Abstract

We demonstrate a low-cost 343 nm solid-state laser delivering up to 20 µJ per pulse, with a pulse width of 2.3 ns at a repetition rate of 100 Hz. The 343 nm is obtained through a third harmonic generation of a passively Q-switched 1030 nm Yb:YAG laser with pulse energy of 190 µJ at 100 Hz and a pulse width of 5.4 ns. The IR-UV conversion efficiency is 10.4%, comparable to that achieved with mode-locked IR lasers. The light source is electronically controlled for easy synchronization with a detection circuit. The low repetition rate specifically targets applications exploiting the millisecond scale lifetime of lanthanides employed in fluoroimmunoassay measurements for time-resolved fluorescence spectroscopy. Low repetition rate and even pulse-on-demand operation is demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber

Jun Dong, Peizhen Deng, Yupu Liu, Yinghua Zhang, Jun Xu, Wei Chen, and Xinglong Xie
Appl. Opt. 40(24) 4303-4307 (2001)

Cost-effective low timing jitter passively Q-switched diode-pumped solid-state laser with composite pumping pulses

Jacob B. Khurgin, Feng Jin, Gregory Solyar, Chen-Chia Wang, and Sudhir Trivedi
Appl. Opt. 41(6) 1095-1097 (2002)

References

  • View by:
  • |
  • |
  • |

  1. J.-C. G. Bünzli, “Lanthanide luminescence for biomedical analyses and imaging,” Chem. Rev. 110(5), 2729–2755 (2010).
    [Crossref] [PubMed]
  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer US, 2006).
  3. O. Rodenko, H. Fodgaard, P. Tidemand-Lichtenberg, P. M. Petersen, and C. Pedersen, “340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays,” Opt. Express 24(19), 22135–22143 (2016).
    [Crossref] [PubMed]
  4. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, C. Spielmann, F. Krausz, and K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22(20), 1562–1564 (1997).
    [Crossref] [PubMed]
  5. J. Rothhardt, C. Rothhardt, M. Müller, A. Klenke, M. Kienel, S. Demmler, T. Elsmann, M. Rothhardt, J. Limpert, and A. Tünnermann, “100 W average power femtosecond laser at 343 nm,” Opt. Lett. 41(8), 1885–1888 (2016).
    [Crossref] [PubMed]
  6. J. P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23(16), 21064–21077 (2015).
    [Crossref] [PubMed]
  7. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [Crossref] [PubMed]
  8. J. Dong, Y. Ren, and H. Cheng, “> 1 MW peak power, an efficient Yb: YAG/Cr4+: YAG composite crystal passively Q-switched laser,” Laser Phys. 24(5), 055801 (2014).
    [Crossref]
  9. M. Tsunekane and T. Taira, “High Peak Power, Passively Q-Switched Yb:YAG/Cr:YAG Micro-Lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
    [Crossref]
  10. B. Li, B. Sun, and H. Mu, “High-efficiency generation of 355 nm radiation by a diode-end-pumped passively Q-switched Nd:YAG/Nd:YVO4 laser,” Appl. Opt. 55(10), 2474–2477 (2016).
    [Crossref] [PubMed]
  11. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, 2005).
  12. M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd/sup 3+/doped solid-state lasers,” IEEE J. Quantum Electron. 39(6), 741–748 (2003).
    [Crossref]
  13. O. Kimmelma, I. Tittonen, and S. C. Buchter, “Thermal tuning of laser pulse parameters in passively Q-switched Nd:YAG lasers,” Appl. Opt. 47(23), 4262–4266 (2008).
    [Crossref] [PubMed]
  14. M. Tsunekane and T. Taira, “Temperature and polarization dependences of Cr:YAG transmission for passive Q-switching,” Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, Baltimore, MD, 2009, pp. 1–2.
    [Crossref]
  15. K. Rottwitt and P. Tidemand-Lichtenberg, Nonlinear Optics: Principles and Applications (CRC Press, 2014).
  16. K. Kato, “Tunable UV generation to 0.2325 mu m in LiB/sub 3/O/sub 5,” IEEE J. Quantum Electron. 26(7), 1173–1175 (1990).
    [Crossref]
  17. S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic-generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
    [Crossref]
  18. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).
    [Crossref]
  19. O. Rodenko, S. Eriksson, P. Tidemand-Lichtenberg, C. P. Troldborg, H. Fodgaard, S. van Os, and C. Pedersen, “High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay,” Biomed. Opt. Express 8(8), 3749–3762 (2017).
    [Crossref] [PubMed]
  20. S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(3A), L239–L241 (1999).
    [Crossref]
  21. D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, “High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime,” Opt. Lett. 32(15), 2115–2117 (2007).
    [Crossref] [PubMed]
  22. J. B. Khurgin, F. Jin, G. Solyar, C. C. Wang, and S. Trivedi, “Cost-effective low timing jitter passively Q-switched diode-pumped solid-state laser with composite pumping pulses,” Appl. Opt. 41(6), 1095–1097 (2002).
    [Crossref] [PubMed]
  23. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17(3), 1766–1771 (2009).
    [Crossref] [PubMed]
  24. M. W. Smillie, M. Silver, S. T. Lee, and T. J. Cook, “High single-pulse energy, passively Q-switched Nd:YAG laser for defence applications,” Proc. SPIE 8959, 89590Z (2014).
    [Crossref]

