Abstract

We designed and fabricated a graded-index few-mode fiber (GI-FMF) with large effective mode area and low intermodal dispersion for Raman distributed temperature sensor (RDTS) to simultaneously achieve high spatial and temperature resolution over long distance. In experiment, we measured the spatial and temperature resolution of the RDTS using different types of fibers under different launch conditions based on a commercially available RDTS system. By using the GI-FMF under the overfilled launch condition, we achieved a 1 °C temperature resolution with a spatial resolution of 1.13 m at the distance of 25 km. The spatial resolution using the standard MMF degraded to 2.58 m with only a 0.3 °C higher temperature resolution in comparison. As a result, the GI-FMF under the few-mode operation condition can provide a desirable temperature resolution comparable with that of the MMF with a negligible degradation on spatial resolution. Moreover, the RDTS using the GI-FMF under the quasi-single mode operation condition achieved a temperature resolution of 4.7 °C at the distance of 25 km with a 2.2 °C improvement and no degradation on spatial resolution compared with that using the standard SMF.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode fiber based Raman distributed temperature sensing

Meng Wang, Hao Wu, Ming Tang, Zhiyong Zhao, Yunli Dang, Can Zhao, Ruolin Liao, Wen Chen, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(5) 4907-4916 (2017)

Link optimized few-mode fiber Raman distributed temperature sensors

Chen Yang, Meng Wang, Ming Tang, Hao Wu, Can Zhao, Tongqing Liu, Songnian Fu, and Weijun Tong
Appl. Opt. 57(24) 6923-6926 (2018)

Few-mode optical fiber based simultaneously distributed curvature and temperature sensing

Hao Wu, Ming Tang, Meng Wang, Can Zhao, Zhiyong Zhao, Ruoxu Wang, Ruolin Liao, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(11) 12722-12732 (2017)

References

  • View by:
  • |
  • |
  • |

  1. “Technology Focus: Optical-fiber sensors,” Nat. Photonics2(3), 143–158 (2008).
  2. A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett. 21(23), 1061–1062 (1985).
    [Crossref]
  3. K. Huai Hoo, G. P. Lees, and T. P. Newson, “1.65 µ m Raman-based distributed temperature sensor,” Electron. Lett. 35(21), 1869–1871 (1999).
    [Crossref]
  4. Z. Liu and A. K. Kim, “Review of Recent Developments in Fire Detection Technologies,” J. Fire Prot. Eng. 13(2), 129–151 (2003).
    [Crossref]
  5. I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, and F. D. Pasquale, “Raman Distributed Temperature Sensing at CERN,” IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015).
    [Crossref]
  6. X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  7. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
    [Crossref]
  8. M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
    [Crossref]
  9. M. A. Farahani and T. Gogolla, “Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing,” J. Lightwave Technol. 17(8), 1379–1391 (1999).
    [Crossref]
  10. A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.
  11. J. Park, G. Bolognini, L. Duckey, K. Pilhan, C. Pilki, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
    [Crossref]
  12. G. Bolognini, J. Park, P. Kim, D. Lee, F. D. Pasquale, and N. Park, “Performance enhancement of Raman-based distributed temperature sensors using simplex codes,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuLl.
  13. G. Bolognini, J. Park, M.A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211 (2007).
    [Crossref]
  14. M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
    [Crossref]
  15. M. Wang, H. Wu, M. Tang, Z. Zhao, Y. Dang, C. Zhao, R. Liao, W. Chen, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode fiber based Raman distributed temperature sensing,” Opt. Express 25(5), 4907–4916 (2017).
    [Crossref] [PubMed]

2017 (1)

2015 (1)

I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, and F. D. Pasquale, “Raman Distributed Temperature Sensing at CERN,” IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015).
[Crossref]

2012 (1)

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

2011 (1)

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
[Crossref]

2007 (2)

M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
[Crossref]

G. Bolognini, J. Park, M.A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211 (2007).
[Crossref]

2006 (1)

J. Park, G. Bolognini, L. Duckey, K. Pilhan, C. Pilki, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

2003 (1)

Z. Liu and A. K. Kim, “Review of Recent Developments in Fire Detection Technologies,” J. Fire Prot. Eng. 13(2), 129–151 (2003).
[Crossref]

1999 (2)

1985 (2)

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett. 21(23), 1061–1062 (1985).
[Crossref]

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Bao, X.

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Baronti, F.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
[Crossref]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

Barsacchi, R.

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Bolognini, G.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
[Crossref]

G. Bolognini, J. Park, M.A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211 (2007).
[Crossref]

M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
[Crossref]

J. Park, G. Bolognini, L. Duckey, K. Pilhan, C. Pilki, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

G. Bolognini, J. Park, P. Kim, D. Lee, F. D. Pasquale, and N. Park, “Performance enhancement of Raman-based distributed temperature sensors using simplex codes,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuLl.

