G. C. Valley, T. J. Shaw, A. D. Stapleton, A. C. Scofield, G. A. Sefler, and L. Johannson, “Application of laser speckle to randomized numerical linear algebra,” Proc. SPIE 10551, 105510M (2018).

M. Piels and D. Zibar, “Compact silicon multimode waveguide spectrometer with enhanced bandwidth,” Sci. Rep. 7(1), 43454 (2017).

[Crossref]
[PubMed]

G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Calibration of a speckle-based compressive sensing receiver,” Proc. SPIE 10103, 101030Z (2017).

[Crossref]

G. C. Valley, G. A. Sefler, and T. Justin Shaw, “Multimode waveguide speckle patterns for compressive sensing,” Opt. Lett. 41(11), 2529–2532 (2016).

[Crossref]
[PubMed]

M. Yang, F. de Hoog, Y. Fan, and W. Hu, “Adaptive sampling by dictionary learning for hyperspectral imaging,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4501–4509 (2016).

[Crossref]

B. Redding, S. F. Liew, Y. Bromberg, R. Sarma, and H. Cao, “Evanescently coupled multimode spiral spectrometer,” Optica 3(9), 956–962 (2016).

[Crossref]

T. P. McKenna, J. H. Kalkavage, M. D. Sharp, and T. R. Clark, “Wideband Photonic Compressive Sampling System,” J. Lightwave Technol. 34(11), 2848–2855 (2016).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]
[PubMed]

Q. Guo, Y. Liang, M. Chen, H. Chen, and S. Xie, “Compressive spectrum sensing of radar pulses based on photonic techniques,” Opt. Express 23(4), 4517–4522 (2015).

[Crossref]
[PubMed]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Optical multi-coset sampling of GHz-band chirped signals,” Proc. SPIE 9362, 93620M (2015).

Y. Chen, X. Yu, H. Chi, X. Jin, X. Zhang, S. Zheng, and M. Galili, “Compressive sensing in a photonic link with optical integration,” Opt. Lett. 39(8), 2222–2224 (2014).

[Crossref]
[PubMed]

B. Redding, M. Alam, M. Seifert, and H. Cao, “High-resolution and broadband all-fiber spectrometers,” Optica 1(3), 175–180 (2014).

[Crossref]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).

[Crossref]
[PubMed]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).

[Crossref]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21(22), 25700–25707 (2013).

[Crossref]
[PubMed]

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

Y. Chen, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing,” J. Lightwave Technol. 31(21), 3395–3401 (2013).

[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics-assisted spectrum compression,” Opt. Lett. 38(21), 4386–4388 (2013).

[Crossref]
[PubMed]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]
[PubMed]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Sensing RF signals with the optical wideband converter,” Proc. SPIE 8645, 86450P (2013).

[Crossref]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Compressive sensing of sparse radio frequency signals using optical mixing,” Opt. Lett. 37(22), 4675–4677 (2012).

[Crossref]
[PubMed]

B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012).

[Crossref]
[PubMed]

H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, “Microwave spectral analysis based on photonic compressive sampling with random demodulation,” Opt. Lett. 37(22), 4636–4638 (2012).

[Crossref]
[PubMed]

M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: analog to digital at sub-Nyquist rates,” IET Circuits Dev. Syst. 5(1), 8–20 (2011).

[Crossref]

H. Nan, Y. Gu, and H. Zhang, “Optical analog-to-digital conversion system based on compressive sensing,” IEEE Photonics Technol. Lett. 23(2), 67–69 (2011).

[Crossref]

J. M. Nichols and F. Bucholtz, “Beating Nyquist with light: a compressively sampled photonic link,” Opt. Express 19(8), 7339–7348 (2011).

[Crossref]
[PubMed]

G. C. Valley and G. A. Sefler, “Optical time-domain mixer,” Proc. SPIE 7797, 77970F (2010).

[Crossref]

J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Trans. Inf. Theory 56(1), 520–544 (2010).

[Crossref]

M. Mishali and Y. Eldar, “From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals,” IEEE J. Sel. Top. Signal Process. 4(2), 375–391 (2010).

[Crossref]

I. Loris, “L1Packv2: A Mathematica package for minimizing an l 1-penalized functional,” Comput. Phys. Commun. 179(12), 895–902 (2008).

