Abstract

Ultraviolet (UV) communication overcomes pointing and tracking errors and is superior to other modern optical wireless communication technologies at short range. Using effective wavelengths from 200 to 280 nm, enables the non-line-of-sight (NLOS) outdoor UV communication in the presence of strong molecular and aerosol scattering. Because of these characteristics, solar blind NLOS UV communications offers broad coverage and high security. In this paper, NLOS UV communication is considered with decode and forward (DF) relays in the presence of log-normal (LN) channels using the best relay selection technique according to the channel state information (CSI). Then the outage probability of the multi-relay UV system is discussed for the proposed model. Simulation results verify the effectiveness of our employed analytical model. The outage probability for both serial and cooperative relays is compared with a different number of relays. Numerical simulations are further presented for many factors influencing the functioning of the system such as elevation angle, atmospheric scattering parameters and receiver field of view (FOV) angles. The obtained results demonstrate that increasing the number of UV NLOS cooperative relays does not necessarily improve the system performance, but there are other factors that must be considered such as the value of the elevation angle and the number of relays.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance Analysis of Relay-Assisted NLOS Ultraviolet Communications Over Turbulence Channels

Maryam Haghighi Ardakani, Ali Reza Heidarpour, and Murat Uysal
J. Opt. Commun. Netw. 9(1) 109-118 (2017)

Correlation and Outage Probability of NLOS SIMO Optical Wireless Scattering Communication Channels Under Turbulence

Chen Gong, Boyang Huang, and Zhengyuan Xu
J. Opt. Commun. Netw. 8(12) 928-937 (2016)

Optimal Relay Placement and Diversity Analysis of Relay-Assisted Free-Space Optical Communication Systems

Mohammadreza A. Kashani, Majid Safari, and Murat Uysal
J. Opt. Commun. Netw. 5(1) 37-47 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Reilly, Atmospheric optical communication in the middle ultaviolet, (M.S.Thesis MITCambridge, 1976), Chap. (3).
  2. R. Yuan, J. Ma, Review of ultraviolet non-line-of sight communication, (School of Tsinghua University, 2016) Chap. (1).
  3. R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29(8), 84–96 (2014).
    [Crossref]
  4. M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Non-line-of-sight ultraviolet communications over atmospheric turbulence channels,” International Workshop on Optical Wireless Communications55–59 (IEEE, 2015).
  5. M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Performance analysis of relay-assisted NLOS ultraviolet communications over turbulence channels,” J. Opt. Netw. 9(1), 109–118 (2017).
    [Crossref]
  6. M. A. Kashani, M. Safari, and M. Uysal, “Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems,” J. Opt. Netw. 5(1), 37–47 (2013).
    [Crossref]
  7. E. Zedini and M.S. Alouini, “On the performance of multihop heterodyne FSO systems with pointing errors,” IEEE Photo. J. 7(2), 34–44 (2015).
  8. M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. on Wireless Commun. 7(12), 5441–5449 (2008).
    [Crossref]
  9. L. Linchao, Long distance non-line-of-sight ultraviolet communication channel analysis and experimental verification, (Ph.D. dissertation, UC Riverside Electronic Thesis and Dissertations, 2015), Chap. (2).
  10. S. M. Aghajanzadeh and M. Uysal, “Performance analysis of parallel relaying in free-space optical systems,” IEEE Trans. on Commun. 63(9), 4314–4326 (2015).
    [Crossref]
  11. Z. X. G. Chen, Performance limits of non-line-of-sight UV communications, (U.S. Army Research Office, 2012), Chap. (3).
    [Crossref]
  12. N. D. Chatzidiamantis, D. S. Michalopoulos, E. E. Kriezis, G. K. Karagiannidis, and R. Schober, “Relay selection protocols for relay assisted free-space optical systems,” J. Opt. Netw. 5(1), 92–103 (2013).
    [Crossref]
  13. G. Ke, G. Qiang, F. Li, and X. Huagang, “Relay selection in cooperative communication systems over continuous time-varying fading channel,” Chin. J. Aero. 1(9), 754–762 (2016).
  14. M. Abaza, R. Mesleh, A. Mansour, and e. H. M. Aggoune, “Relay selection for full-duplex FSO relays over turbulent channels,” Signal Processing and Information Technology978–982 (IEEE, 2016).
  15. W. O. Popoola, Subcarrier intensity modulated free-space optical communication systems, (Ph.D. Thesis University of Northumbria at Newcastle, 2009), Chap. (4).
  16. A. A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” J. Lightwave Technol. 25(7), 1702–1710 (2007).
    [Crossref]
  17. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
    [Crossref] [PubMed]
  18. Z. Yong, W. Jian, X. Houfei, and L. Jintong, “Non-line-of-sight ultraviolet communication performance in atmospheric turbulence,” Chin. Commun. 10(11), 52–57 (2013).
    [Crossref]
  19. G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17(5), 3929–3940 (2009).
    [Crossref] [PubMed]
  20. H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Turbulence modeling for non-line-of-sight ultraviolet scattering channels,” Atmospheric Propagation VIII420–428 (SPIE, 2011).
  21. M. Abaza, R. Mesleh, A. Mansour, and E. Aggoune, “Performance analysis of space-shift keying over negative-exponential and log-normal FSO channels,” Chin. Opt. Lett. 13(5), 051001 (2015).
  22. Y. Celik and N. Odabasioglu, “On relay selection for cooperative free-space optical communication,” Networks and Optical Communications (NOC)1–5 (IEEE, 2012).
  23. E. J. Lee and V. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004).
    [Crossref]
  24. D. M. Reilly and C. Warde, “Temporal characteristics of single scatter radiation,” J. Opt. Soc. Am. A 19(3), 464–470 (1979).
    [Crossref]
  25. H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Non-line-of-sight ultraviolet communication channel characterization modeling and validation,” Proc. SPIE 7464(7464), 9–15 (2009).
  26. Y. Celik and N. Odabasioglu, “On relay selection for cooperative free-space optical communication,” Networks and Optical Communications (NOC)1–5 (IEEE, 2012).

