Abstract

Uranium, because of its pyrophoricity, oxidizes rapidly in an oxygen-containing high-temperature environment. However, so far, the identification of uranium oxide (UO) emission from a laser-produced plasma system is limited to a spectral feature around 593.55 nm. The aim of this study is to elucidate UO emission features in the visible spectral regime from uranium plasmas generated in an environment with varying oxygen concentrations. The plasmas are produced by focusing nanosecond laser pulses on a uranium metal target in a controlled ambient environment. Space- and time-resolved optical emission spectroscopic investigations are used for isolating UO molecular emission structures from crowded U atomic line emission. Our studies highlight that the emission from a U plasma, even in the presence of trace oxygen is accompanied by a strong background-like emission with partially resolved bands from uranium monoxide and higher oxides. We also report several UO spectral emission bands in the visible spectral region.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas

Kyle C. Hartig, Sivanandan S. Harilal, Mark C. Phillips, Brian E. Brumfield, and Igor Jovanovic
Opt. Express 25(10) 11477-11490 (2017)

Tracking of oxide formation in laser-produced uranium plasmas

P. J. Skrodzki, M. Burger, I. Jovanovic, M. C. Phillips, B. E. Brumfield, and S. S. Harilal
Opt. Lett. 43(20) 5118-5121 (2018)

High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence

S. S. Harilal, N. L. LaHaye, and M. C. Phillips
Opt. Express 25(3) 2312-2326 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Serrano, J. Moros, and J. J. Laserna, “Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas,” Anal. Chem. 87(5), 2794–2801 (2015).
    [Crossref] [PubMed]
  2. S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
    [Crossref]
  3. A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D 50(18), 183002 (2017).
    [Crossref]
  4. S. S. Harilal, B. E. Brumfield, N. L. LaHaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
    [Crossref]
  5. D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
    [Crossref] [PubMed]
  6. S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
    [Crossref] [PubMed]
  7. K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
    [Crossref]
  8. E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
    [Crossref]
  9. K. C. Hartig, S. S. Harilal, M. C. Phillips, B. E. Brumfield, and I. Jovanovic, “Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas,” Opt. Express 25(10), 11477–11490 (2017).
    [Crossref] [PubMed]
  10. X. L. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, “Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry,” J. Radioanal. Nucl. Chem. 312(1), 121–131 (2017).
    [Crossref]
  11. K. Hartig, B. Brumfield, M. C. Phillips, and S. S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation,” Spectrochim. Acta B At. Spectrosc. 135, 54–62 (2017).
    [Crossref]
  12. P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
    [Crossref]
  13. A. A. Bol’shakov, X. L. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
    [Crossref]
  14. N. Glumac, “Aluminum nitride emission from a laser-induced plasma in a dispersed aerosol,” J. Appl. Phys. 98(5), 053301 (2005).
    [Crossref]
  15. P. H. Paul, D. L. Capewell, and D. G. Goodwin, “Planar laser-induced fluorescence imaging of Si and SiO during pulsed laser ablation of Si,” Proc. SPIE 2403, 39 (1995).
    [Crossref]
  16. L. A. Kaledin and M. C. Heaven, “Electronic Spectroscopy of UO,” J. Mol. Spectrosc. 185(1), 1–7 (1997).
    [Crossref] [PubMed]
  17. L. A. Kaledin, J. E. Mccord, and M. C. Heaven, “Laser Spectroscopy of UO - characterization and assignment of states in the 0-eV to 3-eV range, with a comparison to the electronic-structure of ThO,” J. Mol. Spectrosc. 164(1), 27–65 (1994).
    [Crossref]
  18. D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
    [Crossref]
  19. D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
    [Crossref]
  20. R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63(11), 1238–1250 (2009).
    [Crossref] [PubMed]
  21. B. A. Palmer, R. A. Keller, and J. R. Engleman, “An atlas of uranium emission intensities in a hollow cathode discharge,” LA-8251-MS (Los Alamos Scientific Laboratory, 1980).
  22. J. Blaise and L. J. Radziemski., “Energy levels of neutral atomic uranium (U I),” J. Opt. Soc. Am. 66(7), 644–659 (1976).
    [Crossref]
  23. J. Blaise, J.-F. Wyart, J. Vergès, R. Engleman, B. A. Palmer, and L. J. Radziemski, “Energy levels and isotope shifts for singly ionized uranium (U II),” J. Opt. Soc. Am. B 11(10), 1897–1929 (1994).
    [Crossref]
  24. S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
    [Crossref]
  25. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
    [Crossref]
  26. S. S. Harilal, “Influence of spot size on propagation dynamics of laser-produced tin plasma,” J. Appl. Phys. 102(12), 123306 (2007).
    [Crossref]
  27. S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
    [Crossref]
  28. T. L. Martin, C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott, and M. P. Moody, “Atomic-scale studies of uranium oxidation and corrosion by water vapour,” Sci. Rep. 6(1), 25618 (2016).
    [Crossref] [PubMed]
  29. R. A. Burdt, S. Yuspeh, K. L. Sequoia, Y. Z. Tao, M. S. Tillack, and F. Najmabadi, “Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser,” J. Appl. Phys. 106(3), 033310 (2009).
    [Crossref]
  30. M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, “Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes,” Sci. Rep. 7(1), 3784 (2017).
    [Crossref] [PubMed]
  31. N. R. Taylor and M. C. Phillips, “Differential laser absorption spectroscopy of uranium in an atmospheric pressure laser-induced plasma,” Opt. Lett. 39(3), 594–597 (2014).
    [Crossref] [PubMed]
  32. S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence,” Opt. Express 25(3), 2312–2326 (2017).
    [Crossref] [PubMed]
  33. M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
    [Crossref]
  34. L. A. Kaledin, E. A. Shenyavskaya, and L. V. Gurvich, “The electronic spectrum of the UO molecule,” Rus. J. Phys. Chem. 60, 633 (1986).