D. L. Donoho, “For most large underdetermined systems of linear equations the minimal l 1-norm solution is also the sparsest solution,” Commun. Pure Appl. Math. 59(6), 797–829 (2006).

[Crossref]

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59(8), 1207–1223 (2006).

[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).

[Crossref]

R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Trans. Antenn. Propag. 34(3), 276–280 (1986).

[Crossref]

J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Trans. Inf. Theory 56(1), 520–544 (2010).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]
[PubMed]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In 2015 Conference on Lasers and Electro-Optics (CLEO)IEEE, (2015).

[Crossref]

A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Dremeau, S. Gigan, and F. Krzakala, “Random projections through multiple optical scattering: Approximating kernels at the speed of light,” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 6215–6219 (2016).

[Crossref]

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59(8), 1207–1223 (2006).

[Crossref]

B. Redding, S. F. Liew, Y. Bromberg, R. Sarma, and H. Cao, “Evanescently coupled multimode spiral spectrometer,” Optica 3(9), 956–962 (2016).

[Crossref]

B. Redding, M. Alam, M. Seifert, and H. Cao, “High-resolution and broadband all-fiber spectrometers,” Optica 1(3), 175–180 (2014).

[Crossref]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).

[Crossref]
[PubMed]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).

[Crossref]

B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012).

[Crossref]
[PubMed]

A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Dremeau, S. Gigan, and F. Krzakala, “Random projections through multiple optical scattering: Approximating kernels at the speed of light,” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 6215–6219 (2016).

[Crossref]

Q. Guo, Y. Liang, M. Chen, H. Chen, and S. Xie, “Compressive spectrum sensing of radar pulses based on photonic techniques,” Opt. Express 23(4), 4517–4522 (2015).

[Crossref]
[PubMed]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21(22), 25700–25707 (2013).

[Crossref]
[PubMed]

Q. Guo, Y. Liang, M. Chen, H. Chen, and S. Xie, “Compressive spectrum sensing of radar pulses based on photonic techniques,” Opt. Express 23(4), 4517–4522 (2015).

[Crossref]
[PubMed]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21(22), 25700–25707 (2013).

[Crossref]
[PubMed]

Y. Chen, X. Yu, H. Chi, X. Jin, X. Zhang, S. Zheng, and M. Galili, “Compressive sensing in a photonic link with optical integration,” Opt. Lett. 39(8), 2222–2224 (2014).

[Crossref]
[PubMed]

Y. Chen, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing,” J. Lightwave Technol. 31(21), 3395–3401 (2013).

[Crossref]

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, “Microwave spectral analysis based on photonic compressive sampling with random demodulation,” Opt. Lett. 37(22), 4636–4638 (2012).

[Crossref]
[PubMed]

Y. Chen, X. Yu, H. Chi, X. Jin, X. Zhang, S. Zheng, and M. Galili, “Compressive sensing in a photonic link with optical integration,” Opt. Lett. 39(8), 2222–2224 (2014).

[Crossref]
[PubMed]

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

Y. Chen, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing,” J. Lightwave Technol. 31(21), 3395–3401 (2013).

[Crossref]

H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, “Microwave spectral analysis based on photonic compressive sampling with random demodulation,” Opt. Lett. 37(22), 4636–4638 (2012).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]
[PubMed]

T. P. McKenna, J. H. Kalkavage, M. D. Sharp, and T. R. Clark, “Wideband Photonic Compressive Sampling System,” J. Lightwave Technol. 34(11), 2848–2855 (2016).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In 2015 Conference on Lasers and Electro-Optics (CLEO)IEEE, (2015).

[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics-assisted spectrum compression,” Opt. Lett. 38(21), 4386–4388 (2013).

[Crossref]
[PubMed]

A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Dremeau, S. Gigan, and F. Krzakala, “Random projections through multiple optical scattering: Approximating kernels at the speed of light,” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 6215–6219 (2016).

[Crossref]

M. Yang, F. de Hoog, Y. Fan, and W. Hu, “Adaptive sampling by dictionary learning for hyperspectral imaging,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4501–4509 (2016).

[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).

[Crossref]

D. L. Donoho, “For most large underdetermined systems of linear equations the minimal l 1-norm solution is also the sparsest solution,” Commun. Pure Appl. Math. 59(6), 797–829 (2006).

[Crossref]

M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: analog to digital at sub-Nyquist rates,” IET Circuits Dev. Syst. 5(1), 8–20 (2011).