2017 (1)

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Performance analysis of relay-assisted NLOS ultraviolet communications over turbulence channels,” J. Opt. Netw. 9(1), 109–118 (2017).
[Crossref]

2016 (1)

G. Ke, G. Qiang, F. Li, and X. Huagang, “Relay selection in cooperative communication systems over continuous time-varying fading channel,” Chin. J. Aero. 1(9), 754–762 (2016).

2015 (3)

S. M. Aghajanzadeh and M. Uysal, “Performance analysis of parallel relaying in free-space optical systems,” IEEE Trans. on Commun. 63(9), 4314–4326 (2015).
[Crossref]

E. Zedini and M.S. Alouini, “On the performance of multihop heterodyne FSO systems with pointing errors,” IEEE Photo. J. 7(2), 34–44 (2015).

M. Abaza, R. Mesleh, A. Mansour, and E. Aggoune, “Performance analysis of space-shift keying over negative-exponential and log-normal FSO channels,” Chin. Opt. Lett. 13(5), 051001 (2015).

2014 (1)

R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29(8), 84–96 (2014).
[Crossref]

2013 (3)

Z. Yong, W. Jian, X. Houfei, and L. Jintong, “Non-line-of-sight ultraviolet communication performance in atmospheric turbulence,” Chin. Commun. 10(11), 52–57 (2013).
[Crossref]

M. A. Kashani, M. Safari, and M. Uysal, “Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems,” J. Opt. Netw. 5(1), 37–47 (2013).
[Crossref]

N. D. Chatzidiamantis, D. S. Michalopoulos, E. E. Kriezis, G. K. Karagiannidis, and R. Schober, “Relay selection protocols for relay assisted free-space optical systems,” J. Opt. Netw. 5(1), 92–103 (2013).
[Crossref]

2009 (2)

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17(5), 3929–3940 (2009).
[Crossref] [PubMed]

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Non-line-of-sight ultraviolet communication channel characterization modeling and validation,” Proc. SPIE 7464(7464), 9–15 (2009).