Brugger, M.

I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, and F. D. Pasquale, “Raman Distributed Temperature Sensing at CERN,” IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Chen, W.

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Dang, Y.

Di Pasquale, F.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
[Crossref]

G. Bolognini, J. Park, M.A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211 (2007).
[Crossref]

M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
[Crossref]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

Duckey, L.

J. Park, G. Bolognini, L. Duckey, K. Pilhan, C. Pilki, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Farahani, M. A.

Faralli, S.

M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
[Crossref]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

Fu, S.

Gogolla, T.

Gold, M. P.

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett. 21(23), 1061–1062 (1985).
[Crossref]

Guillermain, E.

I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, and F. D. Pasquale, “Raman Distributed Temperature Sensing at CERN,” IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015).
[Crossref]

Hartog, A. H.

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett. 21(23), 1061–1062 (1985).
[Crossref]

Huai Hoo, K.

K. Huai Hoo, G. P. Lees, and T. P. Newson, “1.65 µ m Raman-based distributed temperature sensor,” Electron. Lett. 35(21), 1869–1871 (1999).
[Crossref]

Kim, A. K.

Z. Liu and A. K. Kim, “Review of Recent Developments in Fire Detection Technologies,” J. Fire Prot. Eng. 13(2), 129–151 (2003).
[Crossref]

Kim, P.

G. Bolognini, J. Park, P. Kim, D. Lee, F. D. Pasquale, and N. Park, “Performance enhancement of Raman-based distributed temperature sensors using simplex codes,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuLl.

Kuhnhenn, J.

I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, and F. D. Pasquale, “Raman Distributed Temperature Sensing at CERN,” IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015).
[Crossref]

Lazzeri, A.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
[Crossref]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

Leach, A. P.

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett. 21(23), 1061–1062 (1985).
[Crossref]

Lee, D.

G. Bolognini, J. Park, P. Kim, D. Lee, F. D. Pasquale, and N. Park, “Performance enhancement of Raman-based distributed temperature sensors using simplex codes,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuLl.

Lees, G. P.

K. Huai Hoo, G. P. Lees, and T. P. Newson, “1.65 µ m Raman-based distributed temperature sensor,” Electron. Lett. 35(21), 1869–1871 (1999).
[Crossref]

Liao, R.

Liu, D.

Liu, Z.

Z. Liu and A. K. Kim, “Review of Recent Developments in Fire Detection Technologies,” J. Fire Prot. Eng. 13(2), 129–151 (2003).
[Crossref]

Nannipieri, T.

I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, and F. D. Pasquale, “Raman Distributed Temperature Sensing at CERN,” IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015).
[Crossref]

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
[Crossref]

Nebendahl, B.

M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
[Crossref]

Newson, T. P.

K. Huai Hoo, G. P. Lees, and T. P. Newson, “1.65 µ m Raman-based distributed temperature sensor,” Electron. Lett. 35(21), 1869–1871 (1999).
[Crossref]

Park, J.

G. Bolognini, J. Park, M.A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211 (2007).
[Crossref]

J. Park, G. Bolognini, L. Duckey, K. Pilhan, C. Pilki, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

G. Bolognini, J. Park, P. Kim, D. Lee, F. D. Pasquale, and N. Park, “Performance enhancement of Raman-based distributed temperature sensors using simplex codes,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuLl.

Park, N.

G. Bolognini, J. Park, M.A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211 (2007).
[Crossref]

J. Park, G. Bolognini, L. Duckey, K. Pilhan, C. Pilki, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

G. Bolognini, J. Park, P. Kim, D. Lee, F. D. Pasquale, and N. Park, “Performance enhancement of Raman-based distributed temperature sensors using simplex codes,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuLl.

Pasquale, F. D.

I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, and F. D. Pasquale, “Raman Distributed Temperature Sensing at CERN,” IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015).
[Crossref]

J. Park, G. Bolognini, L. Duckey, K. Pilhan, C. Pilki, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

G. Bolognini, J. Park, P. Kim, D. Lee, F. D. Pasquale, and N. Park, “Performance enhancement of Raman-based distributed temperature sensors using simplex codes,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuLl.

Pilhan, K.

J. Park, G. Bolognini, L. Duckey, K. Pilhan, C. Pilki, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Pilki, C.

J. Park, G. Bolognini, L. Duckey, K. Pilhan, C. Pilki, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Roncella, R.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
[Crossref]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Rueck, C.

M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
[Crossref]

Sacchi, G.

M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
[Crossref]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

Sahu, P.

M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
[Crossref]

Shum, P. P.

Signorini, A.

I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, and F. D. Pasquale, “Raman Distributed Temperature Sensing at CERN,” IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015).
[Crossref]

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
[Crossref]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

Soto, M.