2018 (2)

S. S. Harilal, B. E. Brumfield, N. L. LaHaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

2017 (9)

K. C. Hartig, S. S. Harilal, M. C. Phillips, B. E. Brumfield, and I. Jovanovic, “Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas,” Opt. Express 25(10), 11477–11490 (2017).
[Crossref] [PubMed]

X. L. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, “Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry,” J. Radioanal. Nucl. Chem. 312(1), 121–131 (2017).
[Crossref]

K. Hartig, B. Brumfield, M. C. Phillips, and S. S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation,” Spectrochim. Acta B At. Spectrosc. 135, 54–62 (2017).
[Crossref]

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D 50(18), 183002 (2017).
[Crossref]

M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, “Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes,” Sci. Rep. 7(1), 3784 (2017).
[Crossref] [PubMed]

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence,” Opt. Express 25(3), 2312–2326 (2017).
[Crossref] [PubMed]

M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
[Crossref]

2016 (6)

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

T. L. Martin, C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott, and M. P. Moody, “Atomic-scale studies of uranium oxidation and corrosion by water vapour,” Sci. Rep. 6(1), 25618 (2016).
[Crossref] [PubMed]

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

A. A. Bol’shakov, X. L. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

2015 (3)

J. Serrano, J. Moros, and J. J. Laserna, “Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas,” Anal. Chem. 87(5), 2794–2801 (2015).
[Crossref] [PubMed]

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

2014 (1)

2013 (1)

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

2009 (2)

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63(11), 1238–1250 (2009).
[Crossref] [PubMed]

R. A. Burdt, S. Yuspeh, K. L. Sequoia, Y. Z. Tao, M. S. Tillack, and F. Najmabadi, “Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser,” J. Appl. Phys. 106(3), 033310 (2009).
[Crossref]

2007 (1)

S. S. Harilal, “Influence of spot size on propagation dynamics of laser-produced tin plasma,” J. Appl. Phys. 102(12), 123306 (2007).
[Crossref]

2005 (1)

N. Glumac, “Aluminum nitride emission from a laser-induced plasma in a dispersed aerosol,” J. Appl. Phys. 98(5), 053301 (2005).
[Crossref]

2003 (1)

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

1997 (1)

L. A. Kaledin and M. C. Heaven, “Electronic Spectroscopy of UO,” J. Mol. Spectrosc. 185(1), 1–7 (1997).
[Crossref] [PubMed]

1995 (1)

P. H. Paul, D. L. Capewell, and D. G. Goodwin, “Planar laser-induced fluorescence imaging of Si and SiO during pulsed laser ablation of Si,” Proc. SPIE 2403, 39 (1995).
[Crossref]

1994 (2)