2008 (2)

2007 (1)

2004 (1)

E. J. Lee and V. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

1979 (1)

D. M. Reilly and C. Warde, “Temporal characteristics of single scatter radiation,” J. Opt. Soc. Am. A 19(3), 464–470 (1979).
[Crossref]

Abaza, M.

M. Abaza, R. Mesleh, A. Mansour, and E. Aggoune, “Performance analysis of space-shift keying over negative-exponential and log-normal FSO channels,” Chin. Opt. Lett. 13(5), 051001 (2015).

M. Abaza, R. Mesleh, A. Mansour, and e. H. M. Aggoune, “Relay selection for full-duplex FSO relays over turbulent channels,” Signal Processing and Information Technology978–982 (IEEE, 2016).

Aggoune, E.

Aggoune, e. H. M.

M. Abaza, R. Mesleh, A. Mansour, and e. H. M. Aggoune, “Relay selection for full-duplex FSO relays over turbulent channels,” Signal Processing and Information Technology978–982 (IEEE, 2016).

Aghajanzadeh, S. M.

S. M. Aghajanzadeh and M. Uysal, “Performance analysis of parallel relaying in free-space optical systems,” IEEE Trans. on Commun. 63(9), 4314–4326 (2015).
[Crossref]

Alouini, M.S.

E. Zedini and M.S. Alouini, “On the performance of multihop heterodyne FSO systems with pointing errors,” IEEE Photo. J. 7(2), 34–44 (2015).

Ardakani, M. H.

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Performance analysis of relay-assisted NLOS ultraviolet communications over turbulence channels,” J. Opt. Netw. 9(1), 109–118 (2017).
[Crossref]

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Non-line-of-sight ultraviolet communications over atmospheric turbulence channels,” International Workshop on Optical Wireless Communications55–59 (IEEE, 2015).

Celik, Y.

Y. Celik and N. Odabasioglu, “On relay selection for cooperative free-space optical communication,” Networks and Optical Communications (NOC)1–5 (IEEE, 2012).

Y. Celik and N. Odabasioglu, “On relay selection for cooperative free-space optical communication,” Networks and Optical Communications (NOC)1–5 (IEEE, 2012).

Chan, V.

E. J. Lee and V. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

Chatzidiamantis, N. D.

N. D. Chatzidiamantis, D. S. Michalopoulos, E. E. Kriezis, G. K. Karagiannidis, and R. Schober, “Relay selection protocols for relay assisted free-space optical systems,” J. Opt. Netw. 5(1), 92–103 (2013).
[Crossref]

Chen, G.

Chen, Z. X. G.

Z. X. G. Chen, Performance limits of non-line-of-sight UV communications, (U.S. Army Research Office, 2012), Chap. (3).
[Crossref]

Chena, G.

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Non-line-of-sight ultraviolet communication channel characterization modeling and validation,” Proc. SPIE 7464(7464), 9–15 (2009).

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Turbulence modeling for non-line-of-sight ultraviolet scattering channels,” Atmospheric Propagation VIII420–428 (SPIE, 2011).

Ding, H.

Dinga, H.

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Non-line-of-sight ultraviolet communication channel characterization modeling and validation,” Proc. SPIE 7464(7464), 9–15 (2009).

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Turbulence modeling for non-line-of-sight ultraviolet scattering channels,” Atmospheric Propagation VIII420–428 (SPIE, 2011).

Drost, R. J.

R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29(8), 84–96 (2014).
[Crossref]

Farid, A. A.

Heidarpour, A. R.

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Performance analysis of relay-assisted NLOS ultraviolet communications over turbulence channels,” J. Opt. Netw. 9(1), 109–118 (2017).
[Crossref]

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Non-line-of-sight ultraviolet communications over atmospheric turbulence channels,” International Workshop on Optical Wireless Communications55–59 (IEEE, 2015).

Houfei, X.

Z. Yong, W. Jian, X. Houfei, and L. Jintong, “Non-line-of-sight ultraviolet communication performance in atmospheric turbulence,” Chin. Commun. 10(11), 52–57 (2013).
[Crossref]

Hranilovic, S.

Huagang, X.

