Abstract

Non-line-of-sight imaging has attracted more attentions for its wide applications. Even though ultrasensitive cameras/detectors with high time-resolution are available, current back-projection methods are still powerless to acquire a satisfying reconstruction of multiple hidden objects due to severe aliasing artifacts. Here, a novel back-projection method is developed to reconstruct multiple hidden objects. Our method considers decomposing all the ellipsoids in a confidence map into several “clusters” belonging to different objects (namely “ellipsoid mode decomposition”), and then reconstructing the objects individually from their ellipsoid modes by filtering and thresholding, respectively. Importantly, the simulated and experimental results demonstrate that this method can effectively eliminate the impacts of aliasing artifacts and exhibits potential advantages in separating, locating and recovering multiple hidden objects, which might be a good base for reconstructing complex non-line-of-sight scenes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast back-projection for non-line of sight reconstruction

Victor Arellano, Diego Gutierrez, and Adrian Jarabo
Opt. Express 25(10) 11574-11583 (2017)

Edge re-projection method for high-quality edge reconstruction in non-line-of-sight imaging

Zhengyang Shi, Xia Wang, Yang Li, Zhibin Sun, and Wenxi Zhang
Appl. Opt. 59(6) 1793-1800 (2020)

Richardson–Lucy deconvolution of time histograms for high-resolution non-line-of-sight imaging based on a back-projection method

Chenfei Jin, Jiaheng Xie, Siqi Zhang, ZiJing Zhang, and Yuan Zhao
Opt. Lett. 43(23) 5885-5888 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. Repasi, P. Lutzmann, O. Steinvall, M. Elmqvist, B. Göhler, and G. Anstett, “Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations,” Appl. Opt. 48(31), 5956–5969 (2009).
    [Crossref] [PubMed]
  2. O. Steinvall, M. Elmqvist, and H. Larsson, “See around the corner using active imaging,” Proc. SPIE 8186, 818605 (2011).
    [Crossref]
  3. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering Three-dimensional Shape Around a Corner using Ultrafast Time-of-Flight Imaging,” Nat. Commun. 3(1), 745 (2012).
    [Crossref] [PubMed]
  4. V. Molebny and O. Steinvall, “Multi-dimensional laser radars,” Proc. SPIE 9080, 908002 (2014).
    [Crossref]
  5. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
    [Crossref]
  6. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  7. X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25(26), 32829–32840 (2017).
    [Crossref]
  8. F. Xu, G. Shulkind, C. Thrampoulidis, J. H. Shapiro, A. Torralba, F. N. C. Wong, and G. W. Wornell, “Revealing hidden scenes by photon-efficient occlusion-based opportunistic active imaging,” Opt. Express 26(8), 9945–9962 (2018).
    [Crossref] [PubMed]
  9. O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20(17), 19096–19108 (2012).
    [Crossref] [PubMed]
  10. M. Laurenzis and A. Velten, “Non-line-of-sight active imaging of scattered photons,” Proc. SPIE 8897, 889706 (2013).
    [Crossref]
  11. M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
    [Crossref]
  12. F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging using Photonic Mixer Devices,” ACM Trans. Graph. 32(4), 45 (2013).
    [Crossref]
  13. F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors, ” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.
    [Crossref]
  14. C. Jin, Z. Song, S. Zhang, J. Zhai, and Y. Zhao, “Recovering three-dimensional shape through a small hole using three laser scatterings,” Opt. Lett. 40(1), 52–55 (2015).
    [Crossref] [PubMed]
  15. M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23(16), 20997–21011 (2015).
    [Crossref] [PubMed]
  16. M. Laurenzis, J. Klein, E. Bacher, and N. Metzger, “Multiple-return single-photon counting of light in flight and sensing of non-line-of-sight objects at shortwave infrared wavelengths,” Opt. Lett. 40(20), 4815–4818 (2015).
    [Crossref] [PubMed]
  17. G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
    [Crossref]
  18. M. B. Hullin, “Computational Imaging of Light in Flight,” Proc. SPIE 9273, 927314 (2014).
  19. A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded Imaging with Time of Flight Sensors,” ACM Trans. Graph. 35(2), 1–12 (2016).
    [Crossref]
  20. J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
    [Crossref] [PubMed]
  21. S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio, “Non-line-of-sight tracking of people at long range,” Opt. Express 25(9), 10109–10117 (2017).
    [Crossref] [PubMed]
  22. V. Arellano, D. Gutierrez, and A. Jarabo, “Fast back-projection for non-line of sight reconstruction,” Opt. Express 25(10), 11574–11583 (2017).
    [Crossref] [PubMed]
  23. X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse Probl. 25(12), 123009 (2009).
    [Crossref] [PubMed]
  24. A. Kak and M. Slaney, “Principles of Computerized Tomographic Imaging” (IEEE, 1999), Chap. 5.
  25. R. A. Brooks, G. H. Weiss, and A. J. Talbert, “A new approach to interpolation in computed tomography,” J. Comput. Assist. Tomogr. 2(5), 577–585 (1978).
    [Crossref] [PubMed]
  26. M. Laurenzis and A. Velten, “Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing,” J. Electron. Imaging 23(6), 063003 (2014).
    [Crossref]
  27. M. Laurenzis and A. Velten, “Investigation of frame-to-frame back projection and feature selection algorithms for non line of sight laser gated viewing,” Proc. SPIE 9250, 92500J (2014).
    [Crossref]
  28. M. Laurenzis, A. Velten, and J. Klein, “Dual-mode optical sensing: three-dimensional imaging and seeing around a corner,” Opt. Eng. 56(3), 031202 (2016).
    [Crossref]
  29. M. Laurenzis, F. Christnacher, and A. Velten, “Study of a dual mode SWIR active imaging system for direct imaging and non-line of sight vision,” Proc. SPIE 9465, 946509 (2015).
    [Crossref]
  30. M. Laurenzis, F. Christnacher, J. Klein, M. B. Hullin, and A. Velten, “Study of single photon counting for non-line-of-sight vision,” Proc. SPIE 9492, 94920K (2015).
    [Crossref]
  31. A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
    [Crossref]
  32. K. C. Tam and V. Perez-Mendez, “Tomographical imaging with limited-angle input,” J. Opt. Soc. Am. 71(5), 582–592 (1981).
    [Crossref]
  33. I. Avcibas, B. Sankur, and K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
    [Crossref]

