Abstract

A facile method was proposed to enhance the laser damage performance of the fused silica optics by coating a PVA film on the rear surface of the optics. FDTD simulation result suggests that the PVA coating with suitable thickness can transfer the maximal electric field intensity from the rear surface to the interface between the coating and air, and reduce the electric field intensity of the rear surface remarkably. LIDT tests reveal that the LIDT of fused silica with PVA coating changed periodically with respect to the coating thickness, which agrees well with the tendency predicted by FDTD simulation. Finally, PVA coatings with a thickness of 60 nm and 300 nm can both improve the LIDT of AMP-treated fused silica by ~20%, which provide a potential to be applied in high power laser facility.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparisons between laser damage and optical electric field behaviors for hafnia/silica antireflection coatings

John Bellum, Damon Kletecka, Patrick Rambo, Ian Smith, Jens Schwarz, and Briggs Atherton
Appl. Opt. 50(9) C340-C348 (2011)

Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser

Jin Huang, Hongjie Liu, Fengrui Wang, Xin Ye, Laixi Sun, Xiaoyan Zhou, Zhiqing Wu, Xiaodong Jiang, Wanguo Zheng, and Dunlu Sun
Opt. Express 25(26) 33416-33428 (2017)

Capping a glass thin layer on the etched surface via plasma chemical vapor deposition for improving the laser damage performance of fused silica

Changpeng Li, Yuancheng Sun, Xuefu Song, Xiaoqiang Zhang, Zhaohua Shi, Fengrui Wang, Xin Ye, Shufan Chen, Laixi Sun, Jin Huang, Weidong Wu, and Xiaodong Jiang
Opt. Express 27(3) 2268-2280 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Peng, X. Zhang, X. F. Wei, W. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” in 26th European Conference on Laser Interaction with Matter (ECLIM 2000)(SPIE, 2001), p. 6.
    [Crossref]
  2. E. I. Moses, C. Bibeau, R. E. Bonanno, C. A. Haynam, B. J. Macgowan, R. L. Kauffman, R. W. Patterson, and B. M. V. Wonterghem, “The National Ignition Facility: The World’s Largest Laser,” in Ieee/nps Symposium on(2005), pp. 1–4.
    [Crossref]
  3. M. L. Andre, “Status of the LMJ project,” in Solid State Lasers for Application To Inertial Confinement Fusion: Second International Conference(1997), pp. 38–42.
  4. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  5. R. M. Brusasco, B. M. Penetrante, J. E. Peterson, S. M. Maricle, and J. A. Menapace, “UV-laser conditioning for reduction of 351-nm damage initiation in fused silica,” in Boulder Damage (2002).
  6. J. Neauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
    [Crossref]
  7. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
    [Crossref] [PubMed]
  8. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
  9. Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, and Y. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
    [Crossref] [PubMed]
  10. C. Maunier, D. Taroux, J. Neauport, O. Rondeau, R. Catrin, S. Lambert, and P. Cormont, “Contamination of fused silica optics surface after magnetorheological polishing,” in Optical Fabrication and Testing (2014).
  11. Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
    [Crossref]
  12. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
    [Crossref] [PubMed]
  13. M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Laser-Induced Damage in Optical Materials (2009).
  14. X. Jiang, “Influence of subsurface defects on damage performance of fused silica in ultraviolet laser,” Opt. Eng. 52, 4203 (2013).
  15. H. J. Liu, X. D. Zhou, J. Huang, F. R. Wang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica,” Wuli Xuebao 60, 065202 (2011).
  16. N. Bloembergen, “Role of Cracks, Pores, and Absorbing Inclusions on Laser Induced Damage Threshold at Surfaces of Transparent Dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [Crossref] [PubMed]
  17. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
    [Crossref] [PubMed]
  18. J. R. Hua, X. T. Zu, L. Li, X. D. Yuan, W. G. Zheng, and X. D. Jiang, “Numerical simulation of laser-induced damage on the rear surface of optical material,” High Power Laser Particle Beams 21, 919–922 (2009).
  19. G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” in Laser-Induced Damage in Optical Materials (SPIE, 2007), 6720, p. 8.
  20. H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, and M. Mende, “Advanced femtosecond laser coatings raise damage thresholds,” in Optical Systems Design 2015: Advances in Optical Thin Films V,” Proc. SPIE 9627, 6 (2015).
  21. C. J. Stolz, L. M. Sheehan, and M. K. V. Gunter, “Advantages of evaporation of hafnium in a reaction environment for manufacture of high-damage-threshold multilayer coatings by electron-beam deposition,” in Advances in Optical Interference Coatings(International Society for Optics and Photonics, 1999), pp. 318–324.
  22. F. Y. Genin, C. J. Stolz, and M. R. Kozlowski, “Effect of electric field distribution on the morphologies of laser-induced in hafnia-silica multilayer polarizers,” Proc. of SPIE-The International Society for Optical Engineering 2966, 342–352 (1997).
    [Crossref]
  23. M. Zhu, K. Yi, D. Li, X. Liu, H. Qi, and J. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
    [Crossref]
  24. M. Todica, L. Udrescu, and S. Şimon, “Preliminary spectroscopic investigation of some PVA membranes gamma irradiated,” Cent. Eur. J. Phys. 10, 329–334 (2012).
  25. S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, “Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites,” J. Mater. Sci. Mater. Electron. 26(10), 1–7 (2015).
    [Crossref]
  26. K. Nakane, J. Ohashi, and F. Suzuki, “Preparation and properties of a composite of poly(vinyl butyral) and Titania,” J. Appl. Polym. Sci. 71(1), 185–188 (1999).
    [Crossref]
  27. H. C. Tsai and R. A. Doong, “Preparation and characterization of urease-encapsulated biosensors in poly(vinyl alcohol)-modified silica sol-gel materials,” Biosens. Bioelectron. 23(1), 66–73 (2007).
    [Crossref] [PubMed]
  28. Y. Feng, N. Dong, G. Wang, Y. Li, S. Zhang, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Saturable absorption behavior of free-standing graphene polymer composite films over broad wavelength and time ranges,” Opt. Express 23(1), 559–569 (2015).
    [Crossref] [PubMed]
  29. X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
    [Crossref] [PubMed]
  30. M. D. Crisp, N. L. Boling, and G. Dube, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
    [Crossref]
  31. N. L. Boling, G. Dube, and M. D. Crisp, “Morphological asymmetry in laser damage of transparent dielectric surfaces,” Appl. Phys. Lett. 21(10), 487–489 (1972).
    [Crossref]
  32. L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
    [Crossref] [PubMed]
  33. S. Shang, G. Lu, and Z. Zhao, “Calculation of optical constants for weak absorption coatings on weak absorption substrate,” High Power Laser & Particle Beams 22(5), 1026–1030 (2010).
    [Crossref]