G. Ke, G. Qiang, F. Li, and X. Huagang, “Relay selection in cooperative communication systems over continuous time-varying fading channel,” Chin. J. Aero. 1(9), 754–762 (2016).

Jian, W.

Z. Yong, W. Jian, X. Houfei, and L. Jintong, “Non-line-of-sight ultraviolet communication performance in atmospheric turbulence,” Chin. Commun. 10(11), 52–57 (2013).
[Crossref]

Jintong, L.

Z. Yong, W. Jian, X. Houfei, and L. Jintong, “Non-line-of-sight ultraviolet communication performance in atmospheric turbulence,” Chin. Commun. 10(11), 52–57 (2013).
[Crossref]

Karagiannidis, G. K.

N. D. Chatzidiamantis, D. S. Michalopoulos, E. E. Kriezis, G. K. Karagiannidis, and R. Schober, “Relay selection protocols for relay assisted free-space optical systems,” J. Opt. Netw. 5(1), 92–103 (2013).
[Crossref]

Kashani, M. A.

M. A. Kashani, M. Safari, and M. Uysal, “Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems,” J. Opt. Netw. 5(1), 37–47 (2013).
[Crossref]

Ke, G.

G. Ke, G. Qiang, F. Li, and X. Huagang, “Relay selection in cooperative communication systems over continuous time-varying fading channel,” Chin. J. Aero. 1(9), 754–762 (2016).

Kriezis, E. E.

N. D. Chatzidiamantis, D. S. Michalopoulos, E. E. Kriezis, G. K. Karagiannidis, and R. Schober, “Relay selection protocols for relay assisted free-space optical systems,” J. Opt. Netw. 5(1), 92–103 (2013).
[Crossref]

Lee, E. J.

E. J. Lee and V. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

Li, F.

G. Ke, G. Qiang, F. Li, and X. Huagang, “Relay selection in cooperative communication systems over continuous time-varying fading channel,” Chin. J. Aero. 1(9), 754–762 (2016).

Linchao, L.

L. Linchao, Long distance non-line-of-sight ultraviolet communication channel analysis and experimental verification, (Ph.D. dissertation, UC Riverside Electronic Thesis and Dissertations, 2015), Chap. (2).

Ma,

R. Yuan, J. Ma, Review of ultraviolet non-line-of sight communication, (School of Tsinghua University, 2016) Chap. (1).

Majumdarb, A. K.

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Non-line-of-sight ultraviolet communication channel characterization modeling and validation,” Proc. SPIE 7464(7464), 9–15 (2009).

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Turbulence modeling for non-line-of-sight ultraviolet scattering channels,” Atmospheric Propagation VIII420–428 (SPIE, 2011).

Mansour, A.

M. Abaza, R. Mesleh, A. Mansour, and E. Aggoune, “Performance analysis of space-shift keying over negative-exponential and log-normal FSO channels,” Chin. Opt. Lett. 13(5), 051001 (2015).

M. Abaza, R. Mesleh, A. Mansour, and e. H. M. Aggoune, “Relay selection for full-duplex FSO relays over turbulent channels,” Signal Processing and Information Technology978–982 (IEEE, 2016).

Mesleh, R.

M. Abaza, R. Mesleh, A. Mansour, and E. Aggoune, “Performance analysis of space-shift keying over negative-exponential and log-normal FSO channels,” Chin. Opt. Lett. 13(5), 051001 (2015).

M. Abaza, R. Mesleh, A. Mansour, and e. H. M. Aggoune, “Relay selection for full-duplex FSO relays over turbulent channels,” Signal Processing and Information Technology978–982 (IEEE, 2016).

Michalopoulos, D. S.

N. D. Chatzidiamantis, D. S. Michalopoulos, E. E. Kriezis, G. K. Karagiannidis, and R. Schober, “Relay selection protocols for relay assisted free-space optical systems,” J. Opt. Netw. 5(1), 92–103 (2013).
[Crossref]

Odabasioglu, N.

Y. Celik and N. Odabasioglu, “On relay selection for cooperative free-space optical communication,” Networks and Optical Communications (NOC)1–5 (IEEE, 2012).

