Abstract

We have fabricated a compact and integrated 4-channel analog optical transceiver for radio over fiber application. In the fabricated module, the transmitter optical sub-assembly is composed of four directly modulated DFB laser chips integrated with an optical multiplexer based on an arrayed waveguide grating (AWG) using silica-based planar lightwave circuit (PLC) technology. The receiver optical sub-assembly consists of a PIN photodiode array integrated with an AWG-PLC-type optical de-multiplexer. For all the lanes, the 3 dB bandwidth exceeds 19.1 GHz and the measured spurious-free dynamic range (SFDR) is up to 90.5 dB⋅Hz2/3 when the input RF frequency is from 2 GHz to 14 GHz. Meanwhile, the electrical inter-channel crosstalk of the transceiver is less than −20 dB when the carry frequency is below 18.5 GHz. This module shows a great transmission performance in radio over fiber system. Under simultaneous 4-channel different 600 Mb/s 5-band 64QAM-OFDM RF signal operation, the measured error vector magnitude (EVM) performance below 8% is achieved after 15.5 km single-mode fiber propagation for all lanes. This scheme has potential applications in guiding high-dense, cost-effective and high-linearity analog optical transceiver design to realize high-capacity radio over fiber transmission systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-crosstalk operation of directly modulated DFB laser array TOSA for 112-Gbit/s application

Shigeru Kanazawa, Wataru Kobayashi, Yuta Ueda, Takeshi Fujisawa, Tetsuichiro Ohno, Toshihide Yoshimatsu, Hiroyuki Ishii, and Hiroaki Sanjoh
Opt. Express 24(12) 13555-13562 (2016)

Low-cost hybrid integrated 4 × 25.78  Gb/s CWDM TOSA for 10  km transmission using DFB-LDs and an arrayed waveguide grating multiplexer

Jun Liu, Qingzhong Huang, Shiqi Tao, Cheng Zeng, and Jinsong Xia
Photon. Res. 6(11) 1067-1073 (2018)

Radio over fiber transceiver employing phase modulation of an optical broadband source

Fulvio Grassi, José Mora, Beatriz Ortega, and José Capmany
Opt. Express 18(21) 21750-21756 (2010)

References

  • View by:
  • |
  • |
  • |

  1. China Mobile Research Institute, “C-RAN: The road towards green RAN,” whitepaper, (2013).
  2. N. Cvijetic, A. Tanaka, K. Kanonakis, and T. Wang, “SDN-controlled topology-reconfigurable optical mobile fronthaul architecture for bidirectional CoMP and low latency inter-cell D2D in the 5G mobile era,” Opt. Express 22(17), 20809–20815 (2014).
    [Crossref] [PubMed]
  3. Common Public Radio Interface (CPRI), Interface Specification, (2015).
  4. X. Liu, H. Y. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
    [Crossref]
  5. P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “5G transport networks: the need for new technologies and standards,” IEEE Commun. Mag. 54(9), 18–26 (2016).
    [Crossref]
  6. D. Zhu, J. Chen, and S. Pan, “Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator,” Opt. Express 24(10), 11009–11016 (2016).
    [Crossref] [PubMed]
  7. S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
    [Crossref]
  8. B. Pezeshki, “The advantages of hybrid optical integration, as demonstrated by a 4×25 Gb/s transceiver (TROSA),” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M3B. 3.
  9. W. M. Yao, M. K. Smit, and M. J. Wale, “Monolithic 300 Gb/s parallel transmitter in InP-based generic photonic integration technology,” IEEE J. Sel. Top. Quant. 24(1), 6100711 (2018).
    [Crossref]
  10. S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
    [Crossref]
  11. S. Kanazawa, W. Kobayashi, Y. Ueda, T. Fujisawa, K. Takahata, T. Ohno, T. Yoshimatsu, H. Ishii, and H. Sanjoh, “30-km error-free transmission of directly modulated DFB laser array transmitter optical sub-assembly for 100-Gbit/s application,” J. Lightwave Technol. 34(15), 3646–3652 (2016).
    [Crossref]
  12. S. Kanazawa, W. Kobayashi, Y. Ueda, T. Fujisawa, T. Ohno, T. Yoshimatsu, H. Ishii, and H. Sanjoh, “Low-crosstalk operation of directly modulated DFB laser array TOSA for 112-Gbit/s application,” Opt. Express 24(12), 13555–13562 (2016).
    [Crossref] [PubMed]
  13. K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.
  14. Y. T. Dai, Y. Cui, X. Liang, F. Yin, J. Q. Li, K. Xu, and J. T. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).
  15. A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightwave Technol. 29(6), 2394–2401 (2011).
    [Crossref]
  16. S. Li, X. Zheng, H. Zhang, and B. Zhou, “High linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
    [Crossref]
  17. Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
    [Crossref]
  18. S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).
  19. Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “A broadband and high linearity directly-modulated analog photonic link based on push-pull structure and digital signal post-compensation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A 0.22.
    [Crossref]
  20. L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
    [Crossref]
  21. C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30(1), 97–103 (2007).
    [Crossref]
  22. X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. F. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2J. 2.
    [Crossref]