2018 (1)

2017 (3)

2016 (5)

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded Imaging with Time of Flight Sensors,” ACM Trans. Graph. 35(2), 1–12 (2016).
[Crossref]

J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref] [PubMed]

M. Laurenzis, A. Velten, and J. Klein, “Dual-mode optical sensing: three-dimensional imaging and seeing around a corner,” Opt. Eng. 56(3), 031202 (2016).
[Crossref]

A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

2015 (5)

2014 (6)

M. Laurenzis and A. Velten, “Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing,” J. Electron. Imaging 23(6), 063003 (2014).
[Crossref]

M. Laurenzis and A. Velten, “Investigation of frame-to-frame back projection and feature selection algorithms for non line of sight laser gated viewing,” Proc. SPIE 9250, 92500J (2014).
[Crossref]

M. B. Hullin, “Computational Imaging of Light in Flight,” Proc. SPIE 9273, 927314 (2014).

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

V. Molebny and O. Steinvall, “Multi-dimensional laser radars,” Proc. SPIE 9080, 908002 (2014).
[Crossref]

2013 (2)

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging using Photonic Mixer Devices,” ACM Trans. Graph. 32(4), 45 (2013).
[Crossref]

M. Laurenzis and A. Velten, “Non-line-of-sight active imaging of scattered photons,” Proc. SPIE 8897, 889706 (2013).
[Crossref]

2012 (3)

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering Three-dimensional Shape Around a Corner using Ultrafast Time-of-Flight Imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20(17), 19096–19108 (2012).
[Crossref] [PubMed]

2011 (1)

O. Steinvall, M. Elmqvist, and H. Larsson, “See around the corner using active imaging,” Proc. SPIE 8186, 818605 (2011).
[Crossref]

2009 (2)

E. Repasi, P. Lutzmann, O. Steinvall, M. Elmqvist, B. Göhler, and G. Anstett, “Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations,” Appl. Opt. 48(31), 5956–5969 (2009).
[Crossref] [PubMed]

X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse Probl. 25(12), 123009 (2009).
[Crossref] [PubMed]

2002 (1)

I. Avcibas, B. Sankur, and K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
[Crossref]

1981 (1)

1978 (1)

R. A. Brooks, G. H. Weiss, and A. J. Talbert, “A new approach to interpolation in computed tomography,” J. Comput. Assist. Tomogr. 2(5), 577–585 (1978).
[Crossref] [PubMed]

Anstett, G.