Y. Celik and N. Odabasioglu, “On relay selection for cooperative free-space optical communication,” Networks and Optical Communications (NOC)1–5 (IEEE, 2012).

Popoola, W. O.

W. O. Popoola, Subcarrier intensity modulated free-space optical communication systems, (Ph.D. Thesis University of Northumbria at Newcastle, 2009), Chap. (4).

Qiang, G.

G. Ke, G. Qiang, F. Li, and X. Huagang, “Relay selection in cooperative communication systems over continuous time-varying fading channel,” Chin. J. Aero. 1(9), 754–762 (2016).

Reilly, D. M.

D. M. Reilly and C. Warde, “Temporal characteristics of single scatter radiation,” J. Opt. Soc. Am. A 19(3), 464–470 (1979).
[Crossref]

D. M. Reilly, Atmospheric optical communication in the middle ultaviolet, (M.S.Thesis MITCambridge, 1976), Chap. (3).

Sadler, B. M.

Sadlerc, B. M.

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Non-line-of-sight ultraviolet communication channel characterization modeling and validation,” Proc. SPIE 7464(7464), 9–15 (2009).

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Turbulence modeling for non-line-of-sight ultraviolet scattering channels,” Atmospheric Propagation VIII420–428 (SPIE, 2011).

Safari, M.

M. A. Kashani, M. Safari, and M. Uysal, “Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems,” J. Opt. Netw. 5(1), 37–47 (2013).
[Crossref]

M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. on Wireless Commun. 7(12), 5441–5449 (2008).
[Crossref]

Schober, R.

N. D. Chatzidiamantis, D. S. Michalopoulos, E. E. Kriezis, G. K. Karagiannidis, and R. Schober, “Relay selection protocols for relay assisted free-space optical systems,” J. Opt. Netw. 5(1), 92–103 (2013).
[Crossref]

Uysal, M.

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Performance analysis of relay-assisted NLOS ultraviolet communications over turbulence channels,” J. Opt. Netw. 9(1), 109–118 (2017).
[Crossref]

S. M. Aghajanzadeh and M. Uysal, “Performance analysis of parallel relaying in free-space optical systems,” IEEE Trans. on Commun. 63(9), 4314–4326 (2015).
[Crossref]

M. A. Kashani, M. Safari, and M. Uysal, “Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems,” J. Opt. Netw. 5(1), 37–47 (2013).
[Crossref]

M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. on Wireless Commun. 7(12), 5441–5449 (2008).
[Crossref]

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Non-line-of-sight ultraviolet communications over atmospheric turbulence channels,” International Workshop on Optical Wireless Communications55–59 (IEEE, 2015).

Warde, C.

D. M. Reilly and C. Warde, “Temporal characteristics of single scatter radiation,” J. Opt. Soc. Am. A 19(3), 464–470 (1979).
[Crossref]

Xu, Z.

Xua, Z.

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Non-line-of-sight ultraviolet communication channel characterization modeling and validation,” Proc. SPIE 7464(7464), 9–15 (2009).

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Turbulence modeling for non-line-of-sight ultraviolet scattering channels,” Atmospheric Propagation VIII420–428 (SPIE, 2011).

Yong, Z.

Z. Yong, W. Jian, X. Houfei, and L. Jintong, “Non-line-of-sight ultraviolet communication performance in atmospheric turbulence,” Chin. Commun. 10(11), 52–57 (2013).
[Crossref]

Yuan, R.

R. Yuan, J. Ma, Review of ultraviolet non-line-of sight communication, (School of Tsinghua University, 2016) Chap. (1).

Zedini, E.

E. Zedini and M.S. Alouini, “On the performance of multihop heterodyne FSO systems with pointing errors,” IEEE Photo. J. 7(2), 34–44 (2015).

Chin. Commun. (1)

Z. Yong, W. Jian, X. Houfei, and L. Jintong, “Non-line-of-sight ultraviolet communication performance in atmospheric turbulence,” Chin. Commun. 10(11), 52–57 (2013).
[Crossref]

Chin. J. Aero. (1)

G. Ke, G. Qiang, F. Li, and X. Huagang, “Relay selection in cooperative communication systems over continuous time-varying fading channel,” Chin. J. Aero. 1(9), 754–762 (2016).