2018 (1)

W. M. Yao, M. K. Smit, and M. J. Wale, “Monolithic 300 Gb/s parallel transmitter in InP-based generic photonic integration technology,” IEEE J. Sel. Top. Quant. 24(1), 6100711 (2018).
[Crossref]

2017 (2)

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

2016 (5)

2015 (1)

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

2014 (2)

Y. T. Dai, Y. Cui, X. Liang, F. Yin, J. Q. Li, K. Xu, and J. T. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

N. Cvijetic, A. Tanaka, K. Kanonakis, and T. Wang, “SDN-controlled topology-reconfigurable optical mobile fronthaul architecture for bidirectional CoMP and low latency inter-cell D2D in the 5G mobile era,” Opt. Express 22(17), 20809–20815 (2014).
[Crossref] [PubMed]

2012 (1)

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

2011 (1)

2010 (1)

S. Li, X. Zheng, H. Zhang, and B. Zhou, “High linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

2008 (1)

S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
[Crossref]

2007 (1)

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30(1), 97–103 (2007).
[Crossref]

Abbasi, A.

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

Agarwal, A.

Banwell, T.

Bauwelinck, J.

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

Chand, N.

Chen, C.

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30(1), 97–103 (2007).
[Crossref]

Chen, J.

Chen, S.

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Chen, X.

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

Cheng, M.

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Cui, Y.

Y. T. Dai, Y. Cui, X. Liang, F. Yin, J. Q. Li, K. Xu, and J. T. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Cvijetic, N.

Dai, Y. T.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Y. T. Dai, Y. Cui, X. Liang, F. Yin, J. Q. Li, K. Xu, and J. T. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Dat, P. T.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “5G transport networks: the need for new technologies and standards,” IEEE Commun. Mag. 54(9), 18–26 (2016).
[Crossref]

Deng, L.

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Effenberger, F.

Fu, S.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

Fujisawa, T.

Gasse, K. V.

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

Huang, B.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Ishii, H.

Kakitsuka, T.

S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
[Crossref]

Kanazawa, S.

Kanno, A.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “5G transport networks: the need for new technologies and standards,” IEEE Commun. Mag. 54(9), 18–26 (2016).
[Crossref]

Kanonakis, K.

Kawanishi, T.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “5G transport networks: the need for new technologies and standards,” IEEE Commun. Mag. 54(9), 18–26 (2016).
[Crossref]

Kerrebrouck, J. V.

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

Kobayashi, W.

Li, J. Q.

Y. T. Dai, Y. Cui, X. Liang, F. Yin, J. Q. Li, K. Xu, and J. T. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Li, S.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “High linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Liang, X.

Y. T. Dai, Y. Cui, X. Liang, F. Yin, J. Q. Li, K. Xu, and J. T. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Lin, J. T.

Y. T. Dai, Y. Cui, X. Liang, F. Yin, J. Q. Li, K. Xu, and J. T. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Liu, D.

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Liu, J. G.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, N. J.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, S. F.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, X.

Liu, Y.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30(1), 97–103 (2007).
[Crossref]

Luo, F.

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

Man, J. W.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Matsuo, S.

S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
[Crossref]

Moeneclaey, B.

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

Morthier, G.

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

Ohno, T.

Oohashi, H.

S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
[Crossref]

Pan, S.

Pan, S. L.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Roelkens, G.

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

Sanjoh, H.

Sato, R.

S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
[Crossref]

Segawa, T.

S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
[Crossref]

Shibata, Y.

S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
[Crossref]

Smit, M. K.

W. M. Yao, M. K. Smit, and M. J. Wale, “Monolithic 300 Gb/s parallel transmitter in InP-based generic photonic integration technology,” IEEE J. Sel. Top. Quant. 24(1), 6100711 (2018).
[Crossref]

Takahashi, R.

S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
[Crossref]

Takahata, K.

Tanaka, A.

Tang, M.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

Torfs, G.

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

Ueda, Y.

Verbist, J.

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

Wale, M. J.

W. M. Yao, M. K. Smit, and M. J. Wale, “Monolithic 300 Gb/s parallel transmitter in InP-based generic photonic integration technology,” IEEE J. Sel. Top. Quant. 24(1), 6100711 (2018).
[Crossref]

Wang, B. J.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Wang, T.

Wang, T. L.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Wang, W.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Wang, X.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Woodward, T. K.

