Abstract

In this work, the design and numerical study of a MMI-based LiNbO3 beam splitter were presented, with a combination of ion implantation and femtosecond laser ablation as a fabricating strategy. The designed splitters show advantages such as good fabrication tolerance, low insertion loss, compactness, and simple fabrication processes. We also demonstrated that the self-imaging principle could be applied to design low-loss MMI beam splitters for multi-mode input with mode number m = 1 and n>1 by carefully choosing the geometry parameters. The presented fabrication strategy provides an alternative choice for the fabrication of power splitters also with other MMI-based devices in various optical monocrystal chips.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal

Jinman Lv, Yazhou Cheng, Weihao Yuan, Xiaotao Hao, and Feng Chen
Opt. Mater. Express 5(6) 1274-1280 (2015)

Optical ridge waveguides in 4H-SiC single crystal produced by combination of carbon ion irradiation and femtosecond laser ablation

Qingfang Luan, Yuechen Jia, Yutian Wang, Shavkat Akhmadaliev, Shengqiang Zhou, Javier R. Vázquez de Aldana, Yang Tan, and Feng Chen
Opt. Mater. Express 4(6) 1166-1171 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  2. F. Chen, “Micro‐ and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
    [Crossref]
  3. G. Demetriou, J. P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
    [Crossref] [PubMed]
  4. G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
    [Crossref]
  5. Y. Tan, F. Chen, D. Jaque, W. L. Gao, H. J. Zhang, J. G. Solé, and H. J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009).
    [Crossref] [PubMed]
  6. A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008).
    [Crossref] [PubMed]
  7. C. Chen, S. Akhmadaliev, C. Romero, J. R. Vázquez de Aldana, S. Q. Zhou, and F. Chen, “Ridge waveguides and Y-branch beam splitters in KTiOAsO4 crystal by 15 MeV oxygen ion irradiation and femtosecond laser ablation,” J. Lightwave Technol. 35(2), 225–229 (2016).
    [Crossref]
  8. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd:YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 1–9 (2016).
    [Crossref]
  9. E. Kifle, X. Mateos, J. R. de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42(6), 1169–1172 (2017).
    [Crossref] [PubMed]
  10. Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
    [Crossref] [PubMed]
  11. L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals,” Opt. Express 23(23), 30188–30194 (2015).
    [Crossref] [PubMed]
  12. H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Meth. B 320, 22–25 (2014).
    [Crossref]
  13. H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
    [Crossref] [PubMed]
  14. K. Suzuki, G. Cong, K. Tanizawa, S. H. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23(7), 9086–9092 (2015).
    [Crossref] [PubMed]
  15. Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
    [Crossref] [PubMed]
  16. M. A. Swillam, M. H. Bakr, and X. Li, “Design optimization of compact wideband optical switch exploiting staircase index MMI,” J. Lightwave Technol. 27(2), 80–87 (2009).
    [Crossref]
  17. J. H. Zhao, X. L. Wang, and F. Chen, “1×4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
    [Crossref]
  18. J. M. Lv, Y. Z. Cheng, J. R. Vázquez de Aldana, X. T. Hao, and F. Chen, “Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 Crystal,” J. Lightwave Technol. 34(15), 3587–3591 (2016).
    [Crossref]
  19. H. Hu, F. Lu, X. L. Wang, F. Chen, and K. M. Wang, “Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose,” Opt. Express 20(19), 21114–21118 (2012).
    [Crossref] [PubMed]
  20. H. L. Liu, J. R. Vázquez de Aldana, M. H. Hong, and F. Chen, “Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing,” IEEE J. Sel. Top. Quantum Electron. 22(2), 227–230 (2015).
    [Crossref]
  21. H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
    [Crossref] [PubMed]
  22. Y. Y. Ren, L. M. Zhang, H. G. Xing, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal,” Opt. Laser Technol. 103, 82–88 (2018).
    [Crossref]
  23. L. Nikolaevsky, T. Shchori, and D. Malka, “Modeling a 1×8 MMI green light power splitter based on gallium-nitride slot waveguide structure,” IEEE Photonics Technol. Lett. 30(8), 720–723 (2018).
    [Crossref]
  24. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
    [Crossref] [PubMed]
  25. J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express 19(2), 838–847 (2011).
    [Crossref] [PubMed]
  26. M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. S. Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm,” Opt. Express 25(10), 10893–10900 (2017).
    [Crossref] [PubMed]
  27. B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photonics Technol. Lett. 21(7), 432–434 (2009).
    [Crossref]
  28. L. Han, S. Liang, H. Zhu, L. Qiao, J. Xu, and W. Wang, “Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter,” Opt. Lett. 40(4), 518–521 (2015).
    [Crossref] [PubMed]
  29. A. M. Alhetar, A. B. Mohammad, A. S. M. Supa’at, and Z. A. Shamsan, “MMI-MZI polymer thermo-optic switch with a high refractive index contrast,” J. Lightwave Technol. 29(2), 171–178 (2011).
    [Crossref]
  30. Z. S. Gong, R. Yin, W. Ji, and C. H. Wu, “Semiconductor laser using multimode interference principle,” Opt. Laser Technol. 98, 75–78 (2018).
    [Crossref]
  31. K. Hamamoto and H. S. Jiang, “Active MMI devices: concept, proof, and recent progress,” J. Phys. D Appl. Phys. 48(38), 383001 (2015).
    [Crossref]
  32. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  33. D. Brüske, S. Suntsov, C. E. Rüter, and D. Kip, “Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion,” Opt. Express 25(23), 29374–29379 (2017).
    [Crossref]
  34. M. D. Feit and J. A. Fleck., “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt. 19(7), 1154–1164 (1980).
    [Crossref] [PubMed]

