Abstract

An approach to eliminating the effect of polarization pulling in Golay-coded Brillouin optical time domain analysis (BOTDA) fiber sensor by employing polarization division multiplexing (PDM) pulse coding is presented. Three different schemes, including polarization switching, polarization scrambling, and PDM pulse coding are implemented and compared. Experimental results indicate that sensing stability is enhanced by ~2.5 times using the proposed scheme.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization push-pull effect-based gain fluctuation elimination in Golay-BOTDA

Yin Zhou, Lianshan Yan, Zonglei Li, Xinpu Zhang, Wei Pan, and Bin Luo
Opt. Express 27(20) 29439-29447 (2019)

Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers

Zhisheng Yang, Zonglei Li, Simon Zaslawski, Luc Thévenaz, and Marcelo A. Soto
Opt. Express 26(13) 16505-16523 (2018)

Bipolar optical pulse coding for performance enhancement in BOTDA sensors

Marcelo A. Soto, Sébastien Le Floch, and Luc Thévenaz
Opt. Express 21(14) 16390-16397 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [Crossref]
  2. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  3. A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
    [Crossref]
  4. S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
    [Crossref]
  5. M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
    [Crossref] [PubMed]
  6. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
    [Crossref]
  7. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]
  8. A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
    [Crossref] [PubMed]
  9. F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
    [Crossref]
  10. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
    [Crossref] [PubMed]
  11. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  12. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
    [Crossref]
  13. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
    [Crossref]
  14. M. S. D. B. Zan and T. Horiguchi, “A Dual Golay Complementary Pair of Sequences for Improving the Performance of Phase-Shift Pulse BOTDA Fiber Sensor,” J. Lightwave Technol. 30(21), 3338–3356 (2012).
    [Crossref]
  15. Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
    [Crossref] [PubMed]
  16. M. Farahani, M. Wylie, E. Castillo-Guerra, and B. Colpitts, “Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques,” J. Lightwave Technol. 30(8), 1134–1142 (2012).
    [Crossref]
  17. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
    [Crossref] [PubMed]
  18. Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
    [Crossref] [PubMed]
  19. M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
    [Crossref]
  20. K. Hotate, K. Abe, and K. Y. Song, “Suppression of Signal Fluctuation in Brillouin Optical Correlation Domain Analysis System Using Polarization Diversity Scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
    [Crossref]
  21. A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
    [Crossref]
  22. M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
    [Crossref]
  23. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [Crossref] [PubMed]
  24. Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers,” Opt. Express 26(13), 16505–16523 (2018).
    [Crossref]

2018 (1)

2017 (1)

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

2016 (5)

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
[Crossref] [PubMed]

Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
[Crossref] [PubMed]

2015 (2)

2013 (2)

2012 (3)

2011 (1)

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

2010 (3)

2009 (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

2008 (1)

2006 (1)

K. Hotate, K. Abe, and K. Y. Song, “Suppression of Signal Fluctuation in Brillouin Optical Correlation Domain Analysis System Using Polarization Diversity Scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
[Crossref]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

1994 (1)

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

1989 (1)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Abe, K.

K. Hotate, K. Abe, and K. Y. Song, “Suppression of Signal Fluctuation in Brillouin Optical Correlation Domain Analysis System Using Polarization Diversity Scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
[Crossref]

Alem, M.

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Bergman, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Bolognini, G.

Boot, A. J.

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Carrasco-Sanz, A.

Castillo-Guerra, E.

Colpitts, B.

Corredera, P.

Denisov, A.

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

Deventer, M. O.

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Di Pasquale, F.

Dominguez-Lopez, A.

Eyal, A.

Farahani, M.

Foaleng, S. M.

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

Foster, S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Giffard, R. P.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Gonzalez-Herraez, M.

He, H.

Horiguchi, T.

M. S. D. B. Zan and T. Horiguchi, “A Dual Golay Complementary Pair of Sequences for Improving the Performance of Phase-Shift Pulse BOTDA Fiber Sensor,” J. Lightwave Technol. 30(21), 3338–3356 (2012).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Hotate, K.

K. Hotate, K. Abe, and K. Y. Song, “Suppression of Signal Fluctuation in Brillouin Optical Correlation Domain Analysis System Using Polarization Diversity Scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
[Crossref]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Li, Z.

Liang, J.

Lin, J.

Lopez-Gil, A.

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
[Crossref] [PubMed]

Luo, B.