M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
[Crossref]

Soto, M. A.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
[Crossref]

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

Soto, M.A.

G. Bolognini, J. Park, M.A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211 (2007).
[Crossref]

Tang, M.

Toccafondo, I.

I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, and F. D. Pasquale, “Raman Distributed Temperature Sensing at CERN,” IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015).
[Crossref]

Tong, W.

Wang, M.

Wu, H.

Yang, C.

Zhao, C.

Zhao, Z.

Electron. Lett. (3)

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett. 21(23), 1061–1062 (1985).
[Crossref]

K. Huai Hoo, G. P. Lees, and T. P. Newson, “1.65 µ m Raman-based distributed temperature sensor,” Electron. Lett. 35(21), 1869–1871 (1999).
[Crossref]

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

IEEE Photon. Technol. Lett. (2)

I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, and F. D. Pasquale, “Raman Distributed Temperature Sensing at CERN,” IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015).
[Crossref]

J. Park, G. Bolognini, L. Duckey, K. Pilhan, C. Pilki, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

J. Fire Prot. Eng. (1)

Z. Liu and A. K. Kim, “Review of Recent Developments in Fire Detection Technologies,” J. Fire Prot. Eng. 13(2), 129–151 (2003).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

G. Bolognini, J. Park, M.A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36132557–2559 (2011).
[Crossref]

Proc. SPIE (1)

M. Soto, P. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” Proc. SPIE 6619, 66193B (2007).
[Crossref]

Sensors (1)

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Other (3)

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km Long-Range Raman-Based Distributed Temperature Sensor with Meter-Scale Spatial Resolution,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper OWL2.

G. Bolognini, J. Park, P. Kim, D. Lee, F. D. Pasquale, and N. Park, “Performance enhancement of Raman-based distributed temperature sensors using simplex codes,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (2006), paper OTuLl.

“Technology Focus: Optical-fiber sensors,” Nat. Photonics2(3), 143–158 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The dependences of the DMD and Aeff of the GI-FMF on the core radius R.
Fig. 2
Fig. 2 The measured refractive index profile of the GI-FMF.
Fig. 3
Fig. 3 The experimental setup. IM: intensity modulator; EDFA: erbium-doped fiber amplifier; OBPF: optical bandpass filter; WDM: wavelength division multiplexer; FUT: fiber under test; AWG: arbitrary waveform generator; APD: avalanche photo-detector; ADC: analog-to-digital converter.
Fig. 4
Fig. 4 Output light intensity as a function of distance of (a) S and (b) AS light using different fibers.
Fig. 5
Fig. 5 The temperature profiles of the GI-FMF under the overfilled launch condition at (a) 10 km, (b) 19 km, and (c) 23 km, and (d) the temperature resolution profile using the GI-FMF and MMF.
Fig. 6
Fig. 6 The shape of interrogation pulse at the far-end of 25-km long SMF, MMF and GI-FMF under the overfilled launch condition.
Fig. 7
Fig. 7 The spatial resolution of the RDTS based on the GI-FMF under the overfilled launch condition at (a) 10 km, (b) 19 km and (c) 23 km, and the spatial resolution of the RDTS based on (d) MMF at around 22 km.
Fig. 8
Fig. 8 The output traces of APDs of (a) S light and (b) AS light with different fibers.
Fig. 9
Fig. 9 The temperature profiles of the GI-FMF under the quasi-single mode launch condition at (a) 10 km, (b) 19 km, and (c) 23 km, and (d) the temperature resolution profiles of the GI-FMF and SMF.
Fig. 10
Fig. 10 The spatial resolution of the RDTS based on the GI-FMF under quasi-single mode launch condition at (a) 23 km, and the spatial resolution of the RDTS based on (b) SMF at around 21 km.

Tables (2)

Tables Icon

Table 1 Simulated parameters of the GI-FMF

Tables Icon

Table 2 The spatial and temperature resolution of the RDTS using different fibers and operation conditions

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P S ( z ) = R S ( z ) e α P z e α S z P 0 ,
P A S ( z ) = R A S ( z ) e α P z e α S z P 0 ,
R S ( z ) ( 1 λ S ) 4 1 1 exp [ h Δ ν / k T ( z ) ] ,
R A S ( z ) ( 1 λ A S ) 4 1 exp [ h Δ ν / k T ( z ) ] 1 ,
R ( z ) = P A S ( z ) P S ( z ) = e ( α A S α S ) z ( λ A S λ S ) 4 exp [ h Δ ν k T ( z ) ] .
R ( z ) = R c a l ( z ) e ( α A S α S ) z ,
ln [ R ( z ) ] = ( α A S α S ) z + ln [ R c a l ( z ) ] .
n ( r ) = n 0 1 2 Δ ( r / R ) α ,

Metrics