Chin. Opt. Lett. (1)

IEEE J. Sel. Areas Commun. (1)

E. J. Lee and V. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

IEEE Photo. J. (1)

E. Zedini and M.S. Alouini, “On the performance of multihop heterodyne FSO systems with pointing errors,” IEEE Photo. J. 7(2), 34–44 (2015).

IEEE Trans. on Commun. (1)

S. M. Aghajanzadeh and M. Uysal, “Performance analysis of parallel relaying in free-space optical systems,” IEEE Trans. on Commun. 63(9), 4314–4326 (2015).
[Crossref]

IEEE Trans. on Wireless Commun. (1)

M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. on Wireless Commun. 7(12), 5441–5449 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Netw. (3)

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Performance analysis of relay-assisted NLOS ultraviolet communications over turbulence channels,” J. Opt. Netw. 9(1), 109–118 (2017).
[Crossref]

M. A. Kashani, M. Safari, and M. Uysal, “Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems,” J. Opt. Netw. 5(1), 37–47 (2013).
[Crossref]

N. D. Chatzidiamantis, D. S. Michalopoulos, E. E. Kriezis, G. K. Karagiannidis, and R. Schober, “Relay selection protocols for relay assisted free-space optical systems,” J. Opt. Netw. 5(1), 92–103 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

D. M. Reilly and C. Warde, “Temporal characteristics of single scatter radiation,” J. Opt. Soc. Am. A 19(3), 464–470 (1979).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Non-line-of-sight ultraviolet communication channel characterization modeling and validation,” Proc. SPIE 7464(7464), 9–15 (2009).

Semicond. Sci. Technol. (1)

R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29(8), 84–96 (2014).
[Crossref]

Other (10)

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Non-line-of-sight ultraviolet communications over atmospheric turbulence channels,” International Workshop on Optical Wireless Communications55–59 (IEEE, 2015).

D. M. Reilly, Atmospheric optical communication in the middle ultaviolet, (M.S.Thesis MITCambridge, 1976), Chap. (3).

R. Yuan, J. Ma, Review of ultraviolet non-line-of sight communication, (School of Tsinghua University, 2016) Chap. (1).

L. Linchao, Long distance non-line-of-sight ultraviolet communication channel analysis and experimental verification, (Ph.D. dissertation, UC Riverside Electronic Thesis and Dissertations, 2015), Chap. (2).

H. Dinga, G. Chena, A. K. Majumdarb, B. M. Sadlerc, and Z. Xua, “Turbulence modeling for non-line-of-sight ultraviolet scattering channels,” Atmospheric Propagation VIII420–428 (SPIE, 2011).

Z. X. G. Chen, Performance limits of non-line-of-sight UV communications, (U.S. Army Research Office, 2012), Chap. (3).
[Crossref]

M. Abaza, R. Mesleh, A. Mansour, and e. H. M. Aggoune, “Relay selection for full-duplex FSO relays over turbulent channels,” Signal Processing and Information Technology978–982 (IEEE, 2016).

W. O. Popoola, Subcarrier intensity modulated free-space optical communication systems, (Ph.D. Thesis University of Northumbria at Newcastle, 2009), Chap. (4).

Y. Celik and N. Odabasioglu, “On relay selection for cooperative free-space optical communication,” Networks and Optical Communications (NOC)1–5 (IEEE, 2012).

