Abstract

A broadband vertical liquid controlled optical waveguide coupler (LCC) is demonstrated. The fabricated vertical LCC with silicon nitride (SiN) waveguides can switch light between 2 stacked photonic circuit layers with zero energy consumption in a steady switch state. In combination with low-loss interlayer waveguide crossovers they enable large scale non-volatile switch circuits with low loss. The fabricated vertical LCC has a loss less than 2.0 dB in bar state and less than 2.6 dB in cross state over the telecommunication wavelength range 1260 nm to 1630 nm. Interlayer waveguide crossovers with the same interlayer oxide thickness as the LCC have a loss less than 0.06 dB over the same wavelength range. The crosstalk of the LCC is less than −21 dB over the wavelength range 1500 nm to 1630 nm for both bar and cross state.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers

Tae Joon Seok, Niels Quack, Sangyoon Han, Richard S. Muller, and Ming C. Wu
Optica 3(1) 64-70 (2016)

Silicon photonic microelectromechanical switch using lateral adiabatic waveguide couplers

Takumi Nagai and Kazuhiro Hane
Opt. Express 26(26) 33906-33917 (2018)

Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions

Wesley D. Sacher, Jared C. Mikkelsen, Patrick Dumais, Jia Jiang, Dominic Goodwill, Xianshu Luo, Ying Huang, Yisu Yang, Antoine Bois, Patrick Guo-Qiang Lo, Eric Bernier, and Joyce K. S. Poon
Opt. Express 25(25) 30862-30875 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Tanizawa, K. Suzuki, K. Ikeda, S. Namiki, and H. Kawashima, “Non-duplicate polarization-diversity 8 × 8 Si-wire PILOSS switch integrated with polarization splitter-rotators,” Opt. Express 25(10), 10885–10892 (2017).
    [Crossref] [PubMed]
  2. J. Chiles, S. Buckley, N. Nader, S. Woo Nam, R. P. Mirin, and J. M. Shainline, “Multi-planar amorphous silicon photonics with compact interplanar couplers,” APL Photonics 2(11), 116101 (2017).
    [Crossref]
  3. K. Shang, S. Pathak, B. Guan, G. Liu, and S. J. B. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express,  23(16), 21334–21342 (2015).
    [Crossref] [PubMed]
  4. W. D. Sacher, Y. Huang, G. Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33(4), 901–910 (2015).
    [Crossref]
  5. D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
    [Crossref]
  6. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36(10), 1824–1830 (2018).
    [Crossref]
  7. S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.
  8. H. D’heer, C. Lerma Arce, S. Vandewiele, J. Watté, K. Huybrechts, R. Baets, and D. Van Thourhout, “Nonvolatile liquid controlled adiabatic silicon photonics switch,” J. Lightwave Technol. 35(14), 2948–2954 (2017).
    [Crossref]
  9. H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.
  10. H. Ishikawa, “Fully adiabatic design of waveguide branches,” J. Lightwave Technol.,  25(7), 1832–1840 (2007).
    [Crossref]
  11. W. Xie, Y. Zhu, T. Aubert, S. Verstuyft, Z. Hens, and D. Van Thourhout, “Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots,” Opt. Express 23(9), 12152–12160 (2015).
    [Crossref] [PubMed]
  12. Cargille Laboratories, Inc., www.cargille.com .
  13. H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
    [Crossref] [PubMed]

2018 (2)

H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
[Crossref] [PubMed]

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36(10), 1824–1830 (2018).
[Crossref]

2017 (3)

2015 (3)

2012 (1)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

2007 (1)

Aubert, T.

Baets, R.

Barton, J. S.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Bauters, J. F.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Blumenthal, D. J.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Bowers, J. E.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Buckley, S.

J. Chiles, S. Buckley, N. Nader, S. Woo Nam, R. P. Mirin, and J. M. Shainline, “Multi-planar amorphous silicon photonics with compact interplanar couplers,” APL Photonics 2(11), 116101 (2017).
[Crossref]

Chiles, J.

J. Chiles, S. Buckley, N. Nader, S. Woo Nam, R. P. Mirin, and J. M. Shainline, “Multi-planar amorphous silicon photonics with compact interplanar couplers,” APL Photonics 2(11), 116101 (2017).
[Crossref]

Claes, R.

S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.

Clemmen, S.

H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.

D’heer, H.

H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
[Crossref] [PubMed]

H. D’heer, C. Lerma Arce, S. Vandewiele, J. Watté, K. Huybrechts, R. Baets, and D. Van Thourhout, “Nonvolatile liquid controlled adiabatic silicon photonics switch,” J. Lightwave Technol. 35(14), 2948–2954 (2017).
[Crossref]

S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.

H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.

Detalle, M.

H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
[Crossref] [PubMed]

Endrödy, C.

S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.

Guan, B.

Günther, S.

S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.

Han, S.

Heck, M. J. R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Hens, Z.

Hoffmann, M.

S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.

Huang, Y.

Huybrechts, K.

Ikeda, K.

Ishikawa, H.

John, D. D.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Justo, Y.

S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.

Kawashima, H.

Lenci, S.

H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.

Lepage, G.

H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
[Crossref] [PubMed]

Lerma Arce, C.

H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
[Crossref] [PubMed]

H. D’heer, C. Lerma Arce, S. Vandewiele, J. Watté, K. Huybrechts, R. Baets, and D. Van Thourhout, “Nonvolatile liquid controlled adiabatic silicon photonics switch,” J. Lightwave Technol. 35(14), 2948–2954 (2017).
[Crossref]

H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.

