Abstract

Use of dipole-like localized surface plasmons (LSPs) induced on a rectangular array of silver nanodisks to excite directional surface plasmon polaritons (SPPs) on a flat silver film is demonstrated. By modifying the spectral resonance of the LSPs, an effective coupling of the incident light into the SPPs has been achieved at operational wavelength of λ0 = 628 nm. The maximum SPP intensity exceeds 25% of the incident intensity. Meanwhile, owing to the angle-dependent spatial distribution of the LSPs and the constructive interference between columns or rows of the array, the excited SPPs are supported to propagate in two orthogonal channels with a width of 1756 nm. Moreover, the propagation of the SPPs is tunable by rotating the polarization direction of the incident light between angles of 0 and π/2. This approach of launching direction-tunable SPPs shows great potential in applications of integrated plasmonic circuits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy

Yannick Sonnefraud, Sarp Kerman, Giuliana Di Martino, Dang Yuan Lei, and Stefan A. Maier
Opt. Express 20(5) 4893-4902 (2012)

Versatile and tunable surface plasmon polariton excitation over a broad bandwidth with a simple metaline by external polarization modulation

Oubo You, Benfeng Bai, Lin Sun, Biyao Shen, and Zhendong Zhu
Opt. Express 24(19) 22061-22073 (2016)

Surface plasmon polariton beams from an electrically excited plasmonic crystal

Damien Canneson, Eric Le Moal, Shuiyan Cao, Xavier Quélin, Hervé Dallaporta, Gérald Dujardin, and Elizabeth Boer-Duchemin
Opt. Express 24(23) 26186-26200 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon. 4(2), 83–91 (2010).
    [Crossref]
  3. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
    [Crossref]
  4. L. M. Wu, J. Guo, H. L. Xu, X. Y. Dai, and Y. J. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
    [Crossref]
  5. M. Kim, C. Y. Jeong, H. Heo, and S. Kim, “Optical reflection modulation using surface plasmon resonance in a graphene-embedded hybrid plasmonic waveguide at an optical communication wavelength,” Opt. Lett. 40(6), 871–874 (2015).
    [Crossref] [PubMed]
  6. F. Huang, X. Jiang, H. Yuan, H. Yang, S. Li, and X. Sun, “Focusing surface plasmon polaritons and detecting Stokes parameters utilizing nanoslits distributed plasmonic lenses,” Opt. Lett. 41(7), 1684–1687 (2016).
    [Crossref] [PubMed]
  7. J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
    [Crossref]
  8. H. Lee, G. H. Kim, J. H. Lee, N. H. Kim, J. M. Nam, and Y. D. Suh, “Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries,” Nano. Lett. 15(7), 4628–4636 (2015).
    [Crossref] [PubMed]
  9. S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
    [Crossref]
  10. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photon. 2(6), 351–354 (2008).
    [Crossref]
  11. E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
    [Crossref] [PubMed]
  12. S. Y. Yao, Z. Y. Guo, and H. Q. Sun, “Emission enhancement of surface plasmon coupled blue LED with a surface Al nanoparticle,” IEEE Photon. Technol. Lett. 29(12), 1011–1014 (2017).
    [Crossref]
  13. S. Zhu, Z. Yu, L. Liu, C. Yang, H. Cao, X. Xi, J. Li, and L. Zhao, “Enhancing the spontaneous emission rate by modulating carrier distribution in GaN-based surface plasmon light-emitting diodes,” Opt. Express 25(9), 9617–9627 (2017).
    [Crossref] [PubMed]
  14. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
    [Crossref] [PubMed]
  15. J. Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).
    [Crossref]
  16. H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photonics 4(8), 1879–1884 (2017).
    [Crossref]
  17. T. H. Xiao, Z. Z. Cheng, and K. Goda, “Graphene-on-silicon hybrid plasmonic-photonic integrated circuits,” Nanotechnology 28(24), 245201 (2017).
    [Crossref]
  18. J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525 (2011).
    [Crossref] [PubMed]
  19. M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
    [Crossref]
  20. Y. Sonnefraud, S. Kerman, G. Di Martino, D. Y. Lei, and S. A. Maier, “Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy,” Opt. Express 20(5), 4893–4902 (2012).
    [Crossref] [PubMed]
  21. Y. Yu, J. Si, Y. Ning, M. Sun, and X. Deng, “Plasmonic wavelength splitter based on a metal-insulator-metal waveguide with a graded grating coupler,” Opt. Lett. 42(2), 187–190 (2017).
    [Crossref] [PubMed]
  22. W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems,” Phys. Rev. Lett. 119(7), 077401 (2017).
    [Crossref] [PubMed]
  23. T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
    [Crossref] [PubMed]
  24. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  25. T. Liu and S. Y. Wang, “Nanoscale plasmonic coupler with tunable direction and intensity ratio controlled by optical vortex,” J. Appl. Phys. 120(12), 123108 (2016).
    [Crossref]
  26. O. You, B. Bai, L. Sun, B. Shen, and Z. Zhu, “Versatile and tunable surface plasmon polariton excitation over a broad bandwidth with a simple metaline by external polarization modulation,” Opt. Express 24(19), 22061–22073 (2016).
    [Crossref] [PubMed]
  27. F. J. Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).
    [Crossref]
  28. S. Gong, M. Hu, R. Zhong, T. Zhao, C. Zhang, and S. Liu, “Mediated coupling of surface plasmon polaritons by a moving electron beam,” Opt. Express 25(21), 25919–25928 (2017).
    [Crossref] [PubMed]
  29. C. F. Kuo and S. C. Chu, “Launching of surface plasmon polaritons with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams,” Opt. Express 25(9), 10456–10463 (2017).
    [Crossref] [PubMed]
  30. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
    [Crossref]
  31. M. J. Huttunen, K. Dolgaleva, P. Torma, and R. W. Boyd, “Ultra-strong polarization dependence of surface lattice resonances with out-of-plane plasmon oscillations,” Opt. Express 24(25), 28279–28289 (2016).
    [Crossref] [PubMed]
  32. A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
    [Crossref]
  33. D. D. Evanoff and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
    [Crossref]
  34. Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23(24), 30709–30720 (2015).
    [Crossref] [PubMed]
  35. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2(8), 551–556 (2006).
    [Crossref]
  36. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).
  37. E. Sun, S. Sang, Z. Yuan, X. Qi, R. Zhang, and W. Cao, “Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals,” J. Alloys Compd. 640, 64–67 (2015).
    [Crossref] [PubMed]