Mafang, S. F.

Martin-Lopez, S.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Moberly, D. S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Motil, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Nazarathy, M.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Newton, S. A.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Pan, W.

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Rodriguez-Barrios, F.

Shao, L.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Sischka, F.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Song, K. Y.

K. Hotate, K. Abe, and K. Y. Song, “Suppression of Signal Fluctuation in Brillouin Optical Correlation Domain Analysis System Using Polarization Diversity Scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
[Crossref]

Soto, M. A.

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers,” Opt. Express 26(13), 16505–16523 (2018).
[Crossref]

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
[Crossref] [PubMed]

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
[Crossref] [PubMed]

Takeda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Thevenaz, L.

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

Thévenaz, L.

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers,” Opt. Express 26(13), 16505–16523 (2018).
[Crossref]

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
[Crossref] [PubMed]

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

Trutna, W. R.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Tur, M.

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

Wylie, M.

Yan, L.

Yang, Z.

Zadok, A.

Zan, M. S. D. B.

Zaslawski, S.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Zhang, Y.

Zilka, E.

IEEE Photonics Technol. Lett. (2)

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of Signal Fluctuation in Brillouin Optical Correlation Domain Analysis System Using Polarization Diversity Scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
[Crossref]

IEEE Sens. J. (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

J. Lightwave Technol. (6)

F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

M. S. D. B. Zan and T. Horiguchi, “A Dual Golay Complementary Pair of Sequences for Improving the Performance of Phase-Shift Pulse BOTDA Fiber Sensor,” J. Lightwave Technol. 30(21), 3338–3356 (2012).
[Crossref]

M. Farahani, M. Wylie, E. Castillo-Guerra, and B. Colpitts, “Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques,” J. Lightwave Technol. 30(8), 1134–1142 (2012).
[Crossref]

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Light Sci. Appl. (1)

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Opt. Express (9)

Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
[Crossref] [PubMed]

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
[Crossref] [PubMed]

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
[Crossref] [PubMed]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
[Crossref] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers,” Opt. Express 26(13), 16505–16523 (2018).
[Crossref]

Opt. Laser Technol. (1)

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of traditional single-polarization coded sequence induced polarization pulling affecting on probe wave SOP and (b) principle of proposed PSW with PDM pulse coding for eliminating the effect of polarization pulling in Golay-coded BOTDA fiber sensor.
Fig. 2
Fig. 2 Experimental setup of the Golay-coded BOTDA fiber sensor employing the PSW with PDM pulse coding. ECL: external cavity laser; EDFA: erbium-doped fiber amplifier; AOM: acousto-optic modulator; AWG: arbitrary waveform generator; PC: polarization controller; VOA: variable optical attenuator; PBC: polarization beam combiner; FUT: fiber under test; EOM: electro-optical modulator; FBG: fiber Bragg grating; OSC: oscilloscope; C1: electrical coded sequence 1.
Fig. 3
Fig. 3 Measured (a) Brillouin gain traces in one-shot measurement and (b) STD values of the Brillouin gain traces in consecutive 10-times measurements along the 40-km sensing fiber by using PS (blue curve) and PSW (red curve), respectively, when pump-probe frequency offset is 10.670 GHz and 65536-times average is used in single-pulse BOTDA fiber sensor.
Fig. 4
Fig. 4 Decoded (a) Brillouin gain traces in one-shot measurement and (b) STD values of the Brillouin gain traces in consecutive 10-times measurements along the 40-km sensing fiber by using PS (blue curve) and PSW (red curve), respectively, when pump-probe frequency offset is 10.670 GHz and 256-times average is used in Golay-coded BOTDA fiber sensor.
Fig. 5
Fig. 5 Decoded (a) Brillouin gain traces in one-shot measurement and (b) STD values of the Brillouin gain traces in consecutive 10-times measurements along the 40-km sensing fiber by using PS (blue curve) and PSW with PDM pulse coding (green curve), respectively, when pump-probe frequency offset of 10.670 GHz and 256-times average are used in Golay-coded BOTDA sensor.
Fig. 6
Fig. 6 Frequency error of 10 estimated BFS profiles (100 m interval) along the 40 km fiber by using the PS (blue curve) and PSW with PDM pulse coding (green curve), respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d dz S s (z)= β (z)× S s (z)+ γ 0 P p (z) 2 [ S p (z)( S p (z) S s (z) ) S s (z) ]

Metrics