L. A. Kaledin, J. E. Mccord, and M. C. Heaven, “Laser Spectroscopy of UO - characterization and assignment of states in the 0-eV to 3-eV range, with a comparison to the electronic-structure of ThO,” J. Mol. Spectrosc. 164(1), 27–65 (1994).
[Crossref]

J. Blaise, J.-F. Wyart, J. Vergès, R. Engleman, B. A. Palmer, and L. J. Radziemski, “Energy levels and isotope shifts for singly ionized uranium (U II),” J. Opt. Soc. Am. B 11(10), 1897–1929 (1994).
[Crossref]

1986 (1)

L. A. Kaledin, E. A. Shenyavskaya, and L. V. Gurvich, “The electronic spectrum of the UO molecule,” Rus. J. Phys. Chem. 60, 633 (1986).

1976 (1)

Armstrong, M. R.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
[Crossref]

Azer, M.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

Bagot, P. A. J.

T. L. Martin, C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott, and M. P. Moody, “Atomic-scale studies of uranium oxidation and corrosion by water vapour,” Sci. Rep. 6(1), 25618 (2016).
[Crossref] [PubMed]

Barefield, J. E.

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Blaise, J.

Bol’shakov, A. A.

A. A. Bol’shakov, X. L. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

Bostian, M.

Brumfield, B.

K. Hartig, B. Brumfield, M. C. Phillips, and S. S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation,” Spectrochim. Acta B At. Spectrosc. 135, 54–62 (2017).
[Crossref]

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

Brumfield, B. E.

S. S. Harilal, B. E. Brumfield, N. L. LaHaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, “Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes,” Sci. Rep. 7(1), 3784 (2017).
[Crossref] [PubMed]

K. C. Hartig, S. S. Harilal, M. C. Phillips, B. E. Brumfield, and I. Jovanovic, “Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas,” Opt. Express 25(10), 11477–11490 (2017).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Burdt, R. A.

R. A. Burdt, S. Yuspeh, K. L. Sequoia, Y. Z. Tao, M. S. Tillack, and F. Najmabadi, “Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser,” J. Appl. Phys. 106(3), 033310 (2009).
[Crossref]

Campbell, K. R.

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

Cannon, B. D.

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Capewell, D. L.

P. H. Paul, D. L. Capewell, and D. G. Goodwin, “Planar laser-induced fluorescence imaging of Si and SiO during pulsed laser ablation of Si,” Proc. SPIE 2403, 39 (1995).
[Crossref]

Chan, G. C. Y.

X. L. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, “Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry,” J. Radioanal. Nucl. Chem. 312(1), 121–131 (2017).
[Crossref]

Chinni, R. C.

Choi, I.

X. L. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, “Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry,” J. Radioanal. Nucl. Chem. 312(1), 121–131 (2017).
[Crossref]

Clegg, S. M.

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

Coe, C.

T. L. Martin, C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott, and M. P. Moody, “Atomic-scale studies of uranium oxidation and corrosion by water vapour,” Sci. Rep. 6(1), 25618 (2016).
[Crossref] [PubMed]

Colgan, J. P.

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

Cremers, D. A.

Crowhurst, J. C.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
[Crossref]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

Curreli, D.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
[Crossref]

Czerwinski, K. R.

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

De Giacomo, A.

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D 50(18), 183002 (2017).
[Crossref]

Diwakar, P. K.

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

Engleman, R.

Finko, M. S.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
[Crossref]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

Gaeris, A. C.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Glumac, N.

N. Glumac, “Aluminum nitride emission from a laser-induced plasma in a dispersed aerosol,” J. Appl. Phys. 98(5), 053301 (2005).
[Crossref]

Gonzalez, J. J.

A. A. Bol’shakov, X. L. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

Goodwin, D. G.

P. H. Paul, D. L. Capewell, and D. G. Goodwin, “Planar laser-induced fluorescence imaging of Si and SiO during pulsed laser ablation of Si,” Proc. SPIE 2403, 39 (1995).
[Crossref]

Gurvich, L. V.

L. A. Kaledin, E. A. Shenyavskaya, and L. V. Gurvich, “The electronic spectrum of the UO molecule,” Rus. J. Phys. Chem. 60, 633 (1986).

Harilal, S. S.

