Abstract

We propose a prism-hologram-prism sandwiched recording method for the fabrication of polarization-selective substrate-mode volume holograms with a large diffraction angle. In fabrication, the C-RT20 photopolymer is sandwiched between two 45°-90°-45° prisms and the interference fringes can be easily recorded in the recording material. The experimental results are in good agreement with the theoretical predictions. The proposed method features of a reflection-type recording setup for a transmission element and belongs to a technique of longer-wavelength construction for shorter-wavelength reconstruction. In addition, the method is much easier than the traditional recording method of two incident beam interference and has application potential in holographic photonics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Holographic polarization-selective module based on a small Dove prism coupler for magneto-optical pickup heads

Chang-Won Shin, Viet-Tien Vu, Nam Kim, Jun-Won An, Dongwoo Suh, Yongwoo Park, Hojun Ryu, Mun-Cheol Paek, and Hyeon-Bong Pyo
Appl. Opt. 44(20) 4248-4254 (2005)

Polarization-selective volume holograms: general design

Yang-Tung Huang
Appl. Opt. 33(11) 2115-2120 (1994)

Null reconstruction of orthogonal circular polarization hologram with large recording angle

An’an Wu, Guoguo Kang, Jinliang Zang, Ying Liu, Xiaodi Tan, Tsutomu Shimura, and Kazuo Kuroda
Opt. Express 23(7) 8880-8887 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Kostuk, M. Kato, and Y. T. Huang, “Polarization properties of substrate-mode holographic interconnects,” Appl. Opt. 29(26), 3848–3854 (1990).
    [Crossref] [PubMed]
  2. Y. T. Huang, “Polarization-selective volume holograms: general design,” Appl. Opt. 33(11), 2115–2120 (1994).
    [Crossref] [PubMed]
  3. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
    [Crossref] [PubMed]
  4. M. Verbist, W. Bogaerts, and D. V. Thourhout, “Design of weak 1-D Bragg grating filters in SOI waveguides using volume holography techniques,” J. Lightwave Technol. 32(10), 1915–1920 (2014).
    [Crossref]
  5. S. D. Vorndran, B. Chrysler, B. Wheelwright, R. Angel, Z. Holman, and R. Kostuk, “Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion,” Appl. Opt. 55(27), 7522–7529 (2016).
    [Crossref] [PubMed]
  6. J. Marín-Sáez, J. Atencia, D. Chemisana, and M. V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
    [Crossref] [PubMed]
  7. J. Marín-Sáez, J. Atencia, D. Chemisana, and M. V. Collados, “Full modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration,” Opt. Express 26(10), A398–A412 (2018).
    [Crossref] [PubMed]
  8. K. Xu, S. Liu, W. Sun, Z. Ma, Z. Li, Q. Yu, and G. Li, “Design and fabrication of a monolithic optoelectronic integrated Si CMOS LED based on hot-carrier effect,” IEEE J. Sel. Top. Quantum Electron. 22(6), 70–77 (2016).
    [Crossref]
  9. J. W. An, N. Kim, K. Y. Lee, and H. J. Lee, “Volume holographic wavelength demultiplexer based on rotation multiplexing in the 90 degree geometry,” Opt. Commun. 197(4–6), 247–254 (2001).
    [Crossref]
  10. E. N. Glytsis, N. M. Jokerst, R. A. Villalaz, S. Y. Cho, S. D. Wu, Z. R. Huang, M. A. Brooke, and T. K. Gaylord, “Substrate-embedded and flip-chip-bonded photodetector polymer-based optical interconnects: Analysis, design, and performance,” J. Lightwave Technol. 21(10), 2382–2394 (2003).
    [Crossref]
  11. J. H. Chen, D. C. Su, and J. C. Su, “Holographic spatial walk-off polarizer and its application to a 4-port polarization-independent optical circulator,” Opt. Express 11(17), 2001–2006 (2003).
    [Crossref] [PubMed]
  12. J. H. Chen, K. H. Chen, J. P. Liu, J. Y. Lin, and N. Y. Wu, “An alternative design of holographic polarization-selective elements,” Proc. SPIE 7072, 707210 (2008).
    [Crossref]
  13. J. H. Chen, D. C. Su, and J. C. Su, “Shrinkage- and refractive-index shift-corrected volume holograms for optical interconnects,” Appl. Phys. Lett. 81(8), 1387–1389 (2002).
    [Crossref]
  14. M. Moothanchery, V. Bavigadda, V. Toal, and I. Naydenova, “Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,” Appl. Opt. 52(35), 8519–8527 (2013).
    [Crossref] [PubMed]
  15. M. Kawana, J. Takahashi, J. Guo, and Y. Tomita, “Measurement of polymerization-shrinkage evolution during curing in photopolymer with a white-light Fabry-Pérot interferometer,” Opt. Express 23(12), 15356–15364 (2015).
    [Crossref] [PubMed]
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  17. B. J. Chang and C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18(14), 2407–2417 (1979).
    [Crossref] [PubMed]
  18. H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and their Processing (Springer-Verlag, 1993), pp. 179.
  19. F. K. Bruder, T. Fäcke, and T. Rölle, “The chemistry and physics of Bayfol HX film holographic photopolymer,” Polymers (Basel) 9(12), 472 (2017).
    [Crossref]