Xie, L.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Xu, K.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Y. T. Dai, Y. Cui, X. Liang, F. Yin, J. Q. Li, K. Xu, and J. T. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Xue, Y.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Yamamoto, N.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “5G transport networks: the need for new technologies and standards,” IEEE Commun. Mag. 54(9), 18–26 (2016).
[Crossref]

Yao, W. M.

W. M. Yao, M. K. Smit, and M. J. Wale, “Monolithic 300 Gb/s parallel transmitter in InP-based generic photonic integration technology,” IEEE J. Sel. Top. Quant. 24(1), 6100711 (2018).
[Crossref]

Yasaka, H.

S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
[Crossref]

Ye, Y.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

Yin, F.

Y. T. Dai, Y. Cui, X. Liang, F. Yin, J. Q. Li, K. Xu, and J. T. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Yin, X.

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

Yoshimatsu, T.

Yuan, H. Q.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Zeng, H. Y.

Zhang, D.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Zhang, H.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “High linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhang, M.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Zhang, S. J.

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30(1), 97–103 (2007).
[Crossref]

Zhao, L. J.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Zheng, X.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “High linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhou, B.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “High linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhu, D.

D. Zhu, J. Chen, and S. Pan, “Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator,” Opt. Express 24(10), 11009–11016 (2016).
[Crossref] [PubMed]

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Zhu, H. L.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Zhu, N. H.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30(1), 97–103 (2007).
[Crossref]

IEEE Commun. Mag. (1)

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “5G transport networks: the need for new technologies and standards,” IEEE Commun. Mag. 54(9), 18–26 (2016).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

W. M. Yao, M. K. Smit, and M. J. Wale, “Monolithic 300 Gb/s parallel transmitter in InP-based generic photonic integration technology,” IEEE J. Sel. Top. Quant. 24(1), 6100711 (2018).
[Crossref]

IEEE Microw. Mag. (1)

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

IEEE Photonics J. (3)

Y. T. Dai, Y. Cui, X. Liang, F. Yin, J. Q. Li, K. Xu, and J. T. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photonics J. 6(4), 5500807 (2014).

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

S. Chen, L. Deng, Y. Ye, X. Chen, M. Cheng, M. Tang, S. Fu, F. Luo, and D. Liu, “Experimental investigation on improved pre-distortion circuit for directly modulated radio over fiber system,” IEEE Photonics J. 9(5), 1–10 (2017).

IEEE Photonics Technol. Lett. (3)

S. Li, X. Zheng, H. Zhang, and B. Zhou, “High linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
[Crossref]

IEEE Trans. Adv. Packag. (1)

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30(1), 97–103 (2007).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (3)

Other (6)

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. F. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2J. 2.
[Crossref]

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “A broadband and high linearity directly-modulated analog photonic link based on push-pull structure and digital signal post-compensation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th2A 0.22.
[Crossref]

K. V. Gasse, J. V. Kerrebrouck, A. Abbasi, J. Verbist, G. Torfs, B. Moeneclaey, G. Morthier, X. Yin, J. Bauwelinck, and G. Roelkens, “III-V-on-Silicon photonic transceivers for radio-over-fiber links,” J. Lightwave Technol.in press.

B. Pezeshki, “The advantages of hybrid optical integration, as demonstrated by a 4×25 Gb/s transceiver (TROSA),” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M3B. 3.

China Mobile Research Institute, “C-RAN: The road towards green RAN,” whitepaper, (2013).

Common Public Radio Interface (CPRI), Interface Specification, (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The structure of the 4-channel TOSA (a) and ROSA (b).
Fig. 2
Fig. 2 The photograph of the fabricated optical transceiver: TOSA (a) and ROSA (b).
Fig. 3
Fig. 3 (a) light-current (L-I) characteristics of the TOSA and (b) optical spectrum of the output optical signal when the bias current is set to 36 mA.
Fig. 4
Fig. 4 Measured S21 curve of the designed optical transceiver.
Fig. 5
Fig. 5 (a) SFDR3 performance of Lane3 at 4 GHz and (b) SFDR3 for all the lanes at different RF frequency.
Fig. 6
Fig. 6 Measured crosstalk characteristic of the proposed transceiver.
Fig. 7
Fig. 7 Experimental setup of the transmission performance evaluation for the proposed transceiver.
Fig. 8
Fig. 8 Measured EVM performance versus optical received power with/without 15.5 km SMF under DO and SO when the central frequency of RF signal is 6 GHz.
Fig. 9
Fig. 9 Measured EVM performance versus optical received power with/without 15.5 km SMF under DO and SO when the central frequency of RF signal is 12 GHz.
Fig. 10
Fig. 10 Measured EVM performance for 64QAM-OFDM RF signal versus optical received power with/without 15.5 km SMF under DO and SO when the received optical power is −8 dBm.
Fig. 11
Fig. 11 Measured EVM performance versus the environment temperature of the proposed transceiver.

Metrics