S. S. Harilal, B. E. Brumfield, N. L. LaHaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

K. Hartig, B. Brumfield, M. C. Phillips, and S. S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation,” Spectrochim. Acta B At. Spectrosc. 135, 54–62 (2017).
[Crossref]

M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, “Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes,” Sci. Rep. 7(1), 3784 (2017).
[Crossref] [PubMed]

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence,” Opt. Express 25(3), 2312–2326 (2017).
[Crossref] [PubMed]

K. C. Hartig, S. S. Harilal, M. C. Phillips, B. E. Brumfield, and I. Jovanovic, “Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas,” Opt. Express 25(10), 11477–11490 (2017).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

S. S. Harilal, “Influence of spot size on propagation dynamics of laser-produced tin plasma,” J. Appl. Phys. 102(12), 123306 (2007).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Hartig, K.

K. Hartig, B. Brumfield, M. C. Phillips, and S. S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation,” Spectrochim. Acta B At. Spectrosc. 135, 54–62 (2017).
[Crossref]

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

Hartig, K. C.

S. S. Harilal, B. E. Brumfield, N. L. LaHaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, “Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes,” Sci. Rep. 7(1), 3784 (2017).
[Crossref] [PubMed]

K. C. Hartig, S. S. Harilal, M. C. Phillips, B. E. Brumfield, and I. Jovanovic, “Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas,” Opt. Express 25(10), 11477–11490 (2017).
[Crossref] [PubMed]

Heaven, M. C.

L. A. Kaledin and M. C. Heaven, “Electronic Spectroscopy of UO,” J. Mol. Spectrosc. 185(1), 1–7 (1997).
[Crossref] [PubMed]

L. A. Kaledin, J. E. Mccord, and M. C. Heaven, “Laser Spectroscopy of UO - characterization and assignment of states in the 0-eV to 3-eV range, with a comparison to the electronic-structure of ThO,” J. Mol. Spectrosc. 164(1), 27–65 (1994).
[Crossref]

Hermann, J.

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D 50(18), 183002 (2017).
[Crossref]

Isselhardt, B. H.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

Jagatap, B. N.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

Jovanovic, I.

M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, “Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes,” Sci. Rep. 7(1), 3784 (2017).
[Crossref] [PubMed]

K. C. Hartig, S. S. Harilal, M. C. Phillips, B. E. Brumfield, and I. Jovanovic, “Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas,” Opt. Express 25(10), 11477–11490 (2017).
[Crossref] [PubMed]

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

Judge, E. J.

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

Kalam, S. A.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

Kaledin, L. A.

L. A. Kaledin and M. C. Heaven, “Electronic Spectroscopy of UO,” J. Mol. Spectrosc. 185(1), 1–7 (1997).
[Crossref] [PubMed]

L. A. Kaledin, J. E. Mccord, and M. C. Heaven, “Laser Spectroscopy of UO - characterization and assignment of states in the 0-eV to 3-eV range, with a comparison to the electronic-structure of ThO,” J. Mol. Spectrosc. 164(1), 27–65 (1994).
[Crossref]

L. A. Kaledin, E. A. Shenyavskaya, and L. V. Gurvich, “The electronic spectrum of the UO molecule,” Rus. J. Phys. Chem. 60, 633 (1986).

Kilcrease, D. P.

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

Koroglu, B.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
[Crossref]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

Kumar, G. M.

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

LaHaye, N.

M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, “Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes,” Sci. Rep. 7(1), 3784 (2017).
[Crossref] [PubMed]

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

LaHaye, N. L.

S. S. Harilal, B. E. Brumfield, N. L. LaHaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence,” Opt. Express 25(3), 2312–2326 (2017).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

Laserna, J. J.

J. Serrano, J. Moros, and J. J. Laserna, “Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas,” Anal. Chem. 87(5), 2794–2801 (2015).
[Crossref] [PubMed]

Ma, X.

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Mao, X. L.

X. L. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, “Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry,” J. Radioanal. Nucl. Chem. 312(1), 121–131 (2017).
[Crossref]

A. A. Bol’shakov, X. L. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

Martin, T. L.

T. L. Martin, C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott, and M. P. Moody, “Atomic-scale studies of uranium oxidation and corrosion by water vapour,” Sci. Rep. 6(1), 25618 (2016).
[Crossref] [PubMed]

Mathi, P.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

Mccord, J. E.