2018 (3)

Y. Y. Ren, L. M. Zhang, H. G. Xing, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal,” Opt. Laser Technol. 103, 82–88 (2018).
[Crossref]

L. Nikolaevsky, T. Shchori, and D. Malka, “Modeling a 1×8 MMI green light power splitter based on gallium-nitride slot waveguide structure,” IEEE Photonics Technol. Lett. 30(8), 720–723 (2018).
[Crossref]

Z. S. Gong, R. Yin, W. Ji, and C. H. Wu, “Semiconductor laser using multimode interference principle,” Opt. Laser Technol. 98, 75–78 (2018).
[Crossref]

2017 (3)

2016 (6)

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
[Crossref] [PubMed]

G. Demetriou, J. P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
[Crossref] [PubMed]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

C. Chen, S. Akhmadaliev, C. Romero, J. R. Vázquez de Aldana, S. Q. Zhou, and F. Chen, “Ridge waveguides and Y-branch beam splitters in KTiOAsO4 crystal by 15 MeV oxygen ion irradiation and femtosecond laser ablation,” J. Lightwave Technol. 35(2), 225–229 (2016).
[Crossref]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd:YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

J. M. Lv, Y. Z. Cheng, J. R. Vázquez de Aldana, X. T. Hao, and F. Chen, “Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 Crystal,” J. Lightwave Technol. 34(15), 3587–3591 (2016).
[Crossref]

2015 (6)

2014 (5)

2012 (2)

H. Hu, F. Lu, X. L. Wang, F. Chen, and K. M. Wang, “Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose,” Opt. Express 20(19), 21114–21118 (2012).
[Crossref] [PubMed]

F. Chen, “Micro‐ and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

2011 (2)

2010 (1)

J. H. Zhao, X. L. Wang, and F. Chen, “1×4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
[Crossref]

2009 (3)

2008 (1)

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

1980 (1)

Aguiló, M.

Akhmadaliev, S.

Alhetar, A. M.

Bakr, M. H.

Bang, O.

Bérubé, J. P.

Brüske, D.

Chen, C.

Chen, F.

Y. Y. Ren, L. M. Zhang, H. G. Xing, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal,” Opt. Laser Technol. 103, 82–88 (2018).
[Crossref]

J. M. Lv, Y. Z. Cheng, J. R. Vázquez de Aldana, X. T. Hao, and F. Chen, “Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 Crystal,” J. Lightwave Technol. 34(15), 3587–3591 (2016).
[Crossref]

C. Chen, S. Akhmadaliev, C. Romero, J. R. Vázquez de Aldana, S. Q. Zhou, and F. Chen, “Ridge waveguides and Y-branch beam splitters in KTiOAsO4 crystal by 15 MeV oxygen ion irradiation and femtosecond laser ablation,” J. Lightwave Technol. 35(2), 225–229 (2016).
[Crossref]

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
[Crossref] [PubMed]