2018 (1)

2017 (1)

F. K. Bruder, T. Fäcke, and T. Rölle, “The chemistry and physics of Bayfol HX film holographic photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (1)

2013 (1)

2012 (1)

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

2008 (1)

J. H. Chen, K. H. Chen, J. P. Liu, J. Y. Lin, and N. Y. Wu, “An alternative design of holographic polarization-selective elements,” Proc. SPIE 7072, 707210 (2008).
[Crossref]

2003 (2)

2002 (1)

J. H. Chen, D. C. Su, and J. C. Su, “Shrinkage- and refractive-index shift-corrected volume holograms for optical interconnects,” Appl. Phys. Lett. 81(8), 1387–1389 (2002).
[Crossref]

2001 (1)

J. W. An, N. Kim, K. Y. Lee, and H. J. Lee, “Volume holographic wavelength demultiplexer based on rotation multiplexing in the 90 degree geometry,” Opt. Commun. 197(4–6), 247–254 (2001).
[Crossref]

1994 (1)

1990 (1)

1979 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

An, J. W.

J. W. An, N. Kim, K. Y. Lee, and H. J. Lee, “Volume holographic wavelength demultiplexer based on rotation multiplexing in the 90 degree geometry,” Opt. Commun. 197(4–6), 247–254 (2001).
[Crossref]

Angel, R.

Atencia, J.

Bavigadda, V.

Bogaerts, W.

Brooke, M. A.

Bruder, F. K.

F. K. Bruder, T. Fäcke, and T. Rölle, “The chemistry and physics of Bayfol HX film holographic photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

Capasso, F.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

Chang, B. J.

Chemisana, D.

Chen, J. H.

J. H. Chen, K. H. Chen, J. P. Liu, J. Y. Lin, and N. Y. Wu, “An alternative design of holographic polarization-selective elements,” Proc. SPIE 7072, 707210 (2008).
[Crossref]

J. H. Chen, D. C. Su, and J. C. Su, “Holographic spatial walk-off polarizer and its application to a 4-port polarization-independent optical circulator,” Opt. Express 11(17), 2001–2006 (2003).
[Crossref] [PubMed]

J. H. Chen, D. C. Su, and J. C. Su, “Shrinkage- and refractive-index shift-corrected volume holograms for optical interconnects,” Appl. Phys. Lett. 81(8), 1387–1389 (2002).
[Crossref]

Chen, K. H.

J. H. Chen, K. H. Chen, J. P. Liu, J. Y. Lin, and N. Y. Wu, “An alternative design of holographic polarization-selective elements,” Proc. SPIE 7072, 707210 (2008).
[Crossref]

Cho, S. Y.

Chrysler, B.

Collados, M. V.

Fäcke, T.

F. K. Bruder, T. Fäcke, and T. Rölle, “The chemistry and physics of Bayfol HX film holographic photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

Gaylord, T. K.

Genevet, P.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

Glytsis, E. N.

Guo, J.

Holman, Z.

Huang, Y. T.

Huang, Z. R.

Jokerst, N. M.

Kato, M.

Kats, M. A.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

Kawana, M.

Kim, N.

J. W. An, N. Kim, K. Y. Lee, and H. J. Lee, “Volume holographic wavelength demultiplexer based on rotation multiplexing in the 90 degree geometry,” Opt. Commun. 197(4–6), 247–254 (2001).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kostuk, R.

Kostuk, R. K.

Lee, H. J.

J. W. An, N. Kim, K. Y. Lee, and H. J. Lee, “Volume holographic wavelength demultiplexer based on rotation multiplexing in the 90 degree geometry,” Opt. Commun. 197(4–6), 247–254 (2001).
[Crossref]

Lee, K. Y.