2017 (1)

2016 (3)

2015 (1)

2014 (2)

J. Dong, Y. Ren, and H. Cheng, “> 1 MW peak power, an efficient Yb: YAG/Cr4+: YAG composite crystal passively Q-switched laser,” Laser Phys. 24(5), 055801 (2014).
[Crossref]

M. W. Smillie, M. Silver, S. T. Lee, and T. J. Cook, “High single-pulse energy, passively Q-switched Nd:YAG laser for defence applications,” Proc. SPIE 8959, 89590Z (2014).
[Crossref]

2013 (1)

M. Tsunekane and T. Taira, “High Peak Power, Passively Q-Switched Yb:YAG/Cr:YAG Micro-Lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

2010 (1)

J.-C. G. Bünzli, “Lanthanide luminescence for biomedical analyses and imaging,” Chem. Rev. 110(5), 2729–2755 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (2)

2003 (1)

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd/sup 3+/doped solid-state lasers,” IEEE J. Quantum Electron. 39(6), 741–748 (2003).
[Crossref]

2002 (1)

1999 (1)

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(3A), L239–L241 (1999).
[Crossref]

1997 (1)

1992 (1)

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).
[Crossref]

1991 (1)

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic-generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[Crossref]

1990 (1)

K. Kato, “Tunable UV generation to 0.2325 mu m in LiB/sub 3/O/sub 5,” IEEE J. Quantum Electron. 26(7), 1173–1175 (1990).
[Crossref]

Ahmed, M. A.

Bass, M.

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd/sup 3+/doped solid-state lasers,” IEEE J. Quantum Electron. 39(6), 741–748 (2003).
[Crossref]

Bauer, D.

Brickeen, B. K.

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd/sup 3+/doped solid-state lasers,” IEEE J. Quantum Electron. 39(6), 741–748 (2003).
[Crossref]

Buchter, S. C.

Bünzli, J.-C. G.

J.-C. G. Bünzli, “Lanthanide luminescence for biomedical analyses and imaging,” Chem. Rev. 110(5), 2729–2755 (2010).
[Crossref] [PubMed]

Cheng, H.

J. Dong, Y. Ren, and H. Cheng, “> 1 MW peak power, an efficient Yb: YAG/Cr4+: YAG composite crystal passively Q-switched laser,” Laser Phys. 24(5), 055801 (2014).
[Crossref]

Cheng, Z.

Cole, B.

Cook, T. J.

