Abstract

We proposed a novel torsion sensor based on inter-core mode coupling in seven-core fiber (SCF). The torsion sensor is fabricated by tapering a commercially available SCF spliced with two single mode fibers. Waist diameter and length of the taper structure were experimentally optimized to achieve good transmission spectrum. Based on this structure, the torsion measurement was conducted, and the experimental results demonstrated that the transmission spectrum shows a red shift with the fiber twist. The torsion sensitivity increases with the twisting angle, which can achieve as high as 1.00 nm/°. The direction of wavelength shift was observed to be opposite when twisting the tapered SCF in clockwise and counter-clockwise direction, demonstrating its capability to discriminate the rotation orientation. Moreover, all the measurements were repeated in attempts to confirm its stable performance as well as high accuracy. Mode coupling dynamics and theory of optical anisotropy in twisted fiber are adopted to discuss the sensitivity performance, which agrees well with experimental results. The novel torsion sensor could provide a promising candidate for the applications requiring accurate rotation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Directional torsion and temperature discrimination based on a multicore fiber with a helical structure

Hailiang Zhang, Zhifang Wu, Perry Ping Shum, Xuguang Shao, Ruoxu Wang, Xuan Quyen Dinh, Songnian Fu, Weijun Tong, and Ming Tang
Opt. Express 26(1) 544-551 (2018)

Long period fiber grating based on periodically screw-type distortions for torsion sensing

Mi Deng, Jinshan Xu, Zhe Zhang, Zhiyong Bai, Shen Liu, Ying Wang, Yan Zhang, Changrui Liao, Wei Jin, Gangding Peng, and Yiping Wang
Opt. Express 25(13) 14308-14316 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, Torsion, and Force Sensing in Continuum Robots Using Helically Wrapped FBG Sensors,” IEEE Robotics and Automation Letters 1(2), 1052–1059 (2016).
  2. M. Kristensen, L. Nielsen, and L. Glavind, “A Multicore Fiber Sensor for Monitoring Twists of Wind Turbine Parts,” In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper BM5B–6.
  3. X. Dong, Z. Xie, Y. Song, K. Yin, Z. Luo, J. Duan, and C. Wang, “Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses,” Opt. Laser Technol. 97(2), 248–253 (2017).
  4. B. Huang and X. Shu, “Highly sensitive torsion sensor with femtosecond laser-induced low birefringence single-mode fiber based Sagnac interferometer,” Opt. Express 26(4), 4563–4571 (2018).
  5. H. Zhang, Z. Wu, P. P. Shum, X. Shao, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Directional torsion and temperature discrimination based on a multicore fiber with a helical structure,” Opt. Express 26(1), 544–551 (2018).
  6. T. Kobayashi, M. Nakamura, F. Hamaoka, K. Shibahara, T. Mizuno, A. Sano, H. Kawakami, A. Isoda, M. Nagatani, H. Yamazaki, Y. Miyamoto, Y. Amma, Y. Sasaki, K. Takenaga, K. Aikawa, K. Saitoh, and Y. Jung. D. J. Richarson, K. Pulverer, M. Bohn, M. Nooruzzaman, and T. Morioka, “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band Dense SDM Transmission over 205.6-km Single-mode Heterogeneous Multi-core Fiber using 96-Gbaud PDM-16QAM Channels”, in Optical Fiber Communication Conference, 2017 OSA Technical Digest Series (Optical Society of America, 2017), paper Th5B.1.
  7. K. Shibahara, T. Mizuno, L. Doowhan, Y. Miyamoto, H. Ono, and K. Nakajima, “DMD-Unmanaged Long-Haul SDM Transmission Over Employing Intermodal Interference Cancelling Technique,” in Optical Fiber Communication Conference, Vol.1 of 2017 OSA Technical Digest Series (Optical Society of America, 2017), paper Th4C.6.
  8. K. Pulverer, et al., “First Demonstration of Single-Mode MCF Transport Network with Crosstalk-Aware In-Service Optical Channel Control,” in European Conference and Exhibition on Optical Communication, pp. 1–3, September 2017.
  9. E. Burrows, N. K. Fontaine, and H. Chen, “Long-Distance Transmission over Coupled-Core Multicore Fiber,” in European Conference and Exhibition on Optical Communication, pp. 40–42, 2016.
  10. T. Sakamoto, et al., “High Spatial Density Six-mode Seven-core Fibre for Repeated Dense SDM Transmission,” in European Conference and Exhibition on Optical Communication, pp. 1–3, September 2017.
  11. J. M. D. Mendinueta, et al., “Experimental Demonstration of a 53 Tb/s Coherent SDM-TDM Add/Drop/Through Optical Network with Time-division Spatial Super-channels and High-speed Joint Switching System,” in European Conference and Exhibition on Optical Communication, pp. 1–3, September 2017.
  12. A. S. Kurkov, S. A. Babin, I. A. Lobach, and S. I. Kablukov, “Mechanism of the mode coupling in multi-core fiber lasers,” Opt. Letters 33(1), 61–63 (2008).
  13. Y. Huo, G. G. King, and P. K. Cheo, “Second Harmonic Generation using a High-Energy and Tunable Q-switched Multicore Fiber Laser,” IEEE Photonics Technol. Lett. 16(10), 2224–2226 (2004).
  14. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
  15. J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
  16. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
  17. P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous Multicore Optical Fiber Grating Arrays for Distributed Sensing Applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
  18. M. S. Yoon, S. B. Lee, and Y. G. Han, “In-line interferometer based on intermodal coupling of a multicore fiber,” Opt. Express 23(14), 18316–18322 (2015).
  19. F. Y. M. Chan, A. P. T. Lau, and H.-Y. Tam, “Mode coupling dynamics and communication strategies for multi-core fiber systems,” Opt. Express 20(4), 4548–4563 (2012).
  20. J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).
  21. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
  22. S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors, Second Edition, (CRC Press, 2008).
  23. W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
  24. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).