J. W. An, N. Kim, K. Y. Lee, and H. J. Lee, “Volume holographic wavelength demultiplexer based on rotation multiplexing in the 90 degree geometry,” Opt. Commun. 197(4–6), 247–254 (2001).
[Crossref]

Leonard, C. D.

Li, G.

K. Xu, S. Liu, W. Sun, Z. Ma, Z. Li, Q. Yu, and G. Li, “Design and fabrication of a monolithic optoelectronic integrated Si CMOS LED based on hot-carrier effect,” IEEE J. Sel. Top. Quantum Electron. 22(6), 70–77 (2016).
[Crossref]

Li, Z.

K. Xu, S. Liu, W. Sun, Z. Ma, Z. Li, Q. Yu, and G. Li, “Design and fabrication of a monolithic optoelectronic integrated Si CMOS LED based on hot-carrier effect,” IEEE J. Sel. Top. Quantum Electron. 22(6), 70–77 (2016).
[Crossref]

Lin, J.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

Lin, J. Y.

J. H. Chen, K. H. Chen, J. P. Liu, J. Y. Lin, and N. Y. Wu, “An alternative design of holographic polarization-selective elements,” Proc. SPIE 7072, 707210 (2008).
[Crossref]

Liu, J. P.

J. H. Chen, K. H. Chen, J. P. Liu, J. Y. Lin, and N. Y. Wu, “An alternative design of holographic polarization-selective elements,” Proc. SPIE 7072, 707210 (2008).
[Crossref]

Liu, S.

K. Xu, S. Liu, W. Sun, Z. Ma, Z. Li, Q. Yu, and G. Li, “Design and fabrication of a monolithic optoelectronic integrated Si CMOS LED based on hot-carrier effect,” IEEE J. Sel. Top. Quantum Electron. 22(6), 70–77 (2016).
[Crossref]

Ma, Z.

K. Xu, S. Liu, W. Sun, Z. Ma, Z. Li, Q. Yu, and G. Li, “Design and fabrication of a monolithic optoelectronic integrated Si CMOS LED based on hot-carrier effect,” IEEE J. Sel. Top. Quantum Electron. 22(6), 70–77 (2016).
[Crossref]

Marín-Sáez, J.

Moothanchery, M.

Naydenova, I.

Rölle, T.

F. K. Bruder, T. Fäcke, and T. Rölle, “The chemistry and physics of Bayfol HX film holographic photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

Su, D. C.

J. H. Chen, D. C. Su, and J. C. Su, “Holographic spatial walk-off polarizer and its application to a 4-port polarization-independent optical circulator,” Opt. Express 11(17), 2001–2006 (2003).
[Crossref] [PubMed]

J. H. Chen, D. C. Su, and J. C. Su, “Shrinkage- and refractive-index shift-corrected volume holograms for optical interconnects,” Appl. Phys. Lett. 81(8), 1387–1389 (2002).
[Crossref]

Su, J. C.

J. H. Chen, D. C. Su, and J. C. Su, “Holographic spatial walk-off polarizer and its application to a 4-port polarization-independent optical circulator,” Opt. Express 11(17), 2001–2006 (2003).
[Crossref] [PubMed]

J. H. Chen, D. C. Su, and J. C. Su, “Shrinkage- and refractive-index shift-corrected volume holograms for optical interconnects,” Appl. Phys. Lett. 81(8), 1387–1389 (2002).
[Crossref]

Sun, W.

K. Xu, S. Liu, W. Sun, Z. Ma, Z. Li, Q. Yu, and G. Li, “Design and fabrication of a monolithic optoelectronic integrated Si CMOS LED based on hot-carrier effect,” IEEE J. Sel. Top. Quantum Electron. 22(6), 70–77 (2016).
[Crossref]

Takahashi, J.

Thourhout, D. V.

Toal, V.

Tomita, Y.

Verbist, M.

Villalaz, R. A.

Vorndran, S. D.

Wheelwright, B.

Wu, N. Y.

J. H. Chen, K. H. Chen, J. P. Liu, J. Y. Lin, and N. Y. Wu, “An alternative design of holographic polarization-selective elements,” Proc. SPIE 7072, 707210 (2008).
[Crossref]

Wu, S. D.

Xu, K.

K. Xu, S. Liu, W. Sun, Z. Ma, Z. Li, Q. Yu, and G. Li, “Design and fabrication of a monolithic optoelectronic integrated Si CMOS LED based on hot-carrier effect,” IEEE J. Sel. Top. Quantum Electron. 22(6), 70–77 (2016).
[Crossref]

Yu, Q.