2017 (10)

J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
[Crossref]

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

S. Y. Yao, Z. Y. Guo, and H. Q. Sun, “Emission enhancement of surface plasmon coupled blue LED with a surface Al nanoparticle,” IEEE Photon. Technol. Lett. 29(12), 1011–1014 (2017).
[Crossref]

S. Zhu, Z. Yu, L. Liu, C. Yang, H. Cao, X. Xi, J. Li, and L. Zhao, “Enhancing the spontaneous emission rate by modulating carrier distribution in GaN-based surface plasmon light-emitting diodes,” Opt. Express 25(9), 9617–9627 (2017).
[Crossref] [PubMed]

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photonics 4(8), 1879–1884 (2017).
[Crossref]

T. H. Xiao, Z. Z. Cheng, and K. Goda, “Graphene-on-silicon hybrid plasmonic-photonic integrated circuits,” Nanotechnology 28(24), 245201 (2017).
[Crossref]

Y. Yu, J. Si, Y. Ning, M. Sun, and X. Deng, “Plasmonic wavelength splitter based on a metal-insulator-metal waveguide with a graded grating coupler,” Opt. Lett. 42(2), 187–190 (2017).
[Crossref] [PubMed]

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems,” Phys. Rev. Lett. 119(7), 077401 (2017).
[Crossref] [PubMed]

S. Gong, M. Hu, R. Zhong, T. Zhao, C. Zhang, and S. Liu, “Mediated coupling of surface plasmon polaritons by a moving electron beam,” Opt. Express 25(21), 25919–25928 (2017).
[Crossref] [PubMed]

C. F. Kuo and S. C. Chu, “Launching of surface plasmon polaritons with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams,” Opt. Express 25(9), 10456–10463 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (5)

M. Kim, C. Y. Jeong, H. Heo, and S. Kim, “Optical reflection modulation using surface plasmon resonance in a graphene-embedded hybrid plasmonic waveguide at an optical communication wavelength,” Opt. Lett. 40(6), 871–874 (2015).
[Crossref] [PubMed]

H. Lee, G. H. Kim, J. H. Lee, N. H. Kim, J. M. Nam, and Y. D. Suh, “Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries,” Nano. Lett. 15(7), 4628–4636 (2015).
[Crossref] [PubMed]