2018 (2)

2017 (3)

X. Dong, Z. Xie, Y. Song, K. Yin, Z. Luo, J. Duan, and C. Wang, “Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses,” Opt. Laser Technol. 97(2), 248–253 (2017).

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).

P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous Multicore Optical Fiber Grating Arrays for Distributed Sensing Applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).

2016 (1)

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, Torsion, and Force Sensing in Continuum Robots Using Helically Wrapped FBG Sensors,” IEEE Robotics and Automation Letters 1(2), 1052–1059 (2016).

2015 (1)

2014 (1)

2013 (1)

2012 (3)

2010 (1)

2008 (1)

A. S. Kurkov, S. A. Babin, I. A. Lobach, and S. I. Kablukov, “Mechanism of the mode coupling in multi-core fiber lasers,” Opt. Letters 33(1), 61–63 (2008).

2004 (1)

Y. Huo, G. G. King, and P. K. Cheo, “Second Harmonic Generation using a High-Energy and Tunable Q-switched Multicore Fiber Laser,” IEEE Photonics Technol. Lett. 16(10), 2224–2226 (2004).

1997 (1)

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).

Amezcua-Correa, R.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).

Antonio-Lopez, E.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).

Antonio-Lopez, J. E.

Arrizabalaga, O.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).

Arrue, J.

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).

Babin, S. A.

A. S. Kurkov, S. A. Babin, I. A. Lobach, and S. I. Kablukov, “Mechanism of the mode coupling in multi-core fiber lasers,” Opt. Letters 33(1), 61–63 (2008).

Burrows, E.

E. Burrows, N. K. Fontaine, and H. Chen, “Long-Distance Transmission over Coupled-Core Multicore Fiber,” in European Conference and Exhibition on Optical Communication, pp. 40–42, 2016.

Chan, F. Y. M.

Chen, H.

E. Burrows, N. K. Fontaine, and H. Chen, “Long-Distance Transmission over Coupled-Core Multicore Fiber,” in European Conference and Exhibition on Optical Communication, pp. 40–42, 2016.

Cheo, P. K.

Y. Huo, G. G. King, and P. K. Cheo, “Second Harmonic Generation using a High-Energy and Tunable Q-switched Multicore Fiber Laser,” IEEE Photonics Technol. Lett. 16(10), 2224–2226 (2004).

Dinh, X. Q.

Dong, X.

X. Dong, Z. Xie, Y. Song, K. Yin, Z. Luo, J. Duan, and C. Wang, “Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses,” Opt. Laser Technol. 97(2), 248–253 (2017).

Duan, J.

X. Dong, Z. Xie, Y. Song, K. Yin, Z. Luo, J. Duan, and C. Wang, “Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses,” Opt. Laser Technol. 97(2), 248–253 (2017).

Durana, G.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).

Eznaveh, Z. S.

Feder, K. S.

Fontaine, N. K.

E. Burrows, N. K. Fontaine, and H. Chen, “Long-Distance Transmission over Coupled-Core Multicore Fiber,” in European Conference and Exhibition on Optical Communication, pp. 40–42, 2016.

Frazão, O.

Fu, S.

Han, Y. G.

Huang, B.

Huang, X.

Huo, Y.

Y. Huo, G. G. King, and P. K. Cheo, “Second Harmonic Generation using a High-Energy and Tunable Q-switched Multicore Fiber Laser,” IEEE Photonics Technol. Lett. 16(10), 2224–2226 (2004).

Kablukov, S. I.

A. S. Kurkov, S. A. Babin, I. A. Lobach, and S. I. Kablukov, “Mechanism of the mode coupling in multi-core fiber lasers,” Opt. Letters 33(1), 61–63 (2008).