L. A. Kaledin, J. E. Mccord, and M. C. Heaven, “Laser Spectroscopy of UO - characterization and assignment of states in the 0-eV to 3-eV range, with a comparison to the electronic-structure of ThO,” J. Mol. Spectrosc. 164(1), 27–65 (1994).
[Crossref]

Moody, M. P.

T. L. Martin, C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott, and M. P. Moody, “Atomic-scale studies of uranium oxidation and corrosion by water vapour,” Sci. Rep. 6(1), 25618 (2016).
[Crossref] [PubMed]

Moros, J.

J. Serrano, J. Moros, and J. J. Laserna, “Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas,” Anal. Chem. 87(5), 2794–2801 (2015).
[Crossref] [PubMed]

Morrall, P.

T. L. Martin, C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott, and M. P. Moody, “Atomic-scale studies of uranium oxidation and corrosion by water vapour,” Sci. Rep. 6(1), 25618 (2016).
[Crossref] [PubMed]

Najmabadi, F.

R. A. Burdt, S. Yuspeh, K. L. Sequoia, Y. Z. Tao, M. S. Tillack, and F. Najmabadi, “Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser,” J. Appl. Phys. 106(3), 033310 (2009).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Navarro-Northrup, C.

Palmer, B. A.

Paul, P. H.

P. H. Paul, D. L. Capewell, and D. G. Goodwin, “Planar laser-induced fluorescence imaging of Si and SiO during pulsed laser ablation of Si,” Proc. SPIE 2403, 39 (1995).
[Crossref]

Phillips, M. C.

S. S. Harilal, B. E. Brumfield, N. L. LaHaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

K. Hartig, B. Brumfield, M. C. Phillips, and S. S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation,” Spectrochim. Acta B At. Spectrosc. 135, 54–62 (2017).
[Crossref]

M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, “Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes,” Sci. Rep. 7(1), 3784 (2017).
[Crossref] [PubMed]

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence,” Opt. Express 25(3), 2312–2326 (2017).
[Crossref] [PubMed]

K. C. Hartig, S. S. Harilal, M. C. Phillips, B. E. Brumfield, and I. Jovanovic, “Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas,” Opt. Express 25(10), 11477–11490 (2017).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

N. R. Taylor and M. C. Phillips, “Differential laser absorption spectroscopy of uranium in an atmospheric pressure laser-induced plasma,” Opt. Lett. 39(3), 594–597 (2014).
[Crossref] [PubMed]

Radousky, H. B.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
[Crossref]

Radziemski, L. J.

Rao, E. N.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

Rao, S. V.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

Rose, T. P.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
[Crossref]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

Russo, R. E.

X. L. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, “Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry,” J. Radioanal. Nucl. Chem. 312(1), 121–131 (2017).
[Crossref]

A. A. Bol’shakov, X. L. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

Savina, M. K.

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

Scott, T.

T. L. Martin, C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott, and M. P. Moody, “Atomic-scale studies of uranium oxidation and corrosion by water vapour,” Sci. Rep. 6(1), 25618 (2016).
[Crossref] [PubMed]

Sequoia, K. L.

R. A. Burdt, S. Yuspeh, K. L. Sequoia, Y. Z. Tao, M. S. Tillack, and F. Najmabadi, “Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser,” J. Appl. Phys. 106(3), 033310 (2009).
[Crossref]

Serrano, J.

J. Serrano, J. Moros, and J. J. Laserna, “Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas,” Anal. Chem. 87(5), 2794–2801 (2015).
[Crossref] [PubMed]

Shah, N.

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

Shenyavskaya, E. A.

L. A. Kaledin, E. A. Shenyavskaya, and L. V. Gurvich, “The electronic spectrum of the UO molecule,” Rus. J. Phys. Chem. 60, 633 (1986).

Siekhaus, W. J.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

Singh, A. K.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

Skrodzki, P. J.

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

Smith, G. D. W.

T. L. Martin, C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott, and M. P. Moody, “Atomic-scale studies of uranium oxidation and corrosion by water vapour,” Sci. Rep. 6(1), 25618 (2016).
[Crossref] [PubMed]

Sreedhar, S.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

Suter, J. D.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

Tao, Y. Z.

R. A. Burdt, S. Yuspeh, K. L. Sequoia, Y. Z. Tao, M. S. Tillack, and F. Najmabadi, “Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser,” J. Appl. Phys. 106(3), 033310 (2009).
[Crossref]

Taylor, N.

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

Taylor, N. R.

Tewari, S. P.