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23(24), 30709–30720 (2015).
[Crossref] [PubMed]

E. Sun, S. Sang, Z. Yuan, X. Qi, R. Zhang, and W. Cao, “Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals,” J. Alloys Compd. 640, 64–67 (2015).
[Crossref] [PubMed]

2014 (1)

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

2013 (1)

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525 (2011).
[Crossref] [PubMed]

2010 (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon. 4(2), 83–91 (2010).
[Crossref]

F. J. Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).
[Crossref]

2009 (1)

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

2008 (1)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photon. 2(6), 351–354 (2008).
[Crossref]

2006 (1)

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2(8), 551–556 (2006).
[Crossref]

2004 (1)

D. D. Evanoff and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[Crossref]

2002 (1)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[Crossref]

2001 (1)

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

1999 (1)

J. Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).
[Crossref]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Abajo, F. J.

F. J. Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).
[Crossref]

Afshinmanesh, F.

J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525 (2011).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Archambault, A.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[Crossref]

Bai, B.

Balram, K. C.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Biris, A. S.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Boyd, R. W.

Bozhevolnyi, S. I.

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photonics 4(8), 1879–1884 (2017).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon. 4(2), 83–91 (2010).
[Crossref]

Brongersma, M. L.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525 (2011).
[Crossref] [PubMed]

Cai, W.

J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525 (2011).
[Crossref] [PubMed]

Cao, H.

Cao, W.

E. Sun, S. Sang, Z. Yuan, X. Qi, R. Zhang, and W. Cao, “Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals,” J. Alloys Compd. 640, 64–67 (2015).
[Crossref] [PubMed]

Capasso, F.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Chang, W. Y.

Chen, H. L.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems,” Phys. Rev. Lett. 119(7), 077401 (2017).
[Crossref] [PubMed]

Chen, J.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems,” Phys. Rev. Lett. 119(7), 077401 (2017).
[Crossref] [PubMed]

Cheng, Z. Z.

T. H. Xiao, Z. Z. Cheng, and K. Goda, “Graphene-on-silicon hybrid plasmonic-photonic integrated circuits,” Nanotechnology 28(24), 245201 (2017).
[Crossref]

Chu, S. C.

Chumanov, G.

D. D. Evanoff and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[Crossref]

Cui, T. J.

J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
[Crossref]

Cui, W. P.

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

Dai, X. Y.

Dai, Z. Y.

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

Deng, X.

Dolgaleva, K.

Dong, Z. C.

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Evanoff, D. D.

D. D. Evanoff and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[Crossref]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photon. 2(6), 351–354 (2008).
[Crossref]

Feng, M. D.

J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
[Crossref]

Galanzha, E. I.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Goda, K.

T. H. Xiao, Z. Z. Cheng, and K. Goda, “Graphene-on-silicon hybrid plasmonic-photonic integrated circuits,” Nanotechnology 28(24), 245201 (2017).
[Crossref]

Gong, S.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon. 4(2), 83–91 (2010).
[Crossref]

Greffet, J. J.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

Guo, J.

Guo, R. P.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems,” Phys. Rev. Lett. 119(7), 077401 (2017).
[Crossref] [PubMed]

Guo, Z. Y.

S. Y. Yao, Z. Y. Guo, and H. Q. Sun, “Emission enhancement of surface plasmon coupled blue LED with a surface Al nanoparticle,” IEEE Photon. Technol. Lett. 29(12), 1011–1014 (2017).
[Crossref]

Harrington, W.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Heo, H.

Hou, J. G.

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Hu, C. R.

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Hu, M.

Huang, F.

Hugonin, J. P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2(8), 551–556 (2006).
[Crossref]

Huttunen, M. J.

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Jeong, C. Y.

Jiang, S.

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Jiang, X.

Katmis, F.

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

Kerman, S.

Kiang, Y. W.

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[Crossref]

Kim, G. H.

H. Lee, G. H. Kim, J. H. Lee, N. H. Kim, J. M. Nam, and Y. D. Suh, “Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries,” Nano. Lett. 15(7), 4628–4636 (2015).
[Crossref] [PubMed]

Kim, M.

Kim, N. H.

H. Lee, G. H. Kim, J. H. Lee, N. H. Kim, J. M. Nam, and Y. D. Suh, “Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries,” Nano. Lett. 15(7), 4628–4636 (2015).
[Crossref] [PubMed]

Kim, S.

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

Kuchyanov, A. S.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Kumar, S.