2016 (1)

2015 (3)

Y. Feng, N. Dong, G. Wang, Y. Li, S. Zhang, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Saturable absorption behavior of free-standing graphene polymer composite films over broad wavelength and time ranges,” Opt. Express 23(1), 559–569 (2015).
[Crossref] [PubMed]

H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, and M. Mende, “Advanced femtosecond laser coatings raise damage thresholds,” in Optical Systems Design 2015: Advances in Optical Thin Films V,” Proc. SPIE 9627, 6 (2015).

S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, “Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites,” J. Mater. Sci. Mater. Electron. 26(10), 1–7 (2015).
[Crossref]

2014 (3)

M. Zhu, K. Yi, D. Li, X. Liu, H. Qi, and J. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

2013 (1)

X. Jiang, “Influence of subsurface defects on damage performance of fused silica in ultraviolet laser,” Opt. Eng. 52, 4203 (2013).

2012 (1)

M. Todica, L. Udrescu, and S. Şimon, “Preliminary spectroscopic investigation of some PVA membranes gamma irradiated,” Cent. Eur. J. Phys. 10, 329–334 (2012).

2011 (2)

H. J. Liu, X. D. Zhou, J. Huang, F. R. Wang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica,” Wuli Xuebao 60, 065202 (2011).

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2010 (2)

S. Shang, G. Lu, and Z. Zhao, “Calculation of optical constants for weak absorption coatings on weak absorption substrate,” High Power Laser & Particle Beams 22(5), 1026–1030 (2010).
[Crossref]

Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, and Y. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
[Crossref] [PubMed]

2009 (2)

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

J. R. Hua, X. T. Zu, L. Li, X. D. Yuan, W. G. Zheng, and X. D. Jiang, “Numerical simulation of laser-induced damage on the rear surface of optical material,” High Power Laser Particle Beams 21, 919–922 (2009).