Arellano, V.

Avcibas, I.

I. Avcibas, B. Sankur, and K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
[Crossref]

Bacher, E.

Bawendi, M. G.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering Three-dimensional Shape Around a Corner using Ultrafast Time-of-Flight Imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Brooks, R. A.

R. A. Brooks, G. H. Weiss, and A. J. Talbert, “A new approach to interpolation in computed tomography,” J. Comput. Assist. Tomogr. 2(5), 577–585 (1978).
[Crossref] [PubMed]

Buttafava, M.

Chan, S.

S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio, “Non-line-of-sight tracking of people at long range,” Opt. Express 25(9), 10109–10117 (2017).
[Crossref] [PubMed]

A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
[Crossref]

Christnacher, F.

M. Laurenzis, F. Christnacher, and A. Velten, “Study of a dual mode SWIR active imaging system for direct imaging and non-line of sight vision,” Proc. SPIE 9465, 946509 (2015).
[Crossref]

M. Laurenzis, F. Christnacher, J. Klein, M. B. Hullin, and A. Velten, “Study of single photon counting for non-line-of-sight vision,” Proc. SPIE 9492, 94920K (2015).
[Crossref]

Eliceiri, K.

Elmqvist, M.

Faccio, D.

S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio, “Non-line-of-sight tracking of people at long range,” Opt. Express 25(9), 10109–10117 (2017).
[Crossref] [PubMed]

A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Gariepy, G.

S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio, “Non-line-of-sight tracking of people at long range,” Opt. Express 25(9), 10109–10117 (2017).
[Crossref] [PubMed]

A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Göhler, B.

Gregson, J.

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging using Photonic Mixer Devices,” ACM Trans. Graph. 32(4), 45 (2013).
[Crossref]

Gupta, O.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering Three-dimensional Shape Around a Corner using Ultrafast Time-of-Flight Imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20(17), 19096–19108 (2012).
[Crossref] [PubMed]

Gutierrez, D.

He, H.

Heide, F.

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging using Photonic Mixer Devices,” ACM Trans. Graph. 32(4), 45 (2013).
[Crossref]

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors, ” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.
[Crossref]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Heidrich, W.

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging using Photonic Mixer Devices,” ACM Trans. Graph. 32(4), 45 (2013).
[Crossref]

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors, ” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.
[Crossref]

Henderson, R.

A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Hullin, M. B.

J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref] [PubMed]

M. Laurenzis, F. Christnacher, J. Klein, M. B. Hullin, and A. Velten, “Study of single photon counting for non-line-of-sight vision,” Proc. SPIE 9492, 94920K (2015).
[Crossref]

M. B. Hullin, “Computational Imaging of Light in Flight,” Proc. SPIE 9273, 927314 (2014).

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging using Photonic Mixer Devices,” ACM Trans. Graph. 32(4), 45 (2013).
[Crossref]

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors, ” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.
[Crossref]

Jarabo, A.

Jin, C.

Kadambi, A.

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded Imaging with Time of Flight Sensors,” ACM Trans. Graph. 35(2), 1–12 (2016).
[Crossref]

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Klein, J.

J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref] [PubMed]

M. Laurenzis, A. Velten, and J. Klein, “Dual-mode optical sensing: three-dimensional imaging and seeing around a corner,” Opt. Eng. 56(3), 031202 (2016).
[Crossref]

M. Laurenzis, F. Christnacher, J. Klein, M. B. Hullin, and A. Velten, “Study of single photon counting for non-line-of-sight vision,” Proc. SPIE 9492, 94920K (2015).
[Crossref]

M. Laurenzis, J. Klein, E. Bacher, and N. Metzger, “Multiple-return single-photon counting of light in flight and sensing of non-line-of-sight objects at shortwave infrared wavelengths,” Opt. Lett. 40(20), 4815–4818 (2015).
[Crossref] [PubMed]

Larsson, H.