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photonics 4(8), 1879–1884 (2017).
[Crossref]

Kuo, C. F.

Kuo, Y.

Lalanne, P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2(8), 551–556 (2006).
[Crossref]

Le, P. S.

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

Lee, H.

H. Lee, G. H. Kim, J. H. Lee, N. H. Kim, J. M. Nam, and Y. D. Suh, “Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries,” Nano. Lett. 15(7), 4628–4636 (2015).
[Crossref] [PubMed]

Lee, J. H.

H. Lee, G. H. Kim, J. H. Lee, N. H. Kim, J. M. Nam, and Y. D. Suh, “Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries,” Nano. Lett. 15(7), 4628–4636 (2015).
[Crossref] [PubMed]

Lei, D. Y.

Li, J.

Li, M. D.

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

Li, S.

Li, Y. F.

J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
[Crossref]

Liao, M. H.

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Lin, C. H.

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Liu, J. S.

J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525 (2011).
[Crossref] [PubMed]

Liu, L.

Liu, S.

Liu, T.

T. Liu and S. Y. Wang, “Nanoscale plasmonic coupler with tunable direction and intensity ratio controlled by optical vortex,” J. Appl. Phys. 120(12), 123108 (2016).
[Crossref]

Liu, Y.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems,” Phys. Rev. Lett. 119(7), 077401 (2017).
[Crossref] [PubMed]

Luo, Y.

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Ly-Gagnon, D. S.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Maier, S. A.

Y. Sonnefraud, S. Kerman, G. Di Martino, D. Y. Lei, and S. A. Maier, “Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy,” Opt. Express 20(5), 4893–4902 (2012).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).

Marquier, F.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

Martin, O. J. F.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

Martino, G. Di

Miller, D. A.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Nam, J. M.

H. Lee, G. H. Kim, J. H. Lee, N. H. Kim, J. M. Nam, and Y. D. Suh, “Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries,” Nano. Lett. 15(7), 4628–4636 (2015).
[Crossref] [PubMed]

Nedosekin, D. A.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Nima, Z.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Ning, Y.

Nolan, J.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Novotny, L.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Pala, R. A.

J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525 (2011).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photon. 2(6), 351–354 (2008).
[Crossref]

Parkhomenko, R. G.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Pendry, J.

J. Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).
[Crossref]

Plekhanov, A. I.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photon. 2(6), 351–354 (2008).
[Crossref]

Qi, X.

E. Sun, S. Sang, Z. Yuan, X. Qi, R. Zhang, and W. Cao, “Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals,” J. Alloys Compd. 640, 64–67 (2015).
[Crossref] [PubMed]

Qu, S. B.

J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
[Crossref]

Sang, S.

E. Sun, S. Sang, Z. Yuan, X. Qi, R. Zhang, and W. Cao, “Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals,” J. Alloys Compd. 640, 64–67 (2015).
[Crossref] [PubMed]

Sarimollaoglu, M.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

Shen, B.

Si, J.

Siampour, H.

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photonics 4(8), 1879–1884 (2017).
[Crossref]

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

Sonnefraud, Y.

Stockman, M. I.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Suh, Y. D.

H. Lee, G. H. Kim, J. H. Lee, N. H. Kim, J. M. Nam, and Y. D. Suh, “Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries,” Nano. Lett. 15(7), 4628–4636 (2015).
[Crossref] [PubMed]

Sun, E.

E. Sun, S. Sang, Z. Yuan, X. Qi, R. Zhang, and W. Cao, “Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals,” J. Alloys Compd. 640, 64–67 (2015).
[Crossref] [PubMed]

Sun, H. Q.

S. Y. Yao, Z. Y. Guo, and H. Q. Sun, “Emission enhancement of surface plasmon coupled blue LED with a surface Al nanoparticle,” IEEE Photon. Technol. Lett. 29(12), 1011–1014 (2017).
[Crossref]

Sun, L.

Sun, M.

Sun, X.

Tanemura, T.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Teperik, T. V.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

Torma, P.

Wahl, P.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Wang, J. F.

J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
[Crossref]

Wang, J. Y.

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

Wang, L. Q.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems,” Phys. Rev. Lett. 119(7), 077401 (2017).
[Crossref] [PubMed]

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Wang, S. Y.

T. Liu and S. Y. Wang, “Nanoscale plasmonic coupler with tunable direction and intensity ratio controlled by optical vortex,” J. Appl. Phys. 120(12), 123108 (2016).
[Crossref]

Wang, W.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems,” Phys. Rev. Lett. 119(7), 077401 (2017).
[Crossref] [PubMed]

Wang, X. H.

