Abstract

For the cavity-based electromagnetically induced transparent (EIT), as the coherent driving field is enhanced by the optical cavity, the weak probe field can propagate through the atomic ensemble without absorption even if the driving field is weak. The extreme case of vacuum in the cavity is called “vacuum-induced transparency” (VIT) to distinguish it from the cavity EIT. Here we construct a new kind of cavity made of Metamaterials, i.e. ε-negative (EN) and μ-negative (MN) slabs, and study the VIT phenomena of the atomic ensemble doped within it. When the impedances of the MN and EN slabs are matched to each other and the dissipation of the material is small, it behaves as a surface plasmon cavity with a huge Q factor. And the VIT phenomenon in this cavity appears. By adjusting the position of atoms, the coupling strength between the atom and the structure could be changed. Two kinds of extremes of VIT, the coherent population trapping (CPT) and the Autler-Townes splitting (ATS), can be achieved in this system easily. Our proposal could be used in the realization of ultra-strong coupling and integrated devices on quantum memory or optical switch.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system

Ling-Yan He, Tie-Jun Wang, Yong-Pan Gao, Cong Cao, and Chuan Wang
Opt. Express 23(18) 23817-23826 (2015)

Studies of electromagnetically induced transparency in metamaterials

Hua Xu, Yuehui Lu, YoungPak Lee, and Byoung Seung Ham
Opt. Express 18(17) 17736-17747 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  2. J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
    [Crossref] [PubMed]
  3. Y. Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
    [Crossref] [PubMed]
  4. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
    [Crossref] [PubMed]
  5. H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90(2), 023817 (2014).
    [Crossref]
  6. Y.-P. Gao, C. Cao, T.-J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
    [Crossref]
  7. T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Appl. 4(2), 024013 (2015).
    [Crossref]
  8. K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
    [Crossref]
  9. S. E. Harris, “Electromagnetically induced transparency in an ideal plasma,” Phys. Rev. Lett. 77(27), 5357–5360 (1996).
    [Crossref] [PubMed]
  10. J. E. Field, “Vacuum-Rabi-splitting-induced transparency,” Phys. Rev. A 47(6), 5064–5067 (1993).
    [Crossref] [PubMed]
  11. H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73(4), 360–372 (1948).
    [Crossref]
  12. M. O. Scully, “Collective lamb shift in single photon Dicke superradiance,” Phys. Rev. Lett. 102(14), 143601 (2009).
    [Crossref] [PubMed]
  13. W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72(3), 241–243 (1947).
    [Crossref]
  14. J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83(24), 4987–4990 (1999).
    [Crossref]
  15. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85(11), 2392–2395 (2000).
    [Crossref] [PubMed]
  16. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
    [Crossref]
  17. Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
    [Crossref] [PubMed]
  18. J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
    [Crossref]
  19. M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
    [Crossref] [PubMed]
  20. H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon, and V. Vuletić, “Vacuum-induced transparency,” Science 333(6047), 1266–1269 (2011).
    [Crossref] [PubMed]
  21. M. Fleischhauer, “Physics. Switching light by vacuum,” Science 333(6047), 1228–1229 (2011).
    [Crossref] [PubMed]
  22. Y. H. Lien, G. Barontini, M. Scheucher, M. Mergenthaler, J. Goldwin, and E. A. Hinds, “Observing coherence effects in an overdamped quantum system,” Nat. Commun. 7, 13933 (2016).
    [Crossref] [PubMed]
  23. W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
    [Crossref] [PubMed]
  24. A. R. Katko, S. Gu, J. P. Barrett, B. I. Popa, G. Shvets, and S. A. Cummer, “Phase conjugation and negative refraction using nonlinear active metamaterials,” Phys. Rev. Lett. 105(12), 123905 (2010).
    [Crossref] [PubMed]
  25. A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95(23), 237401 (2005).
    [Crossref] [PubMed]
  26. A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
    [Crossref]
  27. M. I. Aslam and D. Ö. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84(19), 195465 (2011).