M. W. Smillie, M. Silver, S. T. Lee, and T. J. Cook, “High single-pulse energy, passively Q-switched Nd:YAG laser for defence applications,” Proc. SPIE 8959, 89590Z (2014).
[Crossref]

Davis, L.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic-generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[Crossref]

Demmler, S.

Dong, J.

J. Dong, Y. Ren, and H. Cheng, “> 1 MW peak power, an efficient Yb: YAG/Cr4+: YAG composite crystal passively Q-switched laser,” Laser Phys. 24(5), 055801 (2014).
[Crossref]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

Elsmann, T.

Eriksson, S.

Ferencz, K.

Fodgaard, H.

Goldberg, L.

Graf, T.

Guina, M.

Hays, A.

Hohmuth, R.

Huang, C.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic-generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[Crossref]

Huang, S. L.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(3A), L239–L241 (1999).
[Crossref]

Jin, F.

Kaminskii, A. A.

Kao, F. J.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(3A), L239–L241 (1999).
[Crossref]

Kato, K.

K. Kato, “Tunable UV generation to 0.2325 mu m in LiB/sub 3/O/sub 5,” IEEE J. Quantum Electron. 26(7), 1173–1175 (1990).
[Crossref]

Khurgin, J. B.

Kienel, M.

Killi, A.

Kimmelma, O.

Klenke, A.

Krausz, F.

Lee, S. T.

M. W. Smillie, M. Silver, S. T. Lee, and T. J. Cook, “High single-pulse energy, passively Q-switched Nd:YAG laser for defence applications,” Proc. SPIE 8959, 89590Z (2014).
[Crossref]

Lenzner, M.

Li, B.

Limpert, J.

Loescher, A.

McIntosh, C.

Mu, H.

Müller, M.

Negel, J. P.

Nodop, D.

Pedersen, C.

Petersen, P. M.

Ren, Y.

J. Dong, Y. Ren, and H. Cheng, “> 1 MW peak power, an efficient Yb: YAG/Cr4+: YAG composite crystal passively Q-switched laser,” Laser Phys. 24(5), 055801 (2014).
[Crossref]

Richter, W.

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).
[Crossref]

Rodenko, O.

Rothhardt, C.

Rothhardt, J.

Rothhardt, M.

Sartania, S.

Schilling, B. W.

Shirakawa, A.

Silver, M.

M. W. Smillie, M. Silver, S. T. Lee, and T. J. Cook, “High single-pulse energy, passively Q-switched Nd:YAG laser for defence applications,” Proc. SPIE 8959, 89590Z (2014).
[Crossref]

Smillie, M. W.

M. W. Smillie, M. Silver, S. T. Lee, and T. J. Cook, “High single-pulse energy, passively Q-switched Nd:YAG laser for defence applications,” Proc. SPIE 8959, 89590Z (2014).
[Crossref]

Solyar, G.

Spielmann, C.

Sun, B.

Sutter, D.

Taira, T.

M. Tsunekane and T. Taira, “High Peak Power, Passively Q-Switched Yb:YAG/Cr:YAG Micro-Lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

Tempea, G.

Tidemand-Lichtenberg, P.

Tittonen, I.

Trivedi, S.

Troldborg, C. P.

Trussell, C. W.

Tsui, T. Y.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(3A), L239–L241 (1999).
[Crossref]

Tsunekane, M.

M. Tsunekane and T. Taira, “High Peak Power, Passively Q-Switched Yb:YAG/Cr:YAG Micro-Lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

Tünnermann, A.

Ueda, K.

van Os, S.

Velsko, S. P.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic-generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[Crossref]

Vigil, S.

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd/sup 3+/doped solid-state lasers,” IEEE J. Quantum Electron. 39(6), 741–748 (2003).
[Crossref]

Voss, A.

Wang, C. C.

Wang, C. H.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(3A), L239–L241 (1999).
[Crossref]

Webb, M.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic-generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[Crossref]

Weichman, L. S.