O. Steinvall, M. Elmqvist, and H. Larsson, “See around the corner using active imaging,” Proc. SPIE 8186, 818605 (2011).
[Crossref]

Laurenzis, M.

M. Laurenzis, A. Velten, and J. Klein, “Dual-mode optical sensing: three-dimensional imaging and seeing around a corner,” Opt. Eng. 56(3), 031202 (2016).
[Crossref]

J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref] [PubMed]

M. Laurenzis, J. Klein, E. Bacher, and N. Metzger, “Multiple-return single-photon counting of light in flight and sensing of non-line-of-sight objects at shortwave infrared wavelengths,” Opt. Lett. 40(20), 4815–4818 (2015).
[Crossref] [PubMed]

M. Laurenzis, F. Christnacher, J. Klein, M. B. Hullin, and A. Velten, “Study of single photon counting for non-line-of-sight vision,” Proc. SPIE 9492, 94920K (2015).
[Crossref]

M. Laurenzis, F. Christnacher, and A. Velten, “Study of a dual mode SWIR active imaging system for direct imaging and non-line of sight vision,” Proc. SPIE 9465, 946509 (2015).
[Crossref]

M. Laurenzis and A. Velten, “Investigation of frame-to-frame back projection and feature selection algorithms for non line of sight laser gated viewing,” Proc. SPIE 9250, 92500J (2014).
[Crossref]

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

M. Laurenzis and A. Velten, “Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing,” J. Electron. Imaging 23(6), 063003 (2014).
[Crossref]

M. Laurenzis and A. Velten, “Non-line-of-sight active imaging of scattered photons,” Proc. SPIE 8897, 889706 (2013).
[Crossref]

Leach, J.

S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio, “Non-line-of-sight tracking of people at long range,” Opt. Express 25(9), 10109–10117 (2017).
[Crossref] [PubMed]

A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Lee, S. T.

A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
[Crossref]

Lutzmann, P.

Martín, J.

J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref] [PubMed]

Metzger, N.

Molebny, V.

V. Molebny and O. Steinvall, “Multi-dimensional laser radars,” Proc. SPIE 9080, 908002 (2014).
[Crossref]

Mosk, A. P.

Pan, X.

X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse Probl. 25(12), 123009 (2009).
[Crossref] [PubMed]

Perez-Mendez, V.

Peters, C.

J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref] [PubMed]

Raskar, R.

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded Imaging with Time of Flight Sensors,” ACM Trans. Graph. 35(2), 1–12 (2016).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering Three-dimensional Shape Around a Corner using Ultrafast Time-of-Flight Imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20(17), 19096–19108 (2012).
[Crossref] [PubMed]

Repasi, E.

Sankur, B.

I. Avcibas, B. Sankur, and K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
[Crossref]

Sayood, K.

I. Avcibas, B. Sankur, and K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
[Crossref]

Shapiro, J. H.

Shi, B.

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded Imaging with Time of Flight Sensors,” ACM Trans. Graph. 35(2), 1–12 (2016).
[Crossref]

Shulkind, G.

Sidky, E. Y.

X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse Probl. 25(12), 123009 (2009).
[Crossref] [PubMed]

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Song, Z.

Sroka, A.

A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
[Crossref]

Steinvall, O.

V. Molebny and O. Steinvall, “Multi-dimensional laser radars,” Proc. SPIE 9080, 908002 (2014).
[Crossref]

O. Steinvall, M. Elmqvist, and H. Larsson, “See around the corner using active imaging,” Proc. SPIE 8186, 818605 (2011).
[Crossref]

E. Repasi, P. Lutzmann, O. Steinvall, M. Elmqvist, B. Göhler, and G. Anstett, “Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations,” Appl. Opt. 48(31), 5956–5969 (2009).
[Crossref] [PubMed]

Talbert, A. J.