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

Tillack, M. S.

R. A. Burdt, S. Yuspeh, K. L. Sequoia, Y. Z. Tao, M. S. Tillack, and F. Najmabadi, “Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser,” J. Appl. Phys. 106(3), 033310 (2009).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Trappitsch, R.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

Vergès, J.

Wang, S.

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Weisz, D. G.

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
[Crossref]

Wilkerson, M. P.

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

Wozniak, N. R.

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

Wyart, J.-F.

Yeak, J.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

Yuspeh, S.

R. A. Burdt, S. Yuspeh, K. L. Sequoia, Y. Z. Tao, M. S. Tillack, and F. Najmabadi, “Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser,” J. Appl. Phys. 106(3), 033310 (2009).
[Crossref]

Zaug, J. M.

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

Zhang, D.

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Zhu, X.

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Zorba, V.

X. L. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, “Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry,” J. Radioanal. Nucl. Chem. 312(1), 121–131 (2017).
[Crossref]

Anal. Chem. (2)

J. Serrano, J. Moros, and J. J. Laserna, “Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas,” Anal. Chem. 87(5), 2794–2801 (2015).
[Crossref] [PubMed]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. G. Weisz, J. C. Crowhurst, W. J. Siekhaus, T. P. Rose, B. Koroglu, H. B. Radousky, J. M. Zaug, M. R. Armstrong, B. H. Isselhardt, M. K. Savina, M. Azer, M. S. Finko, and D. Curreli, “Formation of 238U16O and 238U18O observed by time-resolved emission spectroscopy subsequent to laser ablation,” Appl. Phys. Lett. 111(3), 034101 (2017).
[Crossref]

Appl. Phys. Rev. (1)

S. S. Harilal, B. E. Brumfield, N. L. LaHaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

Appl. Spectrosc. (1)

J. Anal. At. Spectrom. (3)

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

A. A. Bol’shakov, X. L. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

J. Appl. Phys. (4)

N. Glumac, “Aluminum nitride emission from a laser-induced plasma in a dispersed aerosol,” J. Appl. Phys. 98(5), 053301 (2005).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

S. S. Harilal, “Influence of spot size on propagation dynamics of laser-produced tin plasma,” J. Appl. Phys. 102(12), 123306 (2007).
[Crossref]

R. A. Burdt, S. Yuspeh, K. L. Sequoia, Y. Z. Tao, M. S. Tillack, and F. Najmabadi, “Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser,” J. Appl. Phys. 106(3), 033310 (2009).
[Crossref]

J. Mol. Spectrosc. (2)

L. A. Kaledin and M. C. Heaven, “Electronic Spectroscopy of UO,” J. Mol. Spectrosc. 185(1), 1–7 (1997).
[Crossref] [PubMed]

L. A. Kaledin, J. E. Mccord, and M. C. Heaven, “Laser Spectroscopy of UO - characterization and assignment of states in the 0-eV to 3-eV range, with a comparison to the electronic-structure of ThO,” J. Mol. Spectrosc. 164(1), 27–65 (1994).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

D. G. Weisz, J. C. Crowhurst, M. S. Finko, T. P. Rose, B. Koroglu, R. Trappitsch, H. B. Radousky, W. J. Siekhaus, M. R. Armstrong, B. H. Isselhardt, M. Azer, and D. Curreli, “Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma,” J. Phys. Chem. A 122(6), 1584–1591 (2018).
[Crossref] [PubMed]

J. Phys. D (1)

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D 50(18), 183002 (2017).
[Crossref]

J. Phys. D:Appl. Phys. (1)

M. S. Finko, D. Curreli, D. G. Weisz, J. C. Crowhurst, T. P. Rose, B. Koroglu, H. B. Radousky, and M. R. Armstrong, “A model of early formation of uranium molecular oxides in laser-ablated plasmas,” J. Phys. D:Appl. Phys. 50(48), 485201 (2017).
[Crossref]

J. Radioanal. Nucl. Chem. (1)

X. L. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, “Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry,” J. Radioanal. Nucl. Chem. 312(1), 121–131 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Plasma Sci. Technol. (1)

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Proc. SPIE (1)

P. H. Paul, D. L. Capewell, and D. G. Goodwin, “Planar laser-induced fluorescence imaging of Si and SiO during pulsed laser ablation of Si,” Proc. SPIE 2403, 39 (1995).
[Crossref]

Rus. J. Phys. Chem. (1)

L. A. Kaledin, E. A. Shenyavskaya, and L. V. Gurvich, “The electronic spectrum of the UO molecule,” Rus. J. Phys. Chem. 60, 633 (1986).