J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
[Crossref]

Wang, Z.

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

Watanabe, F.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Weingold, R.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

White, J. S.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Wu, L. J.

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

Wu, L. M.

Xi, X.

Xiang, Y. J.

Xiao, T. H.

T. H. Xiao, Z. Z. Cheng, and K. Goda, “Graphene-on-silicon hybrid plasmonic-photonic integrated circuits,” Nanotechnology 28(24), 245201 (2017).
[Crossref]

Xu, H. L.

Xue, R. D.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems,” Phys. Rev. Lett. 119(7), 077401 (2017).
[Crossref] [PubMed]

Yang, C.

Yang, C. C.

Yang, H.

Yang, J.

J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
[Crossref]

Yang, J. L.

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Yao, S. Y.

S. Y. Yao, Z. Y. Guo, and H. Q. Sun, “Emission enhancement of surface plasmon coupled blue LED with a surface Al nanoparticle,” IEEE Photon. Technol. Lett. 29(12), 1011–1014 (2017).
[Crossref]

You, O.

Yu, Y.

Yu, Z.

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, H.

Yuan, X. C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, Z.

E. Sun, S. Sang, Z. Yuan, X. Qi, R. Zhang, and W. Cao, “Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals,” J. Alloys Compd. 640, 64–67 (2015).
[Crossref] [PubMed]

Zhang, C.

Zhang, R.

E. Sun, S. Sang, Z. Yuan, X. Qi, R. Zhang, and W. Cao, “Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals,” J. Alloys Compd. 640, 64–67 (2015).
[Crossref] [PubMed]

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Zhang, Y.

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Zhao, L.

Zhao, T.

Zharov, V. P.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photon. 2(6), 351–354 (2008).
[Crossref]

Zhong, R.

Zhou, X. Y.

J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
[Crossref]

Zhu, S.

Zhu, Y. M.

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

Zhu, Z.

ACS Photonics (1)

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photonics 4(8), 1879–1884 (2017).
[Crossref]

Appl. Phys. Lett. (2)

J. Yang, J. F. Wang, M. D. Feng, Y. F. Li, X. H. Wang, X. Y. Zhou, T. J. Cui, and S. B. Qu, “Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons,” Appl. Phys. Lett. 110(20), 203507 (2017).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Y. Yao, Z. Y. Guo, and H. Q. Sun, “Emission enhancement of surface plasmon coupled blue LED with a surface Al nanoparticle,” IEEE Photon. Technol. Lett. 29(12), 1011–1014 (2017).
[Crossref]

J. Alloys Compd. (1)

E. Sun, S. Sang, Z. Yuan, X. Qi, R. Zhang, and W. Cao, “Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals,” J. Alloys Compd. 640, 64–67 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

T. Liu and S. Y. Wang, “Nanoscale plasmonic coupler with tunable direction and intensity ratio controlled by optical vortex,” J. Appl. Phys. 120(12), 123108 (2016).
[Crossref]

J. Phys. Chem. B (1)

D. D. Evanoff and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[Crossref]

Nano Lett. (1)

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Nano. Lett. (1)

H. Lee, G. H. Kim, J. H. Lee, N. H. Kim, J. M. Nam, and Y. D. Suh, “Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries,” Nano. Lett. 15(7), 4628–4636 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

T. H. Xiao, Z. Z. Cheng, and K. Goda, “Graphene-on-silicon hybrid plasmonic-photonic integrated circuits,” Nanotechnology 28(24), 245201 (2017).
[Crossref]

Nat. Commun. (2)

J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525 (2011).
[Crossref] [PubMed]

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[Crossref] [PubMed]

Nature Nanotech. (1)

S. Jiang, Y. Zhang, R. Zhang, C. R. Hu, M. H. Liao, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering,” Nature Nanotech. 10(10), 865–869 (2015).
[Crossref]

Nature Photon. (2)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photon. 2(6), 351–354 (2008).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon. 4(2), 83–91 (2010).
[Crossref]

Nature Phys. (1)

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2(8), 551–556 (2006).
[Crossref]

Opt. Express (7)

Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23(24), 30709–30720 (2015).
[Crossref] [PubMed]