Y. Celik and N. Odabasioglu, “On relay selection for cooperative free-space optical communication,” Networks and Optical Communications (NOC)1–5 (IEEE, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Synoptic diagram of the proposed model.
Fig. 2
Fig. 2 One link model for NLOS ultraviolet channel.
Fig. 3
Fig. 3 Outage probability of cooperative relays UV system for different numbers of relays at β′ = 70°.
Fig. 4
Fig. 4 Outage probability of cooperative relays UV system for different numbers of relays at β′ = 30°.
Fig. 5
Fig. 5 Relation between receiver FOV angle and required power at outage probability 10−6 and β′ = 30°.
Fig. 6
Fig. 6 Comparison between serial and cooperative best relays for different numbers of relays at β′ = 70°.
Fig. 7
Fig. 7 Comparison between serial and cooperative best relays for different numbers of relays at β′ = 30°.
Fig. 8
Fig. 8 Comparison between all-active and cooperative best relays for different numbers of relays at β′ = 70°.
Fig. 9
Fig. 9 Comparison between all-active and cooperative best relays for different numbers of relays at β′ = 30°.
Fig. 10
Fig. 10 Outage probability versus required power for different types of atmospheric models (tenuous and thick).
Fig. 11
Fig. 11 Relation between nodes elevation angle β′ and outage probability for different numbers of relays N=0, 1, 2, 3, 4.

Tables (2)

Tables Icon

Table 1 Various Types of Atmosphere Model Parameters [24].

Tables Icon

Table 2 System Configuration [5, 25].

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

j = max i 1 : N ( min ( h SR i , h R i D ) )
d t x m , m + 1 = d m , m + 1 sin ( β R m + 1 ) sin ( θ S m , m + 1 )
d m , m + 1 r x = d m , m + 1 sin ( β t m ) sin ( θ S m , m + 1 )
V m = ( π 3 ) ( D 2 m , 1 h m , 1 D 2 m , 2 h m , 2 )
h m , 1 = d t x m , m + 1 + d r x m , m + 1 θ R m + 1 / 2 .
h m , 2 = d t x m , m + 1 d r x m , m + 1 θ R m + 1 / 2
α = 2 ( 23.17 C n 2 k 7 / 6 ) ( ( d t x m , m + 1 ) 11 / 6 + ( d r x m , m + 1 ) 11 / 6 ) .
( d s m , m + 1 ) = k s Ψ ( θ S m , m + 1 ) A R V m ( 1 cos ( θ T m / 2 ) ) exp ( k e ( d t x m , m + 1 + d r x m , m + 1 ) ) 2 π ( d t x m , m + 1 d r x m , m + 1 ) 2
P ( u ) = K s Ray K s P Ray ( u ) + K s Mie K s P Mie ( u )
P Ray ( u ) = 3 ( 1 + 3 γ + ( 1 γ ) u 2 ) 16 π ( 1 + 2 γ )
P Mie ( u ) = 1 g 2 4 π ( 1 ( 1 + g 2 2 g u ) 3 / 2 + 0.5 f ( 3 u 2 1 ) ( 1 + g 2 ) 3 / 2 )
σ i 2 = 1 . 23 C n 2 k 7 / 6 d 11 / 6 ( sin β R m ) 11 / 6 ( sin β t m ) 11 / 6 ( sin θ s ) 11 / 6
γ m , m + 1 = ( RT P T α m , m + 1 ( d m , m + 1 ) ) 2 N o .
γ i = γ SR i γ R i D 1 + γ SR i + γ R i D
P out m , m + 1 = Pr ( γ m , m + 1 < γ t h ) = Pr ( α m , m + 1 < ( M + 1 ) P t h L m , m + 1 P T ) .
P out = 1 m = 0 M ( 1 Q ( ln ( L m , m + 1 P M / ( M + 1 ) ) + μ NLOS m , m + 1 σ NLOS m , m + 1 ) ) .
P out = ( 1 m = 0 1 ( 1 Q ( ln ( L m , m + 1 P M / ( 2 ) ) + μ NLOS m , m + 1 σ NLOS m , m + 1 ) ) ) N .
P out = 2 N i = 1 [ m S ( i ) ( 1 z ) × m S ( i ) z ] Q ( ln ( P M exp ( μ ξ ) 2 N ) σ ξ ( d S ( i ) ) ) .
z = Q ( ln ( L m , m + 1 P M / ( 2 N ) ) + μ NLOS m , m + 1 σ NLOS m , m + 1 )
σ ξ 2 = ln ( 1 + i D L i , N + 1 2 ( exp ( σ NLOS m , m + 1 2 ) 1 ) ( i D L i , N + 1 ) 2 ) .
μ ξ = ln i D L i , N + 1 σ ξ 2 / 2

Metrics