2008 (1)

J. Neauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

2007 (1)

H. C. Tsai and R. A. Doong, “Preparation and characterization of urease-encapsulated biosensors in poly(vinyl alcohol)-modified silica sol-gel materials,” Biosens. Bioelectron. 23(1), 66–73 (2007).
[Crossref] [PubMed]

2005 (2)

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).

2001 (1)

1999 (1)

K. Nakane, J. Ohashi, and F. Suzuki, “Preparation and properties of a composite of poly(vinyl butyral) and Titania,” J. Appl. Polym. Sci. 71(1), 185–188 (1999).
[Crossref]

1973 (1)

1972 (2)

M. D. Crisp, N. L. Boling, and G. Dube, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

N. L. Boling, G. Dube, and M. D. Crisp, “Morphological asymmetry in laser damage of transparent dielectric surfaces,” Appl. Phys. Lett. 21(10), 487–489 (1972).
[Crossref]

Ahmed, H. M.

S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, “Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites,” J. Mater. Sci. Mater. Electron. 26(10), 1–7 (2015).
[Crossref]

Ambard, C.

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

J. Neauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Aziz, S. B.

S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, “Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites,” J. Mater. Sci. Mater. Electron. 26(10), 1–7 (2015).
[Crossref]

Becker, H.

H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, and M. Mende, “Advanced femtosecond laser coatings raise damage thresholds,” in Optical Systems Design 2015: Advances in Optical Thin Films V,” Proc. SPIE 9627, 6 (2015).

Bercegol, H.

J. Neauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

Bibeau, C.

E. I. Moses, C. Bibeau, R. E. Bonanno, C. A. Haynam, B. J. Macgowan, R. L. Kauffman, R. W. Patterson, and B. M. V. Wonterghem, “The National Ignition Facility: The World’s Largest Laser,” in Ieee/nps Symposium on(2005), pp. 1–4.
[Crossref]

Birolleau, J. C.

Blau, W. J.

Bloembergen, N.

Boling, N. L.

M. D. Crisp, N. L. Boling, and G. Dube, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

N. L. Boling, G. Dube, and M. D. Crisp, “Morphological asymmetry in laser damage of transparent dielectric surfaces,” Appl. Phys. Lett. 21(10), 487–489 (1972).
[Crossref]

Bonanno, R. E.

E. I. Moses, C. Bibeau, R. E. Bonanno, C. A. Haynam, B. J. Macgowan, R. L. Kauffman, R. W. Patterson, and B. M. V. Wonterghem, “The National Ignition Facility: The World’s Largest Laser,” in Ieee/nps Symposium on(2005), pp. 1–4.
[Crossref]

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Carr, C. W.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Chase, L. L.

Chen, X.

Cheng, X.

Cormont, P.

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

J. Neauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Crisp, M. D.

N. L. Boling, G. Dube, and M. D. Crisp, “Morphological asymmetry in laser damage of transparent dielectric surfaces,” Appl. Phys. Lett. 21(10), 487–489 (1972).
[Crossref]

M. D. Crisp, N. L. Boling, and G. Dube, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

Darbois, N.

Davis, P. J.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).

Deng, Y.

Destribats, J.

Dong, N.

Doong, R. A.

H. C. Tsai and R. A. Doong, “Preparation and characterization of urease-encapsulated biosensors in poly(vinyl alcohol)-modified silica sol-gel materials,” Biosens. Bioelectron. 23(1), 66–73 (2007).
[Crossref] [PubMed]

Dube, G.

N. L. Boling, G. Dube, and M. D. Crisp, “Morphological asymmetry in laser damage of transparent dielectric surfaces,” Appl. Phys. Lett. 21(10), 487–489 (1972).
[Crossref]

M. D. Crisp, N. L. Boling, and G. Dube, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

Fathulla, A. B.

S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, “Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites,” J. Mater. Sci. Mater. Electron. 26(10), 1–7 (2015).
[Crossref]

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).

Feng, Y.

Génin, F. Y.

Guo, Y.

Gyamfi, M.

H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, and M. Mende, “Advanced femtosecond laser coatings raise damage thresholds,” in Optical Systems Design 2015: Advances in Optical Thin Films V,” Proc. SPIE 9627, 6 (2015).

Haynam, C. A.