[Crossref]

A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Dremeau, S. Gigan, and F. Krzakala, “Random projections through multiple optical scattering: Approximating kernels at the speed of light,” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 6215–6219 (2016).

[Crossref]

J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Trans. Inf. Theory 56(1), 520–544 (2010).

[Crossref]

M. Mishali and Y. Eldar, “From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals,” IEEE J. Sel. Top. Signal Process. 4(2), 375–391 (2010).

[Crossref]

M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: analog to digital at sub-Nyquist rates,” IET Circuits Dev. Syst. 5(1), 8–20 (2011).

[Crossref]

M. Yang, F. de Hoog, Y. Fan, and W. Hu, “Adaptive sampling by dictionary learning for hyperspectral imaging,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4501–4509 (2016).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]
[PubMed]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In 2015 Conference on Lasers and Electro-Optics (CLEO)IEEE, (2015).

[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics-assisted spectrum compression,” Opt. Lett. 38(21), 4386–4388 (2013).

[Crossref]
[PubMed]

A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Dremeau, S. Gigan, and F. Krzakala, “Random projections through multiple optical scattering: Approximating kernels at the speed of light,” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 6215–6219 (2016).

[Crossref]

H. Nan, Y. Gu, and H. Zhang, “Optical analog-to-digital conversion system based on compressive sensing,” IEEE Photonics Technol. Lett. 23(2), 67–69 (2011).

[Crossref]

M. Yang, F. de Hoog, Y. Fan, and W. Hu, “Adaptive sampling by dictionary learning for hyperspectral imaging,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4501–4509 (2016).

[Crossref]

Y. Chen, X. Yu, H. Chi, X. Jin, X. Zhang, S. Zheng, and M. Galili, “Compressive sensing in a photonic link with optical integration,” Opt. Lett. 39(8), 2222–2224 (2014).

[Crossref]
[PubMed]

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

Y. Chen, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing,” J. Lightwave Technol. 31(21), 3395–3401 (2013).

[Crossref]

H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, “Microwave spectral analysis based on photonic compressive sampling with random demodulation,” Opt. Lett. 37(22), 4636–4638 (2012).

[Crossref]
[PubMed]

G. C. Valley, T. J. Shaw, A. D. Stapleton, A. C. Scofield, G. A. Sefler, and L. Johannson, “Application of laser speckle to randomized numerical linear algebra,” Proc. SPIE 10551, 105510M (2018).

A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Dremeau, S. Gigan, and F. Krzakala, “Random projections through multiple optical scattering: Approximating kernels at the speed of light,” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 6215–6219 (2016).

[Crossref]

J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Trans. Inf. Theory 56(1), 520–544 (2010).

[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics-assisted spectrum compression,” Opt. Lett. 38(21), 4386–4388 (2013).

[Crossref]
[PubMed]

Q. Guo, Y. Liang, M. Chen, H. Chen, and S. Xie, “Compressive spectrum sensing of radar pulses based on photonic techniques,” Opt. Express 23(4), 4517–4522 (2015).

[Crossref]
[PubMed]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21(22), 25700–25707 (2013).

[Crossref]
[PubMed]

B. Redding, S. F. Liew, Y. Bromberg, R. Sarma, and H. Cao, “Evanescently coupled multimode spiral spectrometer,” Optica 3(9), 956–962 (2016).

[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).

[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics-assisted spectrum compression,” Opt. Lett. 38(21), 4386–4388 (2013).

[Crossref]
[PubMed]

I. Loris, “L1Packv2: A Mathematica package for minimizing an l 1-penalized functional,” Comput. Phys. Commun. 179(12), 895–902 (2008).

T. P. McKenna, J. H. Kalkavage, M. D. Sharp, and T. R. Clark, “Wideband Photonic Compressive Sampling System,” J. Lightwave Technol. 34(11), 2848–2855 (2016).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In 2015 Conference on Lasers and Electro-Optics (CLEO)IEEE, (2015).

[Crossref]

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, “Microwave spectral analysis based on photonic compressive sampling with random demodulation,” Opt. Lett. 37(22), 4636–4638 (2012).

[Crossref]
[PubMed]

M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: analog to digital at sub-Nyquist rates,” IET Circuits Dev. Syst. 5(1), 8–20 (2011).