L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals,” Opt. Express 23(23), 30188–30194 (2015).
[Crossref] [PubMed]

H. L. Liu, J. R. Vázquez de Aldana, M. H. Hong, and F. Chen, “Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing,” IEEE J. Sel. Top. Quantum Electron. 22(2), 227–230 (2015).
[Crossref]

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Meth. B 320, 22–25 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref] [PubMed]

H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
[Crossref] [PubMed]

H. Hu, F. Lu, X. L. Wang, F. Chen, and K. M. Wang, “Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose,” Opt. Express 20(19), 21114–21118 (2012).
[Crossref] [PubMed]

F. Chen, “Micro‐ and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

J. H. Zhao, X. L. Wang, and F. Chen, “1×4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
[Crossref]

Y. Tan, F. Chen, D. Jaque, W. L. Gao, H. J. Zhang, J. G. Solé, and H. J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009).
[Crossref] [PubMed]

Cheng, C.

Cheng, Y. Z.

Choi, S. Y.

Cong, G.

Corrielli, G.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Craig, C.

Dai, D.

de Aldana, J. R.

de Riedmatten, H.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Demetriou, G.

Díaz, F.

Feit, M. D.

Fleck, J. A.

Gao, W. L.

Gong, Z. S.

Z. S. Gong, R. Yin, W. Ji, and C. H. Wu, “Semiconductor laser using multimode interference principle,” Opt. Laser Technol. 98, 75–78 (2018).
[Crossref]

Griebner, U.

Guan, X.

Günter, P.

Hamamoto, K.

K. Hamamoto and H. S. Jiang, “Active MMI devices: concept, proof, and recent progress,” J. Phys. D Appl. Phys. 48(38), 383001 (2015).
[Crossref]

Han, L.

Hao, X. T.

Haunhorst, C. E.

He, S.

He, Y.

Hewak, D. W.

Holmström, P.

Hong, M. H.

H. L. Liu, J. R. Vázquez de Aldana, M. H. Hong, and F. Chen, “Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing,” IEEE J. Sel. Top. Quantum Electron. 22(2), 227–230 (2015).
[Crossref]

Hu, H.

Ikeda, K.

Jain, D.

Jaque, D.

Ji, W.

Z. S. Gong, R. Yin, W. Ji, and C. H. Wu, “Semiconductor laser using multimode interference principle,” Opt. Laser Technol. 98, 75–78 (2018).
[Crossref]

Jia, Y. C.

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Meth. B 320, 22–25 (2014).
[Crossref]

Jiang, H. S.

K. Hamamoto and H. S. Jiang, “Active MMI devices: concept, proof, and recent progress,” J. Phys. D Appl. Phys. 48(38), 383001 (2015).
[Crossref]

Jiang, X.

Jipa, F.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd:YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Kar, A. K.

Kawashima, H.

Kifle, E.

Kim, S. H.

Kip, D.

Koechlin, M.

Li, X.

Liang, S.

Littlejohns, C. G.

Liu, C.

Liu, H.

Liu, H. L.

H. L. Liu, J. R. Vázquez de Aldana, M. H. Hong, and F. Chen, “Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing,” IEEE J. Sel. Top. Quantum Electron. 22(2), 227–230 (2015).
[Crossref]

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Meth. B 320, 22–25 (2014).
[Crossref]

Liu, R.

Loiko, P.

Lu, F.

Lv, J. M.

Ma, H. J.

Majkic, A.

Malka, D.

L. Nikolaevsky, T. Shchori, and D. Malka, “Modeling a 1×8 MMI green light power splitter based on gallium-nitride slot waveguide structure,” IEEE Photonics Technol. Lett. 30(8), 720–723 (2018).
[Crossref]

Mashanovich, G. Z.

Mateos, X.

Mazzera, M.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Messaddeq, Y.

Mohammad, A. B.

Namiki, S.

Nedeljkovic, M.

Nikolaevsky, L.

L. Nikolaevsky, T. Shchori, and D. Malka, “Modeling a 1×8 MMI green light power splitter based on gallium-nitride slot waveguide structure,” IEEE Photonics Technol. Lett. 30(8), 720–723 (2018).
[Crossref]

Osellame, R.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Pavel, N.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd:YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Penades, J. S.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Petersen, C. R.

Petrov, V.

Poberaj, G.

Qiao, L.

Qiu, C.