King, G. G.

Y. Huo, G. G. King, and P. K. Cheo, “Second Harmonic Generation using a High-Energy and Tunable Q-switched Multicore Fiber Laser,” IEEE Photonics Technol. Lett. 16(10), 2224–2226 (2004).

Ko, W.

Kobelke, J.

Koshiba, M.

Kremp, T.

Kurkov, A. S.

A. S. Kurkov, S. A. Babin, I. A. Lobach, and S. I. Kablukov, “Mechanism of the mode coupling in multi-core fiber lasers,” Opt. Letters 33(1), 61–63 (2008).

Lau, A. P. T.

Lee, S. B.

LiKamWa, P.

Lobach, I. A.

A. S. Kurkov, S. A. Babin, I. A. Lobach, and S. I. Kablukov, “Mechanism of the mode coupling in multi-core fiber lasers,” Opt. Letters 33(1), 61–63 (2008).

Luo, Z.

X. Dong, Z. Xie, Y. Song, K. Yin, Z. Luo, J. Duan, and C. Wang, “Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses,” Opt. Laser Technol. 97(2), 248–253 (2017).

Matsuo, S.

Mendioroz, A.

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).

Monberg, E. M.

Moore, J. P.

Ortiz, R. M.

Patel, R. V.

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, Torsion, and Force Sensing in Continuum Robots Using Helically Wrapped FBG Sensors,” IEEE Robotics and Automation Letters 1(2), 1052–1059 (2016).

Rogge, M. D.

Sáez de Ocáriz, I.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).

Saitoh, K.

Schülzgen, A.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).

Schuster, K.

Shao, X.

Shu, X.

Shum, P. P.

Silva, R. M.

Simoff, D. A.

Song, Y.

X. Dong, Z. Xie, Y. Song, K. Yin, Z. Luo, J. Duan, and C. Wang, “Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses,” Opt. Laser Technol. 97(2), 248–253 (2017).

Takenaga, K.

Tam, H.-Y.

Tang, M.

Taunay, T. F.

Tong, W.

Tu, J.

Villatoro, J.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).

Wang, C.

X. Dong, Z. Xie, Y. Song, K. Yin, Z. Luo, J. Duan, and C. Wang, “Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses,” Opt. Laser Technol. 97(2), 248–253 (2017).

Wang, M.

Wang, R.

Westbrook, P. S.

Wu, H.

Wu, Z.

Xie, Z.

X. Dong, Z. Xie, Y. Song, K. Yin, Z. Luo, J. Duan, and C. Wang, “Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses,” Opt. Laser Technol. 97(2), 248–253 (2017).

Xu, R.

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, Torsion, and Force Sensing in Continuum Robots Using Helically Wrapped FBG Sensors,” IEEE Robotics and Automation Letters 1(2), 1052–1059 (2016).

Yin, K.

X. Dong, Z. Xie, Y. Song, K. Yin, Z. Luo, J. Duan, and C. Wang, “Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses,” Opt. Laser Technol. 97(2), 248–253 (2017).

Yiping, W.

Yoon, M. S.

Yurkewich, A.

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, Torsion, and Force Sensing in Continuum Robots Using Helically Wrapped FBG Sensors,” IEEE Robotics and Automation Letters 1(2), 1052–1059 (2016).

Zhang, H.

Zubia, J.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).

IEEE Photonics Technol. Lett. (1)

Y. Huo, G. G. King, and P. K. Cheo, “Second Harmonic Generation using a High-Energy and Tunable Q-switched Multicore Fiber Laser,” IEEE Photonics Technol. Lett. 16(10), 2224–2226 (2004).

IEEE Robotics and Automation Letters (1)

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, Torsion, and Force Sensing in Continuum Robots Using Helically Wrapped FBG Sensors,” IEEE Robotics and Automation Letters 1(2), 1052–1059 (2016).

J. Lightwave Technol. (1)

Opt. Express (7)

Opt. Fiber Technol. (1)

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).

Opt. Laser Technol. (1)

X. Dong, Z. Xie, Y. Song, K. Yin, Z. Luo, J. Duan, and C. Wang, “Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses,” Opt. Laser Technol. 97(2), 248–253 (2017).

Opt. Lett. (2)

Opt. Letters (1)

A. S. Kurkov, S. A. Babin, I. A. Lobach, and S. I. Kablukov, “Mechanism of the mode coupling in multi-core fiber lasers,” Opt. Letters 33(1), 61–63 (2008).

Sci. Rep. (1)

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).

Other (8)

S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors, Second Edition, (CRC Press, 2008).

M. Kristensen, L. Nielsen, and L. Glavind, “A Multicore Fiber Sensor for Monitoring Twists of Wind Turbine Parts,” In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper BM5B–6.