[Crossref]

M. Mishali and Y. Eldar, “From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals,” IEEE J. Sel. Top. Signal Process. 4(2), 375–391 (2010).

[Crossref]

H. Nan, Y. Gu, and H. Zhang, “Optical analog-to-digital conversion system based on compressive sensing,” IEEE Photonics Technol. Lett. 23(2), 67–69 (2011).

[Crossref]

M. Piels and D. Zibar, “Compact silicon multimode waveguide spectrometer with enhanced bandwidth,” Sci. Rep. 7(1), 43454 (2017).

[Crossref]
[PubMed]

B. Redding, S. F. Liew, Y. Bromberg, R. Sarma, and H. Cao, “Evanescently coupled multimode spiral spectrometer,” Optica 3(9), 956–962 (2016).

[Crossref]

B. Redding, M. Alam, M. Seifert, and H. Cao, “High-resolution and broadband all-fiber spectrometers,” Optica 1(3), 175–180 (2014).

[Crossref]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).

[Crossref]
[PubMed]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).

[Crossref]

B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012).

[Crossref]
[PubMed]

J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Trans. Inf. Theory 56(1), 520–544 (2010).

[Crossref]

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59(8), 1207–1223 (2006).

[Crossref]

A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Dremeau, S. Gigan, and F. Krzakala, “Random projections through multiple optical scattering: Approximating kernels at the speed of light,” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 6215–6219 (2016).

[Crossref]

B. Redding, S. F. Liew, Y. Bromberg, R. Sarma, and H. Cao, “Evanescently coupled multimode spiral spectrometer,” Optica 3(9), 956–962 (2016).

[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).

[Crossref]

R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Trans. Antenn. Propag. 34(3), 276–280 (1986).

[Crossref]

G. C. Valley, T. J. Shaw, A. D. Stapleton, A. C. Scofield, G. A. Sefler, and L. Johannson, “Application of laser speckle to randomized numerical linear algebra,” Proc. SPIE 10551, 105510M (2018).

A. C. Scofield, G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Demonstration of GHz-band RF receiver and spectrometer using random speckle patterns,” in Conference on Lasers and Electro-optics (CLEO), (2018).

[Crossref]

G. C. Valley, T. J. Shaw, A. D. Stapleton, A. C. Scofield, G. A. Sefler, and L. Johannson, “Application of laser speckle to randomized numerical linear algebra,” Proc. SPIE 10551, 105510M (2018).

G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Calibration of a speckle-based compressive sensing receiver,” Proc. SPIE 10103, 101030Z (2017).

[Crossref]

G. C. Valley, G. A. Sefler, and T. Justin Shaw, “Multimode waveguide speckle patterns for compressive sensing,” Opt. Lett. 41(11), 2529–2532 (2016).

[Crossref]
[PubMed]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Optical multi-coset sampling of GHz-band chirped signals,” Proc. SPIE 9362, 93620M (2015).

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Sensing RF signals with the optical wideband converter,” Proc. SPIE 8645, 86450P (2013).

[Crossref]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Compressive sensing of sparse radio frequency signals using optical mixing,” Opt. Lett. 37(22), 4675–4677 (2012).

[Crossref]
[PubMed]

G. C. Valley and G. A. Sefler, “Optical time-domain mixer,” Proc. SPIE 7797, 77970F (2010).

[Crossref]

A. C. Scofield, G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Demonstration of GHz-band RF receiver and spectrometer using random speckle patterns,” in Conference on Lasers and Electro-optics (CLEO), (2018).

[Crossref]

G. C. Valley, T. J. Shaw, A. D. Stapleton, A. C. Scofield, G. A. Sefler, and L. Johannson, “Application of laser speckle to randomized numerical linear algebra,” Proc. SPIE 10551, 105510M (2018).

G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Calibration of a speckle-based compressive sensing receiver,” Proc. SPIE 10103, 101030Z (2017).

[Crossref]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Optical multi-coset sampling of GHz-band chirped signals,” Proc. SPIE 9362, 93620M (2015).

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Sensing RF signals with the optical wideband converter,” Proc. SPIE 8645, 86450P (2013).

[Crossref]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Compressive sensing of sparse radio frequency signals using optical mixing,” Opt. Lett. 37(22), 4675–4677 (2012).