E. I. Moses, C. Bibeau, R. E. Bonanno, C. A. Haynam, B. J. Macgowan, R. L. Kauffman, R. W. Patterson, and B. M. V. Wonterghem, “The National Ignition Facility: The World’s Largest Laser,” in Ieee/nps Symposium on(2005), pp. 1–4.
[Crossref]

Hua, J. R.

J. R. Hua, X. T. Zu, L. Li, X. D. Yuan, W. G. Zheng, and X. D. Jiang, “Numerical simulation of laser-induced damage on the rear surface of optical material,” High Power Laser Particle Beams 21, 919–922 (2009).

Huang, H.

Huang, J.

L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
[Crossref] [PubMed]

H. J. Liu, X. D. Zhou, J. Huang, F. R. Wang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica,” Wuli Xuebao 60, 065202 (2011).

Hussein, A. M.

S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, “Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites,” J. Mater. Sci. Mater. Electron. 26(10), 1–7 (2015).
[Crossref]

Hussein, R. T.

S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, “Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites,” J. Mater. Sci. Mater. Electron. 26(10), 1–7 (2015).
[Crossref]

Jensen, L.

H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, and M. Mende, “Advanced femtosecond laser coatings raise damage thresholds,” in Optical Systems Design 2015: Advances in Optical Thin Films V,” Proc. SPIE 9627, 6 (2015).

Ji, F.

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

Jiang, X.

Jiang, X. D.

H. J. Liu, X. D. Zhou, J. Huang, F. R. Wang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica,” Wuli Xuebao 60, 065202 (2011).

J. R. Hua, X. T. Zu, L. Li, X. D. Yuan, W. G. Zheng, and X. D. Jiang, “Numerical simulation of laser-induced damage on the rear surface of optical material,” High Power Laser Particle Beams 21, 919–922 (2009).

Kauffman, R. L.

E. I. Moses, C. Bibeau, R. E. Bonanno, C. A. Haynam, B. J. Macgowan, R. L. Kauffman, R. W. Patterson, and B. M. V. Wonterghem, “The National Ignition Facility: The World’s Largest Laser,” in Ieee/nps Symposium on(2005), pp. 1–4.
[Crossref]

Lamaignere, L.

Lamaignère, L.

J. Neauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Li, D.

M. Zhu, K. Yi, D. Li, X. Liu, H. Qi, and J. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Li, H.

Li, L.

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

J. R. Hua, X. T. Zu, L. Li, X. D. Yuan, W. G. Zheng, and X. D. Jiang, “Numerical simulation of laser-induced damage on the rear surface of optical material,” High Power Laser Particle Beams 21, 919–922 (2009).

Li, X.

Li, Y.

Liao, W.

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

Liu, H.

Liu, H. J.

H. J. Liu, X. D. Zhou, J. Huang, F. R. Wang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica,” Wuli Xuebao 60, 065202 (2011).

Liu, X.

M. Zhu, K. Yi, D. Li, X. Liu, H. Qi, and J. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Lu, G.

S. Shang, G. Lu, and Z. Zhao, “Calculation of optical constants for weak absorption coatings on weak absorption substrate,” High Power Laser & Particle Beams 22(5), 1026–1030 (2010).
[Crossref]

Luitot, C.

Macgowan, B. J.

E. I. Moses, C. Bibeau, R. E. Bonanno, C. A. Haynam, B. J. Macgowan, R. L. Kauffman, R. W. Patterson, and B. M. V. Wonterghem, “The National Ignition Facility: The World’s Largest Laser,” in Ieee/nps Symposium on(2005), pp. 1–4.
[Crossref]

Menapace, J. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).

Mende, M.

H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, and M. Mende, “Advanced femtosecond laser coatings raise damage thresholds,” in Optical Systems Design 2015: Advances in Optical Thin Films V,” Proc. SPIE 9627, 6 (2015).

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Moses, E. I.

E. I. Moses, C. Bibeau, R. E. Bonanno, C. A. Haynam, B. J. Macgowan, R. L. Kauffman, R. W. Patterson, and B. M. V. Wonterghem, “The National Ignition Facility: The World’s Largest Laser,” in Ieee/nps Symposium on(2005), pp. 1–4.
[Crossref]

Nakane, K.