Sci. Rep. (2)

T. L. Martin, C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott, and M. P. Moody, “Atomic-scale studies of uranium oxidation and corrosion by water vapour,” Sci. Rep. 6(1), 25618 (2016).
[Crossref] [PubMed]

M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, “Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes,” Sci. Rep. 7(1), 3784 (2017).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (5)

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

K. Hartig, B. Brumfield, M. C. Phillips, and S. S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation,” Spectrochim. Acta B At. Spectrosc. 135, 54–62 (2017).
[Crossref]

P. J. Skrodzki, N. Shah, N. Taylor, K. Hartig, N. LaHaye, B. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

K. R. Campbell, N. R. Wozniak, J. P. Colgan, E. J. Judge, J. E. Barefield, D. P. Kilcrease, M. P. Wilkerson, K. R. Czerwinski, and S. M. Clegg, “Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 91–97 (2017).
[Crossref]

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

Other (1)

B. A. Palmer, R. A. Keller, and J. R. Engleman, “An atlas of uranium emission intensities in a hollow cathode discharge,” LA-8251-MS (Los Alamos Scientific Laboratory, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The temporal evolution of U plasma in (a) 4 mTorr and in (b) 100 Torr air pressures. The timings given in the images represent the time after the onset of plasma formation. Each image is obtained from a single laser shot and normalized to its maximum intensity. The gating times used for capturing self-emission images in vacuum were 2 ns until 100 ns delay and 5ns for times > 100 ns. For recording the images at 100 Torr air, 2 ns gate widths were used until 500 ns, and 10% of gate delay times were used at times > 1µs. The arrow mark represents the laser direction.
Fig. 2
Fig. 2 (a) The spectral features collected from U plasma in vacuum during the surface cleaning process. The numbers given in the plot represent the sequence of laser shot used. The laser delay and gate width used were 0.5 μs and 5 μs. The emission analysis was performed at a distance 2 mm from the target surface. In (b), the changes in the spectral intensity of U I 597.15 nm, UO 593.55 nm and background signal intensity (595.05 nm) are given.
Fig. 3
Fig. 3 (a) Time-resolved spectral features recorded from U plasma at a pressure of 100 Torr air and at a distance 1.5 mm from the target surface. The sample surface oxidation was cleaned using multiple laser shots before acquiring the spectral features. The gate widths used were 200 ns, 2 μs, 20 μs and 30 μs for delays 2 μs, 10 μs, 20 μs and 40 μs respectively. (b) 2D spectral image obtained with 20 µs delay and 40 µs gate width is given.
Fig. 4
Fig. 4 The U spectral features recorded from a laser-produced plasma from U metal is given. (a) The spectral features are recorded at near vacuum conditions (4 mTorr). The delay and gate times used were 1 µs and 5 µs respectively. The spectral features recorded at 100 Torr ambient (98% Ar and 2% O2) are given in (b) and (c). The delay and gate width used for recording (b) was 25 µs and 15 µs. A spectral simulation of U I emission at a temperature of 4000 K is plotted on the right y-axis of (b). In (c), the spectral information collected with gate delay and width 40 µs and 60 µs is given. The positions and relative band intensities observed by Kaledin and Heaven [16] in the furnace studies are provided for comparison in (c).
Fig. 5
Fig. 5 UO spectral features recorded with 100 Torr pressure (Ar 98 Torr and O2 2 Torr) at various spectral regions. For discriminating U atomic and UO molecular emission, a simulated emission spectrum for UI has been given in each plot. The positions and relative band intensities observed from furnace studies are also provided for comparison with laser-produced plasma spectrum. (a) Spectral region 510-518 nm, (b) spectral region 585 −605 nm, (c) 709- 720 nm spectral region and (d) 719-729 nm spectral region. A delay and gate times used for recording the spectral features given (a) and (b) were 40 μs and 60 μs respectively while 30 μs and 60 μs were used for measuring the spectral features given in (c) and (d).

Tables (1)

Tables Icon

Table 1 Identified UO spectral bands peak wavelength (in air) and UO peak position reported from furnace data [16].

Metrics