[Crossref]
[PubMed]

A. C. Scofield, G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Demonstration of GHz-band RF receiver and spectrometer using random speckle patterns,” in Conference on Lasers and Electro-optics (CLEO), (2018).

[Crossref]

M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: analog to digital at sub-Nyquist rates,” IET Circuits Dev. Syst. 5(1), 8–20 (2011).

[Crossref]

G. C. Valley, T. J. Shaw, A. D. Stapleton, A. C. Scofield, G. A. Sefler, and L. Johannson, “Application of laser speckle to randomized numerical linear algebra,” Proc. SPIE 10551, 105510M (2018).

G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Calibration of a speckle-based compressive sensing receiver,” Proc. SPIE 10103, 101030Z (2017).

[Crossref]

A. C. Scofield, G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Demonstration of GHz-band RF receiver and spectrometer using random speckle patterns,” in Conference on Lasers and Electro-optics (CLEO), (2018).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]
[PubMed]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In 2015 Conference on Lasers and Electro-Optics (CLEO)IEEE, (2015).

[Crossref]

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59(8), 1207–1223 (2006).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In 2015 Conference on Lasers and Electro-Optics (CLEO)IEEE, (2015).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]
[PubMed]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In 2015 Conference on Lasers and Electro-Optics (CLEO)IEEE, (2015).

[Crossref]

J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Trans. Inf. Theory 56(1), 520–544 (2010).

[Crossref]

G. C. Valley, T. J. Shaw, A. D. Stapleton, A. C. Scofield, G. A. Sefler, and L. Johannson, “Application of laser speckle to randomized numerical linear algebra,” Proc. SPIE 10551, 105510M (2018).

G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Calibration of a speckle-based compressive sensing receiver,” Proc. SPIE 10103, 101030Z (2017).

[Crossref]

G. C. Valley, G. A. Sefler, and T. Justin Shaw, “Multimode waveguide speckle patterns for compressive sensing,” Opt. Lett. 41(11), 2529–2532 (2016).

[Crossref]
[PubMed]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Optical multi-coset sampling of GHz-band chirped signals,” Proc. SPIE 9362, 93620M (2015).

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Sensing RF signals with the optical wideband converter,” Proc. SPIE 8645, 86450P (2013).

[Crossref]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Compressive sensing of sparse radio frequency signals using optical mixing,” Opt. Lett. 37(22), 4675–4677 (2012).

[Crossref]
[PubMed]

G. C. Valley and G. A. Sefler, “Optical time-domain mixer,” Proc. SPIE 7797, 77970F (2010).

[Crossref]

A. C. Scofield, G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Demonstration of GHz-band RF receiver and spectrometer using random speckle patterns,” in Conference on Lasers and Electro-optics (CLEO), (2018).

[Crossref]

Q. Guo, Y. Liang, M. Chen, H. Chen, and S. Xie, “Compressive spectrum sensing of radar pulses based on photonic techniques,” Opt. Express 23(4), 4517–4522 (2015).

[Crossref]
[PubMed]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21(22), 25700–25707 (2013).

[Crossref]
[PubMed]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics-assisted spectrum compression,” Opt. Lett. 38(21), 4386–4388 (2013).

[Crossref]
[PubMed]

M. Yang, F. de Hoog, Y. Fan, and W. Hu, “Adaptive sampling by dictionary learning for hyperspectral imaging,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4501–4509 (2016).

[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics-assisted spectrum compression,” Opt. Lett. 38(21), 4386–4388 (2013).

[Crossref]
[PubMed]

H. Nan, Y. Gu, and H. Zhang, “Optical analog-to-digital conversion system based on compressive sensing,” IEEE Photonics Technol. Lett. 23(2), 67–69 (2011).

[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics-assisted spectrum compression,” Opt. Lett. 38(21), 4386–4388 (2013).

[Crossref]
[PubMed]

Y. Chen, X. Yu, H. Chi, X. Jin, X. Zhang, S. Zheng, and M. Galili, “Compressive sensing in a photonic link with optical integration,” Opt. Lett. 39(8), 2222–2224 (2014).

[Crossref]
[PubMed]

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

Y. Chen, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing,” J. Lightwave Technol. 31(21), 3395–3401 (2013).

[Crossref]

H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, “Microwave spectral analysis based on photonic compressive sampling with random demodulation,” Opt. Lett. 37(22), 4636–4638 (2012).