Liu, G.

Lo, G. Q.

Mirin, R. P.

J. Chiles, S. Buckley, N. Nader, S. Woo Nam, R. P. Mirin, and J. M. Shainline, “Multi-planar amorphous silicon photonics with compact interplanar couplers,” APL Photonics 2(11), 116101 (2017).
[Crossref]

Moreira, R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Muller, R. S.

Nader, N.

J. Chiles, S. Buckley, N. Nader, S. Woo Nam, R. P. Mirin, and J. M. Shainline, “Multi-planar amorphous silicon photonics with compact interplanar couplers,” APL Photonics 2(11), 116101 (2017).
[Crossref]

Namiki, S.

Neft, A.

S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.

Pathak, S.

Poon, J. K. S.

Quack, N.

Sacher, W. D.

Saurav, K.

H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
[Crossref] [PubMed]

H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.

Seok, T. J.

Shainline, J. M.

J. Chiles, S. Buckley, N. Nader, S. Woo Nam, R. P. Mirin, and J. M. Shainline, “Multi-planar amorphous silicon photonics with compact interplanar couplers,” APL Photonics 2(11), 116101 (2017).
[Crossref]

Shang, K.

Si, S.

S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.

Stassen, A.

H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.

Suzuki, K.

Tanizawa, K.

Tuccio, S.

H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.

Van Thourhout, D.

H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
[Crossref] [PubMed]

H. D’heer, C. Lerma Arce, S. Vandewiele, J. Watté, K. Huybrechts, R. Baets, and D. Van Thourhout, “Nonvolatile liquid controlled adiabatic silicon photonics switch,” J. Lightwave Technol. 35(14), 2948–2954 (2017).
[Crossref]

W. Xie, Y. Zhu, T. Aubert, S. Verstuyft, Z. Hens, and D. Van Thourhout, “Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots,” Opt. Express 23(9), 12152–12160 (2015).
[Crossref] [PubMed]

H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.

Vandewiele, S.

Verheyen, P.

H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
[Crossref] [PubMed]

Verstuyft, S.

Watté, J.

H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
[Crossref] [PubMed]

H. D’heer, C. Lerma Arce, S. Vandewiele, J. Watté, K. Huybrechts, R. Baets, and D. Van Thourhout, “Nonvolatile liquid controlled adiabatic silicon photonics switch,” J. Lightwave Technol. 35(14), 2948–2954 (2017).
[Crossref]

H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.

Weinberger, S.

S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.

Woo Nam, S.

J. Chiles, S. Buckley, N. Nader, S. Woo Nam, R. P. Mirin, and J. M. Shainline, “Multi-planar amorphous silicon photonics with compact interplanar couplers,” APL Photonics 2(11), 116101 (2017).
[Crossref]

Wu, M. C.

Xie, W.

Yoo, S. J. B.

Yu, K.

Zhu, Y.

APL Photonics (1)

J. Chiles, S. Buckley, N. Nader, S. Woo Nam, R. P. Mirin, and J. M. Shainline, “Multi-planar amorphous silicon photonics with compact interplanar couplers,” APL Photonics 2(11), 116101 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (2)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

H. D’heer, K. Saurav, C. Lerma Arce, M. Detalle, G. Lepage, P. Verheyen, J. Watté, and D. Van Thourhout, “A 16 × 16 Non-Volatile Silicon Photonic Switch Circuit,” IEEE Photon. Technol. Lett. 30(13), 1258–1261 (2018).
[Crossref] [PubMed]

J. Lightwave Technol. (4)

Opt. Express (3)

Other (3)

Cargille Laboratories, Inc., www.cargille.com .

H. D’heer, K. Saurav, C. Lerma Arce, S. Tuccio, S. Clemmen, S. Lenci, A. Stassen, J. Watté, and D. Van Thourhout, “Broadband and temperature tolerant silicon nitride liquid controlled waveguide coupler,” submitted to” J. Lightwave Technol.

S. Günther, C. Endrödy, S. Si, S. Weinberger, R. Claes, Y. Justo, H. D’heer, A. Neft, and M. Hoffmann, “EWOD system designed for optical switching,” in Proceedings of IEEE 30th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2017), 1329–1332.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of an LCC with (a) a cross section at the center and (b) a top view.
Fig. 2
Fig. 2 Simulated transmission of a 900 µm long vertical LCC in (a) bar state (with low refractive index on top of waveguide) and (b) cross state (with high refractive index on top of waveguide) for different interlayer oxide thicknesses.
Fig. 3
Fig. 3 Optical microscope images of vertical LCCs with indication of the first and second waveguide layer. The apparent width difference between layer 1 and layer 2 waveguides is mostly an artefact from the microscopy.
Fig. 4
Fig. 4 Fabrication process flow of the vertical LCC; (a) oxidized Si wafer, (b) SiN deposition and patterning, (c) SiO2 deposition, (d) CMP, (e) SiO2 deposition, (f) SiN deposition and patterning.
Fig. 5
Fig. 5 Measured transmission of a 900 µm long vertical LCC in (a) bar and (b) cross state. The inset shows the port numbers for the upper and lower waveguide. The transmission spectra taken from input ports L1 (lower waveguide level) and L2 (higher waveguide level) are shown in green and red, respectively.
Fig. 6
Fig. 6 Measured transmission of a SiN waveguide crossover in (a) 2 waveguide layers and (b) 1 waveguide layer.

Metrics