T. Kobayashi, M. Nakamura, F. Hamaoka, K. Shibahara, T. Mizuno, A. Sano, H. Kawakami, A. Isoda, M. Nagatani, H. Yamazaki, Y. Miyamoto, Y. Amma, Y. Sasaki, K. Takenaga, K. Aikawa, K. Saitoh, and Y. Jung. D. J. Richarson, K. Pulverer, M. Bohn, M. Nooruzzaman, and T. Morioka, “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band Dense SDM Transmission over 205.6-km Single-mode Heterogeneous Multi-core Fiber using 96-Gbaud PDM-16QAM Channels”, in Optical Fiber Communication Conference, 2017 OSA Technical Digest Series (Optical Society of America, 2017), paper Th5B.1.

K. Shibahara, T. Mizuno, L. Doowhan, Y. Miyamoto, H. Ono, and K. Nakajima, “DMD-Unmanaged Long-Haul SDM Transmission Over Employing Intermodal Interference Cancelling Technique,” in Optical Fiber Communication Conference, Vol.1 of 2017 OSA Technical Digest Series (Optical Society of America, 2017), paper Th4C.6.

K. Pulverer, et al., “First Demonstration of Single-Mode MCF Transport Network with Crosstalk-Aware In-Service Optical Channel Control,” in European Conference and Exhibition on Optical Communication, pp. 1–3, September 2017.

E. Burrows, N. K. Fontaine, and H. Chen, “Long-Distance Transmission over Coupled-Core Multicore Fiber,” in European Conference and Exhibition on Optical Communication, pp. 40–42, 2016.

T. Sakamoto, et al., “High Spatial Density Six-mode Seven-core Fibre for Repeated Dense SDM Transmission,” in European Conference and Exhibition on Optical Communication, pp. 1–3, September 2017.

J. M. D. Mendinueta, et al., “Experimental Demonstration of a 53 Tb/s Coherent SDM-TDM Add/Drop/Through Optical Network with Time-division Spatial Super-channels and High-speed Joint Switching System,” in European Conference and Exhibition on Optical Communication, pp. 1–3, September 2017.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic drawing of the setup to taper the seven-core fiber using CO2 laser.
Fig. 2
Fig. 2 Transmission spectra of the torsion sensors with different (a) waist diameters and (b) waist lengths.
Fig. 3
Fig. 3 Experimental setup to measure the torsion angle based on tapered SCF.
Fig. 4
Fig. 4 Experimental results of the torsion angle measurement, including spectrum shift under twisting angle from 0° to 360° and corresponding wavelength shift.
Fig. 5
Fig. 5 Wavelength shift in transmission spectra when the sensor is rotated at a step of 20° in three measurement ranges with pre-twisting angle of: (a) 160°, (b) 360°, and (c) 560°.
Fig. 6
Fig. 6 Torsion sensitivity of the torsion sensor based on tapered SCF in measurement ranges with different pre-twisting angles.
Fig. 7
Fig. 7 Measured wavelength shifts with respect to the torsion in C.W. and C.C.W. direction using the tapered SCF with a pre-twisting angle of 360°.
Fig. 8
Fig. 8 Torsion measurement results achieved by (a) using three torsion sensors with the same taper dimension, and (b) repeating the torsion measurement using one sensor.

Tables (1)

Tables Icon

Table 1 Comparison between our torsion sensor and other sensors

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I(z)= 1 7 + 6 7 cos 2 ( 7 Cz),
n α = n co +Δqθrμ n cl 3 /2L,
n β = n co Δqθrμ n cl 3 /2L,
I(z)= I α (z)+ I β (z)= 2 7 + 6 7 [ cos 2 ( 7 C α z)+ cos 2 ( 7 C β z)] 6 7 cos[ 7 ( C α + C β )z]+ 8 7 ,
C α,β = k( n α,β 2 n cl 2 ) W 1α,β U 1q L q π a 1q 2 W 1q D exp( W 1q D a 1q ) n α,β n q a 1α,β a 1q V 1α,β V 1q J 1 ( U 1α,β ) J 2 ( U 1q ) 0 a 1α,β J 0 ( U 1α,β r a 1α,β ) I 0 [( W 1q a 1q P 2 P 1 + Y 2 Y 1 Dr )r]exp[ ( P 2 P 1 + Y 2 Y 1 )D Dr ]rdr ,
[ C α ( λ m )+ C β ( λ m )] z =(2m+1)π,
λ m = 2 z 2m+1 ( n α 3/2 + n β 3/2 ),
d λ m dθ = 2 z 2m+1 3 2 ( n α d n α dθ + n β d n β dθ ).
d λ m dθ 3 2 z 2m+1 (Δqrμ n cl 3 2L ) 3/2 θ ,

Metrics