[Crossref]
[PubMed]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics-assisted spectrum compression,” Opt. Lett. 38(21), 4386–4388 (2013).

[Crossref]
[PubMed]

Y. Chen, X. Yu, H. Chi, X. Jin, X. Zhang, S. Zheng, and M. Galili, “Compressive sensing in a photonic link with optical integration,” Opt. Lett. 39(8), 2222–2224 (2014).

[Crossref]
[PubMed]

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

Y. Chen, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing,” J. Lightwave Technol. 31(21), 3395–3401 (2013).

[Crossref]

H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, “Microwave spectral analysis based on photonic compressive sampling with random demodulation,” Opt. Lett. 37(22), 4636–4638 (2012).

[Crossref]
[PubMed]

M. Piels and D. Zibar, “Compact silicon multimode waveguide spectrometer with enhanced bandwidth,” Sci. Rep. 7(1), 43454 (2017).

[Crossref]
[PubMed]

D. L. Donoho, “For most large underdetermined systems of linear equations the minimal l 1-norm solution is also the sparsest solution,” Commun. Pure Appl. Math. 59(6), 797–829 (2006).

[Crossref]

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59(8), 1207–1223 (2006).

[Crossref]

I. Loris, “L1Packv2: A Mathematica package for minimizing an l 1-penalized functional,” Comput. Phys. Commun. 179(12), 895–902 (2008).

M. Yang, F. de Hoog, Y. Fan, and W. Hu, “Adaptive sampling by dictionary learning for hyperspectral imaging,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4501–4509 (2016).

[Crossref]

M. Mishali and Y. Eldar, “From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals,” IEEE J. Sel. Top. Signal Process. 4(2), 375–391 (2010).

[Crossref]

H. Nan, Y. Gu, and H. Zhang, “Optical analog-to-digital conversion system based on compressive sensing,” IEEE Photonics Technol. Lett. 23(2), 67–69 (2011).

[Crossref]

R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Trans. Antenn. Propag. 34(3), 276–280 (1986).

[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).

[Crossref]

J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Trans. Inf. Theory 56(1), 520–544 (2010).

[Crossref]

M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: analog to digital at sub-Nyquist rates,” IET Circuits Dev. Syst. 5(1), 8–20 (2011).

[Crossref]

T. P. McKenna, J. H. Kalkavage, M. D. Sharp, and T. R. Clark, “Wideband Photonic Compressive Sampling System,” J. Lightwave Technol. 34(11), 2848–2855 (2016).

[Crossref]

Y. Chen, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing,” J. Lightwave Technol. 31(21), 3395–3401 (2013).

[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).

[Crossref]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).

[Crossref]
[PubMed]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21(22), 25700–25707 (2013).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]
[PubMed]

Q. Guo, Y. Liang, M. Chen, H. Chen, and S. Xie, “Compressive spectrum sensing of radar pulses based on photonic techniques,” Opt. Express 23(4), 4517–4522 (2015).

[Crossref]
[PubMed]

J. M. Nichols and F. Bucholtz, “Beating Nyquist with light: a compressively sampled photonic link,” Opt. Express 19(8), 7339–7348 (2011).

[Crossref]
[PubMed]

H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, “Microwave spectral analysis based on photonic compressive sampling with random demodulation,” Opt. Lett. 37(22), 4636–4638 (2012).

[Crossref]
[PubMed]

G. C. Valley, G. A. Sefler, and T. Justin Shaw, “Multimode waveguide speckle patterns for compressive sensing,” Opt. Lett. 41(11), 2529–2532 (2016).

[Crossref]
[PubMed]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Compressive sensing of sparse radio frequency signals using optical mixing,” Opt. Lett. 37(22), 4675–4677 (2012).

[Crossref]
[PubMed]

B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012).

[Crossref]
[PubMed]

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics-assisted spectrum compression,” Opt. Lett. 38(21), 4386–4388 (2013).

[Crossref]
[PubMed]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]
[PubMed]

Y. Chen, X. Yu, H. Chi, X. Jin, X. Zhang, S. Zheng, and M. Galili, “Compressive sensing in a photonic link with optical integration,” Opt. Lett. 39(8), 2222–2224 (2014).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

B. Redding, M. Alam, M. Seifert, and H. Cao, “High-resolution and broadband all-fiber spectrometers,” Optica 1(3), 175–180 (2014).