Qiu, H.

Reed, G. T.

Ren, Y. Y.

Y. Y. Ren, L. M. Zhang, H. G. Xing, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal,” Opt. Laser Technol. 103, 82–88 (2018).
[Crossref]

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Meth. B 320, 22–25 (2014).
[Crossref]

Ródenas, A.

Romero, C.

Rotermund, F.

Rouifed, M. S.

Rüter, C. E.

Salamu, G.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd:YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Seri, A.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Shamsan, Z. A.

Shchori, T.

L. Nikolaevsky, T. Shchori, and D. Malka, “Modeling a 1×8 MMI green light power splitter based on gallium-nitride slot waveguide structure,” IEEE Photonics Technol. Lett. 30(8), 720–723 (2018).
[Crossref]

Shi, Y.

Shin, S. Y.

B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photonics Technol. Lett. 21(7), 432–434 (2009).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Solé, J. G.

Su, Y.

Sun, S.

Suntsov, S.

Supa’at, A. S. M.

Suzuki, K.

Swillam, M. A.

Tan, Y.

Tanizawa, K.

Thomson, D. J.

Thylen, L.

Tina, G. X.

Tremblay, C.

Vallée, R.

Vázquez de Aldana, J. R.

Y. Y. Ren, L. M. Zhang, H. G. Xing, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal,” Opt. Laser Technol. 103, 82–88 (2018).
[Crossref]

J. M. Lv, Y. Z. Cheng, J. R. Vázquez de Aldana, X. T. Hao, and F. Chen, “Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 Crystal,” J. Lightwave Technol. 34(15), 3587–3591 (2016).
[Crossref]

C. Chen, S. Akhmadaliev, C. Romero, J. R. Vázquez de Aldana, S. Q. Zhou, and F. Chen, “Ridge waveguides and Y-branch beam splitters in KTiOAsO4 crystal by 15 MeV oxygen ion irradiation and femtosecond laser ablation,” J. Lightwave Technol. 35(2), 225–229 (2016).
[Crossref]

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
[Crossref] [PubMed]

H. L. Liu, J. R. Vázquez de Aldana, M. H. Hong, and F. Chen, “Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing,” IEEE J. Sel. Top. Quantum Electron. 22(2), 227–230 (2015).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
[Crossref] [PubMed]

Volk, M. F.

Wang, H.

Wang, J.

Wang, K. M.

Wang, L.

Wang, W.

Wang, X. L.

H. Hu, F. Lu, X. L. Wang, F. Chen, and K. M. Wang, “Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose,” Opt. Express 20(19), 21114–21118 (2012).
[Crossref] [PubMed]

J. H. Zhao, X. L. Wang, and F. Chen, “1×4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
[Crossref]

Wang, Z.

Wosinski, L.

Wu, C. H.

Z. S. Gong, R. Yin, W. Ji, and C. H. Wu, “Semiconductor laser using multimode interference principle,” Opt. Laser Technol. 98, 75–78 (2018).
[Crossref]

Wu, H.

Wu, J.

Xing, H. G.

Y. Y. Ren, L. M. Zhang, H. G. Xing, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal,” Opt. Laser Technol. 103, 82–88 (2018).
[Crossref]

Xu, J.

Yang, B. K.

B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photonics Technol. Lett. 21(7), 432–434 (2009).
[Crossref]

Yang, J.

Yin, R.

Z. S. Gong, R. Yin, W. Ji, and C. H. Wu, “Semiconductor laser using multimode interference principle,” Opt. Laser Technol. 98, 75–78 (2018).
[Crossref]

Zamfirescu, M.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd:YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Zhang, D.

B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photonics Technol. Lett. 21(7), 432–434 (2009).
[Crossref]

Zhang, H. J.

Zhang, L. M.

Y. Y. Ren, L. M. Zhang, H. G. Xing, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal,” Opt. Laser Technol. 103, 82–88 (2018).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, J. H.

J. H. Zhao, X. L. Wang, and F. Chen, “1×4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
[Crossref]

Zhou, S.

Zhou, S. Q.