    [Crossref]
  28. A. Sgrò, D. De Carlo, G. Angiulli, F. C. Morabito, and M. Versaci, “Accurate computation of Drude-Lorentz model coefficients of single negative magnetic metamaterials using a micro-genetic algorithm approach,” in Multidisciplinary Approaches to Neural Computing (Springer, 2018), pp. 47–55.
  29. A. R. Azeez, T. A. Elwi, and Z. A. A. AL-Hussain, “Design and analysis of a novel concentric rings based crossed lines single negative metamaterial structure,” Eng. Sci. Technol. 20, 1140–1146 (2017).
  30. Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
    [Crossref] [PubMed]
  31. G. Song, J. P. Xu, and Y. P. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
    [Crossref]
  32. J. Xu and Y. Yang, “Quantum interference of V-type three-level atom in structures made of left-handed materials and mirrors,” Phys. Rev. A 81(1), 013816 (2010).
    [Crossref]
  33. Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
    [Crossref]
  34. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  35. J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
    [Crossref]
  36. Y. Yang, R. Zeng, J. Xu, and S. Liu, “Casimir force between left-handed-material slabs,” Phys. Rev. A 77(1), 015803 (2008).
    [Crossref]
  37. Y. Yang, R. Zeng, H. Chen, S. Zhu, and M. S. Zubairy, “Controlling the Casimir force via the electromagnetic properties of materials,” Phys. Rev. A 81(2), 022114 (2010).
    [Crossref]
  38. R. Zeng and Y. Yang, “Tunable polarity of the Casimir force based on saturated ferrites,” Phys. Rev. A 83(1), 012517 (2011).
    [Crossref]
  39. A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
    [Crossref]
  40. L. Zhang, Y. Zhang, Y. Yang, H. Li, H. Chen, and S. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
    [Crossref] [PubMed]
  41. L. Zhang, Y. Zhang, Y. Yang, and H. Chen, “Experimental study of Rabi-type oscillation induced by tunneling modes in effective near-zero-index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046604 (2011).
    [Crossref] [PubMed]
  42. H. T. Jiang, H. Chen, and S. Y. Zhu, “Rabi splitting with excitons in effective (near) zero-index media,” Opt. Lett. 32(14), 1980–1982 (2007).
    [Crossref] [PubMed]
  43. X. Zeng, G. Li, Y. Yang, and S. Zhu, “Enhancement of the vacuum Rabi oscillation via surface plasma modes in single-negative metamaterials,” Phys. Rev. A 86(3), 033819 (2012).
    [Crossref]
  44. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1998).
  45. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
    [Crossref]
  46. H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi splitting in a semiconductor circuit QED system,” Phys. Rev. Lett. 110(6), 066802 (2013).
    [Crossref] [PubMed]
  47. S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60(5), 4094–4104 (1999).
    [Crossref]
  48. H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68(4), 043816 (2003).
    [Crossref]
  49. J.-P. Xu, Y.-P. Yang, Q. Lin, and S.-Y. Zhu, “Spontaneous decay of a two-level atom near the left-handed slab,” Phys. Rev. A 79(4), 043812 (2009).
    [Crossref]
  50. M. S. Tomaš, “Green function for multilayers: Light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
    [Crossref] [PubMed]
  51. R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68(1), 1–25 (1999).
    [Crossref]
  52. L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
    [Crossref] [PubMed]
  53. H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
    [Crossref] [PubMed]
  54. G. S. Agarwal, “Nature of the quantum interference in electromagnetic-field-induced control of absorption,” Phys. Rev. A 55(3), 2467–2470 (1997).
    [Crossref]
  55. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
    [Crossref]
  56. L. Zhang, X. Feng, G. Fu, X. Li, L. Han, N. B. Manson, and C. Wei, “Coherent transient in dressed-state and transient spectra of Autler-Townes doublet,” Phys. Rev. A 70(6), 063404 (2004).
    [Crossref]
  57. P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
    [Crossref] [PubMed]
  58. L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
    [Crossref]
  59. C. Zhu, C. Tan, and G. Huang, “Crossover from electromagnetically induced transparency to Autler-Townes splitting in open V-type molecular systems,” Phys. Rev. A 87(4), 043813 (2013).
    [Crossref]
  60. L. Y. He, T. J. Wang, