertz, “Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy,” Biophys. J. 94(4), 1449–1458 (2008).
[Crossref] [PubMed]

Cold Spring Harb. Protoc. (1)

D. Oron and Y. Silberberg, “Temporal focusing microscopy,” Cold Spring Harb. Protoc. 2015(2), 145–151 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

S. Piazza, P. Bianchini, C. Sheppard, A. Diaspro, and M. Duocastella, “Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping,” J. Biophotonics 11(2), e201700050 (2018).
[Crossref] [PubMed]

J. Microsc. (2)

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181(3), 253–259 (1996).
[Crossref] [PubMed]

Light Sci. Appl. (1)

B. Sun, P. S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, and M. J. Booth, “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light Sci. Appl. 7(1), 17117 (2018).
[Crossref]

Micromachines (Basel) (1)

J. K. Park, C. J. Rowlands, and P. T. C. So, “Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device,” Micromachines (Basel) 8(3), 85 (2017).
[Crossref] [PubMed]

Nat. Commun. (2)

H. Dana, A. Marom, S. Paluch, R. Dvorkin, I. Brosh, and S. Shoham, “Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks,” Nat. Commun. 5, 3997 (2014).
[Crossref] [PubMed]

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).
[Crossref] [PubMed]

Nat. Methods (9)

L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
[Crossref] [PubMed]

A. Song, A. S. Charles, S. A. Koay, J. L. Gauthier, S. Y. Thiberge, J. W. Pillow, and D. W. Tank, “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).
[Crossref] [PubMed]

T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, “Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light,” Nat. Methods 10(10), 1013–1020 (2013).
[Crossref] [PubMed]

C. Pan, R. Cai, F. P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, and A. Ertürk, “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods 13(10), 859–867 (2016).
[Crossref] [PubMed]

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref] [PubMed]

Nat. Neurosci. (1)

N. Ji, J. Freeman, and S. L. Smith, “Technologies for imaging neural activity in large volumes,” Nat. Neurosci. 19(9), 1154–1164 (2016).
[Crossref] [PubMed]

Neuron (1)

W. Yang, J. E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, and D. S. Peterka, “Simultaneous Multi-plane Imaging of Neural Circuits,” Neuron 89(2), 269–284 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
[Crossref] [PubMed]

Opt. Express (10)

L. C. Cheng, C. Y. Chang, C. Y. Lin, K. C. Cho, W. C. Yen, N. S. Chang, C. Xu, C. Y. Dong, and S. J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
[Crossref] [PubMed]

H. Dana, N. Kruger, A. Ellman, and S. Shoham, “Line temporal focusing characteristics in transparent and scattering media,” Opt. Express 21(5), 5677–5687 (2013).
[Crossref] [PubMed]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
[Crossref] [PubMed]

D. Oron and Y. Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express 13(24), 9903–9908 (2005).
[Crossref] [PubMed]

A. Leray and J. Mertz, “Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging,” Opt. Express 14(22), 10565–10573 (2006).
[Crossref] [PubMed]

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
[Crossref] [PubMed]

N. Chen, C.-H. Wong, and C. J. Sheppard, “Focal modulation microscopy,” Opt. Express 16(23), 18764–18769 (2008).
[Crossref] [PubMed]

A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18(19), 19645–19655 (2010).
[Crossref] [PubMed]

Y. Meng, W. Lin, C. Li, and S. C. Chen, “Fast two-snapshot structured illumination for temporal focusing microscopy with enhanced axial resolution,” Opt. Express 25(19), 23109–23121 (2017).
[Crossref] [PubMed]

Z. Li, J. Hou, J. Suo, C. Qiao, L. Kong, and Q. Dai, “Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy,” Opt. Express 25(25), 32010–32020 (2017).
[Crossref] [PubMed]

Opt. Lett. (2)

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (3)

G. Sela, H. Dana, and S. Shoham, “Ultra-deep penetration of temporally-focused two-photon excitation,” 8588, 858824 (2013).

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

E. Wolf and M. Born, Principles of optics (Pergamon Press, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The design of a line-scanning temporal focusing system combined with focal modulation. The ultrashort pulsed laser is modulated in intensity with an electro-optical modulator (EOM), then forms a laser line on the grating after passing the cylinder lens (Cyl. lens). The beam is temporally chirped by the grating, followed by being broadened in the spatial light modulator (SLM) plane to modulate the phase of the beam profile, then is compressed to provide a line excitation onto the sample. The fluorescence image is captured with an sCMOS camera in the epi-detection scheme. Spatio-spectral aberrations are applied by the SLM, which ideally induces a distorted PSF with lower peak intensity but the same out-of-focus intensity distribution as that in unaberrated PSF. Subtracting the distorted PSF from the normal PSF, the full width half maximum (FWHM) of the new PSF decreases and thus the axial resolution is improved. (b) In the SLM plane, the laser beam forms a two-dimensional profile with the x-axis representing the spectral dimension and the y-axis representing the spatial dimension, which enables the spatio-spectral modulation. (c) The focal modulation technique uses unaberrated PSF ① to subtract aberrated PSF ② to form a narrower PSF. The Symbols: HWP, half wave plate; BE, beam expander; M, reflective mirror; DM, dichroic mirror; BPF, bandpass filter.
Fig. 2
Fig. 2 Simulation of focal modulation enhanced LTFM. (a) LTFM with unmodulated pupil plane (x-axis is the spectral dimension and y-axis is the spatial dimension), which leads to un-aberrated PSF. (b) LTFM with spatial phase modulation only, which generates a PSF with lower peak intensity. After subtracting the spatial phase modulated PSF, the generated new PSF is shown in lower right. (c) LTFM with spatio-spectral phase modulation, which has lower intensity at z = 0 compared with (b) as shown in the white dashed boxes. After subtracting the spatio-spectral phase modulated PSF, the generated new PSF is shown in lower right. (d) Total intensity along z-axis in (a), lower left of (b) and lower left (c) are plotted with red, blue and green, respectively. (e) Total intensity along z-axis in (a), lower right of (b) and lower right (c) are plotted with red, blue and green, respectively. (f) Lateral resolution in (a) and lower right of (c) are plotted with red and green, respectively. Scale bar: 5 μm.
Fig. 3
Fig. 3 Simulation (solid lines) and experimental (markers) results of axial intensity profiles of two-photon excitation fluorescence achieved by imaging 500 nm fluorescent beads without focal modulation (red), with spatio-spectral focal modulation (blue), and after subtraction (green).
Fig. 4
Fig. 4 (a, b) Maximum intensity projections (MIPs) along the z-axis of a 20-μm-thick image stack (300–320 μm under the surface of the slices) acquired without and with the spatio-spectral FMM, respectively. (c) MIPs along y-axis of a 10 μm thick x-z stack [marked by the dashed red box in (a)] acquired without focal modulation (left column) and with focal modulation (right column) and the corresponding intensity along indicated lines. The MIPs of x-z stack is shown with bilinear interpolation along z-axis to equate the lateral and axial pixel size. (d) Intensity along the marked lines in (a, b), with red and blue curves correspond to data in (a) and (b), respectively. Scale bar: 20 μm in (a, b) and 5 μm in (c).
Fig. 5
Fig. 5 (a) MIP along z-axis of a 20-μm-thick image stack (50–70 μm under the dura) acquired with the proposed system. (b) MIPs along y-axis of a 10 μm thick x-z stack [marked by the dashed yellow box in (a)] acquired without focal modulation (left column) and with focal modulation (right column) and the corresponding intensity along indicated lines. (c) MIPs along x-axis of a 10 μm thick y-z stack [marked by the dashed yellow box in (a)] acquired without focal modulation (left column) and with focal modulation (right column) and the corresponding intensity along indicated lines. The MIPs of x-z and y-z stacks are shown with bilinear interpolation along z-axis to equate the lateral and axial pixel size. (d, e) Intensity along the marked lines in (a), with red and blue curves correspond to results without and with focal modulation. Scale bars in (a) is 15μm, in (b) and (c) are 5 μm.

Metrics