R. A. Brooks, G. H. Weiss, and A. J. Talbert, “A new approach to interpolation in computed tomography,” J. Comput. Assist. Tomogr. 2(5), 577–585 (1978).
[Crossref] [PubMed]

Tam, K. C.

Thendiyammal, A.

Thrampoulidis, C.

Tonolini, F.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Torralba, A.

Tosi, A.

Vannier, M.

X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse Probl. 25(12), 123009 (2009).
[Crossref] [PubMed]

Veeraraghavan, A.

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20(17), 19096–19108 (2012).
[Crossref] [PubMed]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering Three-dimensional Shape Around a Corner using Ultrafast Time-of-Flight Imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Velten, A.

M. Laurenzis, A. Velten, and J. Klein, “Dual-mode optical sensing: three-dimensional imaging and seeing around a corner,” Opt. Eng. 56(3), 031202 (2016).
[Crossref]

M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23(16), 20997–21011 (2015).
[Crossref] [PubMed]

M. Laurenzis, F. Christnacher, J. Klein, M. B. Hullin, and A. Velten, “Study of single photon counting for non-line-of-sight vision,” Proc. SPIE 9492, 94920K (2015).
[Crossref]

M. Laurenzis, F. Christnacher, and A. Velten, “Study of a dual mode SWIR active imaging system for direct imaging and non-line of sight vision,” Proc. SPIE 9465, 946509 (2015).
[Crossref]

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

M. Laurenzis and A. Velten, “Investigation of frame-to-frame back projection and feature selection algorithms for non line of sight laser gated viewing,” Proc. SPIE 9250, 92500J (2014).
[Crossref]

M. Laurenzis and A. Velten, “Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing,” J. Electron. Imaging 23(6), 063003 (2014).
[Crossref]

M. Laurenzis and A. Velten, “Non-line-of-sight active imaging of scattered photons,” Proc. SPIE 8897, 889706 (2013).
[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20(17), 19096–19108 (2012).
[Crossref] [PubMed]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering Three-dimensional Shape Around a Corner using Ultrafast Time-of-Flight Imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Warburton, R.

A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
[Crossref]

Warburton, R. E.

Weiss, G. H.

R. A. Brooks, G. H. Weiss, and A. J. Talbert, “A new approach to interpolation in computed tomography,” J. Comput. Assist. Tomogr. 2(5), 577–585 (1978).
[Crossref] [PubMed]

Willwacher, T.

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20(17), 19096–19108 (2012).
[Crossref] [PubMed]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering Three-dimensional Shape Around a Corner using Ultrafast Time-of-Flight Imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Wong, F. N. C.

Wornell, G. W.

Xiao, L.

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors, ” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.
[Crossref]

Xie, X.

Xu, F.

Xu, X.

Zeman, J.

Zhai, J.

Zhang, S.

Zhao, H.

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded Imaging with Time of Flight Sensors,” ACM Trans. Graph. 35(2), 1–12 (2016).
[Crossref]

Zhao, Y.

Zhou, J.

Zhuang, H.

ACM Trans. Graph. (2)

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging using Photonic Mixer Devices,” ACM Trans. Graph. 32(4), 45 (2013).
[Crossref]

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded Imaging with Time of Flight Sensors,” ACM Trans. Graph. 35(2), 1–12 (2016).
[Crossref]

Appl. Opt. (1)

Inverse Probl. (1)

X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse Probl. 25(12), 123009 (2009).
[Crossref] [PubMed]

J. Comput. Assist. Tomogr. (1)

R. A. Brooks, G. H. Weiss, and A. J. Talbert, “A new approach to interpolation in computed tomography,” J. Comput. Assist. Tomogr. 2(5), 577–585 (1978).
[Crossref] [PubMed]

J. Electron. Imaging (2)

M. Laurenzis and A. Velten, “Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing,” J. Electron. Imaging 23(6), 063003 (2014).
[Crossref]

I. Avcibas, B. Sankur, and K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Commun. (1)

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering Three-dimensional Shape Around a Corner using Ultrafast Time-of-Flight Imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Opt. Eng. (2)