[Crossref]

B. Redding, S. F. Liew, Y. Bromberg, R. Sarma, and H. Cao, “Evanescently coupled multimode spiral spectrometer,” Optica 3(9), 956–962 (2016).

[Crossref]

G. C. Valley, T. J. Shaw, A. D. Stapleton, A. C. Scofield, G. A. Sefler, and L. Johannson, “Application of laser speckle to randomized numerical linear algebra,” Proc. SPIE 10551, 105510M (2018).

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Sensing RF signals with the optical wideband converter,” Proc. SPIE 8645, 86450P (2013).

[Crossref]

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Optical multi-coset sampling of GHz-band chirped signals,” Proc. SPIE 9362, 93620M (2015).

G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Calibration of a speckle-based compressive sensing receiver,” Proc. SPIE 10103, 101030Z (2017).

[Crossref]

G. C. Valley and G. A. Sefler, “Optical time-domain mixer,” Proc. SPIE 7797, 77970F (2010).

[Crossref]

M. Piels and D. Zibar, “Compact silicon multimode waveguide spectrometer with enhanced bandwidth,” Sci. Rep. 7(1), 43454 (2017).

[Crossref]
[PubMed]

M. Piels and D. Zibar, “Compact spectrometer based on a silicon multimode waveguide,” Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, (2017).

A. C. Scofield, G. A. Sefler, T. J. Shaw, A. D. Stapleton, and G. C. Valley, “Demonstration of GHz-band RF receiver and spectrometer using random speckle patterns,” in Conference on Lasers and Electro-optics (CLEO), (2018).

[Crossref]

A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Dremeau, S. Gigan, and F. Krzakala, “Random projections through multiple optical scattering: Approximating kernels at the speed of light,” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 6215–6219 (2016).

[Crossref]

J. Dong, S. Gigan, F. Krzakala, and G. Wainrib, “Scaling up Echo-State Networks with multiple light scattering.” arXiv preprint arXiv:1609.05204 (2016).

Texas Instruments, http://www.ti.com/product/ADS52J90/description (2018).

G. C. Valley and G. A. Sefler, “Systems and methods for converting wideband signals in the optical domain,” U.S. Patent No. 8,026,837, (2011).

M. Mishali and Y. C. Eldar, “Xampling: Compressed sensing for analog signals,” in Compressed Sensing: Theory and Applications, ed. by Y. C. Eldar and G. Kutyniok, (Cambridge University, 2012).

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications, (Cambridge University, 2012).

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, (Springer, 2013).

G. A. Sefler, G. C. Valley, and T. J. Shaw, “Photonic compressive sensing of GHz-band RF signals,” Proc. 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) 109–113 (2015).

[Crossref]

G. C. Valley and G. A. Sefler, “Systems and methods for converting radio frequency signals into the digital domain using multi-mode optics,” U.S. Patent No. 9,413,372, (2016).

G. C. Valley, G. A. Sefler, and T. J. Shaw, “Systems and methods for converting wideband signals into the digital domain using electronics or guided-wave optics,” U.S. Patent No. 8,902,096, (2014).

T. P. McKenna, M. D. Sharp, D. G. Lucarelli, J. A. Nanzer, M. L. Dennis, and T. R. Clark, Jr., “Wideband photonic compressive sampling analog-to-digital converter for RF spectrum estimation,” OFC/NFOEC Tech. Dig. OTHD.1 (2013).

Q. Guo, H. Chen, M. Chen, S. Yang, and S. Xie, “Photonics-assisted compressive sampling systems,” In SPIE/COS Photonics Asia (pp. 100260E–100260E). International Society for Optics and Photonics, (2016).

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In 2015 Conference on Lasers and Electro-Optics (CLEO)IEEE, (2015).

[Crossref]

J. M. Nichols, F. Bucholtz, C. V. McLaughlin, A. K. Oh, and R. M. Willett, “Fixing basis mismatch in compressively sampled photonic link,” SPIE Sensing Technology + Applications. International Society for Optics and Photonics, (2014).

H. Sun, B. T. Bosworth, B. C. Grubel, M. R. Kossey, M. A. Foster, and A. C. Foster, “Compressed sensing of sparse RF signals based on silicon photonic microcavities,” In CLEO: Science and Innovations, pp. SM1O–5. Optical Society of America, (2017).