K. Xu, S. Liu, W. Sun, Z. Ma, Z. Li, Q. Yu, and G. Li, “Design and fabrication of a monolithic optoelectronic integrated Si CMOS LED based on hot-carrier effect,” IEEE J. Sel. Top. Quantum Electron. 22(6), 70–77 (2016).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

J. H. Chen, D. C. Su, and J. C. Su, “Shrinkage- and refractive-index shift-corrected volume holograms for optical interconnects,” Appl. Phys. Lett. 81(8), 1387–1389 (2002).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Xu, S. Liu, W. Sun, Z. Ma, Z. Li, Q. Yu, and G. Li, “Design and fabrication of a monolithic optoelectronic integrated Si CMOS LED based on hot-carrier effect,” IEEE J. Sel. Top. Quantum Electron. 22(6), 70–77 (2016).
[Crossref]

J. Lightwave Technol. (2)

Nat. Commun. (1)

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

J. W. An, N. Kim, K. Y. Lee, and H. J. Lee, “Volume holographic wavelength demultiplexer based on rotation multiplexing in the 90 degree geometry,” Opt. Commun. 197(4–6), 247–254 (2001).
[Crossref]

Opt. Express (4)

Polymers (Basel) (1)

F. K. Bruder, T. Fäcke, and T. Rölle, “The chemistry and physics of Bayfol HX film holographic photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

Proc. SPIE (1)

J. H. Chen, K. H. Chen, J. P. Liu, J. Y. Lin, and N. Y. Wu, “An alternative design of holographic polarization-selective elements,” Proc. SPIE 7072, 707210 (2008).
[Crossref]

Other (1)

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and their Processing (Springer-Verlag, 1993), pp. 179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Prism-hologram-prism sandwiched recording setup; ES: electronic shutter, SF: spatial filter, CL: collimating lens, ID: iris diaphragm and PROH: prism-hologram-prism recording optical head, (b) details of geometric relations and material related parameters, and (c) K-vector diagram for the recording.
Fig. 2
Fig. 2 Changes in the orientation and spacing of the fringe plane due to shrinkage of emulsion thickness after exposure and post-processing.
Fig. 3
Fig. 3 (a) The reconstruction of polarization-selective substrate-mode volume hologram (not to scale) and (b) K-vector diagrams for reconstruction.
Fig. 4
Fig. 4 (a) Optical setup used to record a polarization-selective substrate-mode volume hologram with an electronic shutter (ES), a spatial filter (SF), a collimating lens (CL), an iris diaphragm (ID) and a prism-hologram-prism recording optical head (PROH), and (b) pan-red and -yellow colored appearance of the fabricated element.
Fig. 5
Fig. 5 Spectrum diffraction efficiencies for s- and p-polarizations and material absorption of polycarbonate (inset).
Fig. 6
Fig. 6 (a) Fabricated PSVH reconstructed with a 446 nm diode laser, (b) light propagation details inside the C-RT20 photopolymer recording material.
Fig. 7
Fig. 7 Simulation relationships between recording wavelength, and reconstruction wavelength and diffraction angle.
Fig. 8
Fig. 8 Diffraction efficiency versus effective index modulation (N1 = n1d2/λ2).

Tables (1)

Tables Icon

Table 1 Compression of relevant parameters and characteristic for polarization-selective substrate-mode volume holograms designed at different diffraction angle.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ eff2 = λ 2 n f2 = λ 1 n f1 d 2 d 1 [ 1 ( n p n f1 sin θ p1 ) 2 ] 1/2 [ 1 ( n p n f1 sin θ p1 ) 2 ]+[ ( d 2 d 1 ) 2 ( n p n f1 sin θ p1 ) 2 ] ,
θ d =2 sin 1 { ( λ 2 λ 1 n f1 n f2 d 1 d 2 ) [ ( 1 n p 2 n f1 2 sin 2 θ p1 )+ ( d 2 d 1 n p n f1 sin θ p1 ) 2 ] 1 2 }.
η s = sin 2 [ π n 1 d 2 λ 2 ( cos θ d ) 1/2 ]= sin 2 ( π N 1 a ),
η p = sin 2 [ π n 1 d 2 ( cos θ d ) 1/2 λ 2 ]= sin 2 ( aπ N 1 ),
n 1 = λ 2 ( cos θ d ) 1/2 2 d 2 ,

Metrics