K. Nakane, J. Ohashi, and F. Suzuki, “Preparation and properties of a composite of poly(vinyl butyral) and Titania,” J. Appl. Polym. Sci. 71(1), 185–188 (1999).
[Crossref]

Neauport, J.

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Ohashi, J.

K. Nakane, J. Ohashi, and F. Suzuki, “Preparation and properties of a composite of poly(vinyl butyral) and Titania,” J. Appl. Polym. Sci. 71(1), 185–188 (1999).
[Crossref]

Patterson, R. W.

E. I. Moses, C. Bibeau, R. E. Bonanno, C. A. Haynam, B. J. Macgowan, R. L. Kauffman, R. W. Patterson, and B. M. V. Wonterghem, “The National Ignition Facility: The World’s Largest Laser,” in Ieee/nps Symposium on(2005), pp. 1–4.
[Crossref]

Pilon, F.

J. Neauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

Pistor, T. V.

Qi, H.

M. Zhu, K. Yi, D. Li, X. Liu, H. Qi, and J. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Ristau, D.

H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, and M. Mende, “Advanced femtosecond laser coatings raise damage thresholds,” in Optical Systems Design 2015: Advances in Optical Thin Films V,” Proc. SPIE 9627, 6 (2015).

Rondeau, O.

Salleo, A.

Shang, S.

S. Shang, G. Lu, and Z. Zhao, “Calculation of optical constants for weak absorption coatings on weak absorption substrate,” High Power Laser & Particle Beams 22(5), 1026–1030 (2010).
[Crossref]

Shao, J.

M. Zhu, K. Yi, D. Li, X. Liu, H. Qi, and J. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Shen, N.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Simon, S.

M. Todica, L. Udrescu, and S. Şimon, “Preliminary spectroscopic investigation of some PVA membranes gamma irradiated,” Cent. Eur. J. Phys. 10, 329–334 (2012).

Steele, R. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Sun, L.

Sun, Z.

Sundermann, M.

H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, and M. Mende, “Advanced femtosecond laser coatings raise damage thresholds,” in Optical Systems Design 2015: Advances in Optical Thin Films V,” Proc. SPIE 9627, 6 (2015).

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).

Suzuki, F.

K. Nakane, J. Ohashi, and F. Suzuki, “Preparation and properties of a composite of poly(vinyl butyral) and Titania,” J. Appl. Polym. Sci. 71(1), 185–188 (1999).
[Crossref]

Todica, M.

M. Todica, L. Udrescu, and S. Şimon, “Preliminary spectroscopic investigation of some PVA membranes gamma irradiated,” Cent. Eur. J. Phys. 10, 329–334 (2012).

Tonova, D.

H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, and M. Mende, “Advanced femtosecond laser coatings raise damage thresholds,” in Optical Systems Design 2015: Advances in Optical Thin Films V,” Proc. SPIE 9627, 6 (2015).

Tsai, H. C.

H. C. Tsai and R. A. Doong, “Preparation and characterization of urease-encapsulated biosensors in poly(vinyl alcohol)-modified silica sol-gel materials,” Biosens. Bioelectron. 23(1), 66–73 (2007).
[Crossref] [PubMed]

Udrescu, L.

M. Todica, L. Udrescu, and S. Şimon, “Preliminary spectroscopic investigation of some PVA membranes gamma irradiated,” Cent. Eur. J. Phys. 10, 329–334 (2012).

Wang, F. R.

H. J. Liu, X. D. Zhou, J. Huang, F. R. Wang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica,” Wuli Xuebao 60, 065202 (2011).

Wang, G.

Wang, J.

Wang, K.

Wang, Q. J.

Wang, Y.

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).

Wonterghem, B. M. V.

E. I. Moses, C. Bibeau, R. E. Bonanno, C. A. Haynam, B. J. Macgowan, R. L. Kauffman, R. W. Patterson, and B. M. V. Wonterghem, “The National Ignition Facility: The World’s Largest Laser,” in Ieee/nps Symposium on(2005), pp. 1–4.
[Crossref]

Wsw, R. M.

S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, “Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites,” J. Mater. Sci. Mater. Electron. 26(10), 1–7 (2015).
[Crossref]

Wu, J.

Wu, W.

Wu, W. D.

H. J. Liu, X. D. Zhou, J. Huang, F. R. Wang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica,” Wuli Xuebao 60, 065202 (2011).

Xiang, X.

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

Xie, R.

Xu, Q.