C. Chen, S. Akhmadaliev, C. Romero, J. R. Vázquez de Aldana, S. Q. Zhou, and F. Chen, “Ridge waveguides and Y-branch beam splitters in KTiOAsO4 crystal by 15 MeV oxygen ion irradiation and femtosecond laser ablation,” J. Lightwave Technol. 35(2), 225–229 (2016).
[Crossref]

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Meth. B 320, 22–25 (2014).
[Crossref]

Zhu, H.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

H. L. Liu, J. R. Vázquez de Aldana, M. H. Hong, and F. Chen, “Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing,” IEEE J. Sel. Top. Quantum Electron. 22(2), 227–230 (2015).
[Crossref]

IEEE Photonics J. (1)

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd:YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Nikolaevsky, T. Shchori, and D. Malka, “Modeling a 1×8 MMI green light power splitter based on gallium-nitride slot waveguide structure,” IEEE Photonics Technol. Lett. 30(8), 720–723 (2018).
[Crossref]

B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photonics Technol. Lett. 21(7), 432–434 (2009).
[Crossref]

J. Lightwave Technol. (5)

J. Phys. D Appl. Phys. (1)

K. Hamamoto and H. S. Jiang, “Active MMI devices: concept, proof, and recent progress,” J. Phys. D Appl. Phys. 48(38), 383001 (2015).
[Crossref]

Laser Photonics Rev. (2)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

F. Chen, “Micro‐ and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

Nucl. Instrum. Meth. B (1)

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Meth. B 320, 22–25 (2014).
[Crossref]

Opt. Express (11)

A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008).
[Crossref] [PubMed]

J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express 19(2), 838–847 (2011).
[Crossref] [PubMed]

M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. S. Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm,” Opt. Express 25(10), 10893–10900 (2017).
[Crossref] [PubMed]

D. Brüske, S. Suntsov, C. E. Rüter, and D. Kip, “Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion,” Opt. Express 25(23), 29374–29379 (2017).
[Crossref]

H. Hu, F. Lu, X. L. Wang, F. Chen, and K. M. Wang, “Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose,” Opt. Express 20(19), 21114–21118 (2012).
[Crossref] [PubMed]

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref] [PubMed]

K. Suzuki, G. Cong, K. Tanizawa, S. H. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23(7), 9086–9092 (2015).
[Crossref] [PubMed]

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
[Crossref] [PubMed]

L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals,” Opt. Express 23(23), 30188–30194 (2015).
[Crossref] [PubMed]

G. Demetriou, J. P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
[Crossref] [PubMed]

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (2)

Z. S. Gong, R. Yin, W. Ji, and C. H. Wu, “Semiconductor laser using multimode interference principle,” Opt. Laser Technol. 98, 75–78 (2018).
[Crossref]

Y. Y. Ren, L. M. Zhang, H. G. Xing, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal,” Opt. Laser Technol. 103, 82–88 (2018).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (1)

J. H. Zhao, X. L. Wang, and F. Chen, “1×4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
[Crossref]

Phys. Rev. Appl. (1)

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Refractive index ne of implanted LiNbO3 versus depth, at 1550 nm; (b) 2D refractive index profile of input cross section of the MMI splitter.
Fig. 2
Fig. 2 Schematic plot of probable fabrication process. (a) Ion implantation to form planar waveguide layer; (b) Femtosecond laser ablation to define the splitter configuration.
Fig. 3
Fig. 3 Top view of the MMI splitter.
Fig. 4
Fig. 4 Figure 4(a)-4(e) show modes with different orders of the designed LiNbO3 ridge waveguide, with a tilt angle of 8°.
Fig. 5
Fig. 5 (a) the fundamental mode ( E 11 y ) propagation in optimized MMI splitter, the white dashed defines the boundary of power monitor; (b) Normalized power flux in the monitor.
Fig. 6
Fig. 6 Figure 6(a)-6(c) the field intensities at MMI/Output interface for E 11 y , E 12 y and E 13 y modes respectively; 6(d)-6(f) the field intensities at final cross section of output waveguides for E 11 y , E 12 y and E 13 y modes respectively.
Fig. 7
Fig. 7 7(a) and 7(b) indicates the power flow at one of the output waveguide endface in relationship of Lmmi and Wmmi, respectively.
Fig. 8
Fig. 8 the power flux of arbitrary output waveguide, normalized to the input power, versus groove width w2.

Tables (1)

Tables Icon

Table 1 Insertion loss of different modes as well as optimized Lmmi corresponding to different sidewall angles

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Lmmi= 3p L π 4N .
L π 4 n eff W e 2 . 3λ

Metrics