M. J. Huttunen, K. Dolgaleva, P. Torma, and R. W. Boyd, “Ultra-strong polarization dependence of surface lattice resonances with out-of-plane plasmon oscillations,” Opt. Express 24(25), 28279–28289 (2016).
[Crossref] [PubMed]

S. Gong, M. Hu, R. Zhong, T. Zhao, C. Zhang, and S. Liu, “Mediated coupling of surface plasmon polaritons by a moving electron beam,” Opt. Express 25(21), 25919–25928 (2017).
[Crossref] [PubMed]

C. F. Kuo and S. C. Chu, “Launching of surface plasmon polaritons with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams,” Opt. Express 25(9), 10456–10463 (2017).
[Crossref] [PubMed]

O. You, B. Bai, L. Sun, B. Shen, and Z. Zhu, “Versatile and tunable surface plasmon polariton excitation over a broad bandwidth with a simple metaline by external polarization modulation,” Opt. Express 24(19), 22061–22073 (2016).
[Crossref] [PubMed]

Y. Sonnefraud, S. Kerman, G. Di Martino, D. Y. Lei, and S. A. Maier, “Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy,” Opt. Express 20(5), 4893–4902 (2012).
[Crossref] [PubMed]

S. Zhu, Z. Yu, L. Liu, C. Yang, H. Cao, X. Xi, J. Li, and L. Zhao, “Enhancing the spontaneous emission rate by modulating carrier distribution in GaN-based surface plasmon light-emitting diodes,” Opt. Express 25(9), 9617–9627 (2017).
[Crossref] [PubMed]

Opt. Lett. (3)

Photon. Res. (1)

Phys. Rev. B (3)

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

M. D. Li, Z. Y. Dai, W. P. Cui, Z. Wang, F. Katmis, J. Y. Wang, P. S. Le, L. J. Wu, and Y. M. Zhu, “Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure,” Phys. Rev. B 89(23), 235432 (2014).
[Crossref]

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

Phys. Rev. Lett. (2)

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems,” Phys. Rev. Lett. 119(7), 077401 (2017).
[Crossref] [PubMed]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).
[Crossref]

Science (2)

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

J. Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).
[Crossref]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic diagrams of the designed structure for a single nanodisk in cylindrical coordinates (ρ, θ, z): (a) the view of the θ = 0 plane, and (b) the view of the z = d plane. A linear-polarized Gaussian beam represented by a yellow-color arrow, is normally incident to the nanodisk, and its polarization direction is indicated by an orange-color arrow.
Fig. 2
Fig. 2 The normalized spectral absorption of nanodisks of different diameters.
Fig. 3
Fig. 3 (a) The contour map of the Re2(Ez) field on the nonincident surface (z = −a) of the film for a single nanodisk, the operational wavelength λ0 = 628 nm and the polarization angle of the incident beam θ0 = 0. (b) Similar result to that in (a) except that the nanodisk is replaced by an x-polarized dipole located at the central position of the nanodisk. (c) and (d) The corresponding Re2(Ez) fields for the nanodisk and the dipole at ρ = 2058.5 nm and ρ = 2119.7 nm, respectively. (e) and (f) The corresponding θ = 0 profiles of the Re(Ez) fields for the nanodisk and the dipole, respectively.
Fig. 4
Fig. 4 (a) The contour map of the non-normalized Abs2(Ez) field corresponding to the case in Fig. 3(a). (b) The enhancement of the corresponding local Abs2(Ez) field (on a log10-scale) compared with the absence of the nanodisk.
Fig. 5
Fig. 5 (a) The distribution of the designed rectangular array of the nanodisks for launching directional SPPs in two orthogonal channels. λspp is the wavelength of the SPPs. (b) The spectral absorptions of a single nanodisk and a rectangular array of nanodisks, respectively.
Fig. 6
Fig. 6 (a)–(e) The contour maps of the Abs2(Ez) fields on the z = −a surface of the silver film for a rectangular array of the nanodisks. The incident wavelength λ0 = 628 nm. The polarization angle of the incident beam θ0 = 0, π/6, π/4, π/3 and π/2, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β = K 0 ε 1 ε m ε 1 + ε m
E z = A ( β , ω , d , a ) p 0 e i ( β ρ + ϕ 0 ) β ρ cos ( θ θ 0 )
A ( β , ω , d , a ) = i 2 β K m , z M ( β , ω ) e K 1 , z d e K m , z a
E z = A 0 e i ( β 0 ρ + ϕ 0 ) β 0 ρ cos θ

Metrics