Yan, Z.

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

Yang, L.

Yang, W.

Ye, X.

Yi, K.

M. Zhu, K. Yi, D. Li, X. Liu, H. Qi, and J. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Yu, X.

Yuan, X.

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

Yuan, X. D.

J. R. Hua, X. T. Zu, L. Li, X. D. Yuan, W. G. Zheng, and X. D. Jiang, “Numerical simulation of laser-induced damage on the rear surface of optical material,” High Power Laser Particle Beams 21, 919–922 (2009).

Zhang, L.

Zhang, S.

Zhang, Y.

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

Zhao, W.

Zhao, Z.

S. Shang, G. Lu, and Z. Zhao, “Calculation of optical constants for weak absorption coatings on weak absorption substrate,” High Power Laser & Particle Beams 22(5), 1026–1030 (2010).
[Crossref]

Zheng, W.

L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
[Crossref] [PubMed]

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

Zheng, W. G.

H. J. Liu, X. D. Zhou, J. Huang, F. R. Wang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica,” Wuli Xuebao 60, 065202 (2011).

J. R. Hua, X. T. Zu, L. Li, X. D. Yuan, W. G. Zheng, and X. D. Jiang, “Numerical simulation of laser-induced damage on the rear surface of optical material,” High Power Laser Particle Beams 21, 919–922 (2009).

Zhou, X. D.

H. J. Liu, X. D. Zhou, J. Huang, F. R. Wang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica,” Wuli Xuebao 60, 065202 (2011).

Zhu, M.

M. Zhu, K. Yi, D. Li, X. Liu, H. Qi, and J. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Zu, X.

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

Zu, X. T.

J. R. Hua, X. T. Zu, L. Li, X. D. Yuan, W. G. Zheng, and X. D. Jiang, “Numerical simulation of laser-induced damage on the rear surface of optical material,” High Power Laser Particle Beams 21, 919–922 (2009).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. D. Crisp, N. L. Boling, and G. Dube, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21(8), 364–366 (1972).
[Crossref]

N. L. Boling, G. Dube, and M. D. Crisp, “Morphological asymmetry in laser damage of transparent dielectric surfaces,” Appl. Phys. Lett. 21(10), 487–489 (1972).
[Crossref]

Biosens. Bioelectron. (1)

H. C. Tsai and R. A. Doong, “Preparation and characterization of urease-encapsulated biosensors in poly(vinyl alcohol)-modified silica sol-gel materials,” Biosens. Bioelectron. 23(1), 66–73 (2007).
[Crossref] [PubMed]

Cent. Eur. J. Phys. (1)

M. Todica, L. Udrescu, and S. Şimon, “Preliminary spectroscopic investigation of some PVA membranes gamma irradiated,” Cent. Eur. J. Phys. 10, 329–334 (2012).

High Power Laser & Particle Beams (1)

S. Shang, G. Lu, and Z. Zhao, “Calculation of optical constants for weak absorption coatings on weak absorption substrate,” High Power Laser & Particle Beams 22(5), 1026–1030 (2010).
[Crossref]

High Power Laser Particle Beams (1)

J. R. Hua, X. T. Zu, L. Li, X. D. Yuan, W. G. Zheng, and X. D. Jiang, “Numerical simulation of laser-induced damage on the rear surface of optical material,” High Power Laser Particle Beams 21, 919–922 (2009).

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

J. Appl. Polym. Sci. (1)

K. Nakane, J. Ohashi, and F. Suzuki, “Preparation and properties of a composite of poly(vinyl butyral) and Titania,” J. Appl. Polym. Sci. 71(1), 185–188 (1999).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, “Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites,” J. Mater. Sci. Mater. Electron. 26(10), 1–7 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

J. Neauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

M. Zhu, K. Yi, D. Li, X. Liu, H. Qi, and J. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Opt. Eng. (1)

X. Jiang, “Influence of subsurface defects on damage performance of fused silica in ultraviolet laser,” Opt. Eng. 52, 4203 (2013).

Opt. Express (5)

Opt. Lett. (1)

Optik - International Journal for Light and Electron Optics (1)

Z. Yan, W. Liao, Y. Zhang, X. Xiang, X. Yuan, Y. Wang, F. Ji, W. Zheng, L. Li, and X. Zu, “Optical characterization and laser damage of fused silica optics after ion beam sputtering,” Optik - International Journal for Light and Electron Optics 125(2), 756–760 (2014).
[Crossref]

Proc. SPIE (2)

H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, and M. Mende, “Advanced femtosecond laser coatings raise damage thresholds,” in Optical Systems Design 2015: Advances in Optical Thin Films V,” Proc. SPIE 9627, 6 (2015).