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

M. Laurenzis, A. Velten, and J. Klein, “Dual-mode optical sensing: three-dimensional imaging and seeing around a corner,” Opt. Eng. 56(3), 031202 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (8)

V. Molebny and O. Steinvall, “Multi-dimensional laser radars,” Proc. SPIE 9080, 908002 (2014).
[Crossref]

O. Steinvall, M. Elmqvist, and H. Larsson, “See around the corner using active imaging,” Proc. SPIE 8186, 818605 (2011).
[Crossref]

M. Laurenzis, F. Christnacher, and A. Velten, “Study of a dual mode SWIR active imaging system for direct imaging and non-line of sight vision,” Proc. SPIE 9465, 946509 (2015).
[Crossref]

M. Laurenzis, F. Christnacher, J. Klein, M. B. Hullin, and A. Velten, “Study of single photon counting for non-line-of-sight vision,” Proc. SPIE 9492, 94920K (2015).
[Crossref]

A. Sroka, S. Chan, R. Warburton, G. Gariepy, R. Henderson, J. Leach, D. Faccio, and S. T. Lee, “Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR,” Proc. SPIE 9822, 98220L (2016).
[Crossref]

M. Laurenzis and A. Velten, “Investigation of frame-to-frame back projection and feature selection algorithms for non line of sight laser gated viewing,” Proc. SPIE 9250, 92500J (2014).
[Crossref]

M. Laurenzis and A. Velten, “Non-line-of-sight active imaging of scattered photons,” Proc. SPIE 8897, 889706 (2013).
[Crossref]

M. B. Hullin, “Computational Imaging of Light in Flight,” Proc. SPIE 9273, 927314 (2014).

Sci. Rep. (1)

J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref] [PubMed]

Other (2)

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors, ” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.
[Crossref]

A. Kak and M. Slaney, “Principles of Computerized Tomographic Imaging” (IEEE, 1999), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The principle of NLoS imaging.
Fig. 2
Fig. 2 Schematic diagram of back projection based on EMD.
Fig. 3
Fig. 3 Simulated reconstruction of multiple NLoS objects (a)-(d)using general back-projection with global thresholding such as β = 0.2, 0.25, 0.3 and 0.5, respectively. (e)-(h) using general back-projection with local-global thresholding such as [λloc,λglob] = [0.25,0.13], [0.18,0.19], [0.25,0.25] and [0.34,0.25], respectively.
Fig. 4
Fig. 4 Simulated results using our method to reconstruct multiple NLoS objects with (a) a view from the front and (b) a view from the side.
Fig. 5
Fig. 5 Details of our experiment including (a) photograph of the experimental setups, (b) the source point and image points on the image screen, and (c) photograph of the objects.
Fig. 6
Fig. 6 Reconstruction of the objects from a side view (a) using general back-projection with global thresholding and (b) using our method. Reconstruction of the objects from a top view (c) using general back-projection with global thresholding and (d) using our method.
Fig. 7
Fig. 7 (a)-(c) Typical slices of the initial confidence map at the locations of three objects, respectively. (d)-(f) Typical slices of the square plate’s ellipsoid mode at the locations of the objects, respectively. (g)-(h) Typical slices of the triangle plate’s ellipsoid mode at the locations of the objects, respectively. (j)-(l) Typical slices of the round plate’s ellipsoid mode at the locations of the objects, respectively.
Fig. 8
Fig. 8 (a) the initial confidence map of three objects, (b) the ellipsoid mode of the object 1, (c) the ellipsoid mode of the object 2, (d) the ellipsoid mode of the object 3.

Tables (2)

Tables Icon

Table 1 List of Decomposing Procedure

Tables Icon

Table 2 Comparison of reconstruction errors for our method and general back-projection methods

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r 1 + r 2 + r 3 + r 4 =c t .
V f ( x,y,z )= 2 V( x,y,z )
V f ( x,y,z ) >βmax( V f ) =constant
| x x o | h s . | y y o | h s . | z z o | h s .
| V( x o , y o , z o )V( x,y,z ) |/V( x o , y o , z o ) h c .
V f ( x,y,z ) > λ loc M loc + λ glob M glob =constant

Metrics