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd/sup 3+/doped solid-state lasers,” IEEE J. Quantum Electron. 39(6), 741–748 (2003).
[Crossref]

Yagi, H.

Yanagitani, T.

Appl. Opt. (3)

Biomed. Opt. Express (1)

Chem. Rev. (1)

J.-C. G. Bünzli, “Lanthanide luminescence for biomedical analyses and imaging,” Chem. Rev. 110(5), 2729–2755 (2010).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (5)

M. Tsunekane and T. Taira, “High Peak Power, Passively Q-Switched Yb:YAG/Cr:YAG Micro-Lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

K. Kato, “Tunable UV generation to 0.2325 mu m in LiB/sub 3/O/sub 5,” IEEE J. Quantum Electron. 26(7), 1173–1175 (1990).
[Crossref]

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic-generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[Crossref]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).
[Crossref]

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd/sup 3+/doped solid-state lasers,” IEEE J. Quantum Electron. 39(6), 741–748 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38(3A), L239–L241 (1999).
[Crossref]

Laser Phys. (1)

J. Dong, Y. Ren, and H. Cheng, “> 1 MW peak power, an efficient Yb: YAG/Cr4+: YAG composite crystal passively Q-switched laser,” Laser Phys. 24(5), 055801 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (1)

M. W. Smillie, M. Silver, S. T. Lee, and T. J. Cook, “High single-pulse energy, passively Q-switched Nd:YAG laser for defence applications,” Proc. SPIE 8959, 89590Z (2014).
[Crossref]

Other (4)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, 2005).

M. Tsunekane and T. Taira, “Temperature and polarization dependences of Cr:YAG transmission for passive Q-switching,” Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, Baltimore, MD, 2009, pp. 1–2.
[Crossref]

K. Rottwitt and P. Tidemand-Lichtenberg, Nonlinear Optics: Principles and Applications (CRC Press, 2014).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer US, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup including the diode laser (LD), the Yb:YAG laser crystal, the Cr4+:YAG saturable absorber (SA), the laser output mirror (OC), lens systems (L1-L4), two LBO crystals and a dispersive prism (P).
Fig. 2
Fig. 2 a) Spectrum of the 1030 nm output centered at 1029.94 nm with a FWHM of 0.33 nm measured at 100 Hz, and calculated conversion efficiency as a function of wavelength with the spectral acceptance bandwidth of 1.8 nm; inset: center wavelength as a function of repetition rate; b) spectrum of the 515 nm output centered at 515.28 nm with a FWHM of 0.27 nm.
Fig. 3
Fig. 3 a) Pulse energy of the 1030 nm output as a function of repetition rate; inset: delay of the emitted Q-switched pulse relative to the falling edge of the pump pulse; b) pulse energy at the 515 nm output (blue), and SHG conversion efficiency as a function of repetition rate, measured (red) and calculated (green); c) pulse energy of the 343 nm output (blue), and IR-UV conversion efficiency, measured (red) and calculated (green).
Fig. 4
Fig. 4 a) Pulse profile of the 1030 nm with a FWHM of 5.4 ns; inset: pulse width of the 1030 nm as a function of repetition rate; b) pulse waveform of the 515 nm output with a FWHM of 3.2 ns; c) pulse waveform of the 343 nm output with a FWHM of 2.3 ns. All pulse profiles are measured at 100 Hz.
Fig. 5
Fig. 5 a) Peak power distribution of 1030 nm pulses, >1000 measurements, pulse-to-pulse amplitude fluctuation is 1.6%; b) distribution of delay time of the Q-switched pulse relative to the positive edge of the pump pulse, >1000 measurements, average value 1.9 ms, standard deviation 32.6 µs, variation 1.7%; c) peak power distribution of the 343 nm laser output with a pulse-to-pulse amplitude fluctuation of 2.4% measured with >1000 pulses.

Metrics