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).

Wuli Xuebao (1)

H. J. Liu, X. D. Zhou, J. Huang, F. R. Wang, X. D. Jiang, W. D. Wu, and W. G. Zheng, “Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica,” Wuli Xuebao 60, 065202 (2011).

Other (9)

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Laser-Induced Damage in Optical Materials (2009).

G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” in Laser-Induced Damage in Optical Materials (SPIE, 2007), 6720, p. 8.

C. Maunier, D. Taroux, J. Neauport, O. Rondeau, R. Catrin, S. Lambert, and P. Cormont, “Contamination of fused silica optics surface after magnetorheological polishing,” in Optical Fabrication and Testing (2014).

R. M. Brusasco, B. M. Penetrante, J. E. Peterson, S. M. Maricle, and J. A. Menapace, “UV-laser conditioning for reduction of 351-nm damage initiation in fused silica,” in Boulder Damage (2002).

H. Peng, X. Zhang, X. F. Wei, W. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” in 26th European Conference on Laser Interaction with Matter (ECLIM 2000)(SPIE, 2001), p. 6.
[Crossref]

E. I. Moses, C. Bibeau, R. E. Bonanno, C. A. Haynam, B. J. Macgowan, R. L. Kauffman, R. W. Patterson, and B. M. V. Wonterghem, “The National Ignition Facility: The World’s Largest Laser,” in Ieee/nps Symposium on(2005), pp. 1–4.
[Crossref]

M. L. Andre, “Status of the LMJ project,” in Solid State Lasers for Application To Inertial Confinement Fusion: Second International Conference(1997), pp. 38–42.

C. J. Stolz, L. M. Sheehan, and M. K. V. Gunter, “Advantages of evaporation of hafnium in a reaction environment for manufacture of high-damage-threshold multilayer coatings by electron-beam deposition,” in Advances in Optical Interference Coatings(International Society for Optics and Photonics, 1999), pp. 318–324.

F. Y. Genin, C. J. Stolz, and M. R. Kozlowski, “Effect of electric field distribution on the morphologies of laser-induced in hafnia-silica multilayer polarizers,” Proc. of SPIE-The International Society for Optical Engineering 2966, 342–352 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic representation of the FDTD simulation model used to simulate the PVA coating on a fused silica substrate.
Fig. 2
Fig. 2 The simulations of electric field intensity distribution for the original (a) and PVA coated on the rear surface (b) of fused silica substrates.
Fig. 3
Fig. 3 Effect of thickness and refractive index of the coating on the distribution of electric field intensity (a). Variation of electric field intensity at rear surface with respect to coating thickness (n = 1.52) (b). Variation of minimal electric field intensity at rear surface with respect to the refractive index (c).
Fig. 4
Fig. 4 Thickness of PVA coating with respect to spin rate.
Fig. 5
Fig. 5 Electric field intensities at the rear surface in simulation and laser-induced damage thresholds of the fused silica substrates in the experiment with respect to the coating thickness.
Fig. 6
Fig. 6 Laser-induced damage thresholds of fused silica with PVA coating (60nm and 300nm) with respect to various kinds of PVA.
Fig. 7
Fig. 7 Effect of PVA coating on the LIDT of the AMP-treated fused silica substrate.
Fig. 8
Fig. 8 Surface morphologies of the initial damage sites: (a) AMP-treated fused silica substrate, (b) AMP-treated fused silica substrate with 60 nm PVA coating, (c) AMP-treated fused silica substrate with 300 nm PVA coating, (d) fused silica substrate with 300 nm Alfa 89 PVA coating, (e) fused silica substrate with 300 nm Aladin 89 PVA coating, (f) fused silica substrate with 300 nm Sigma 99 PVA coating.

Tables (1)

Tables Icon

Table 1 Various kinds of PVA, which have been used to prepare the PVA coatings.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E f r o n t = ( 2 n n + 1 ) E I
E r e a r = [ 4 n ( n + 1 ) 2 ] E I ,
T = λ 2 n ,

Metrics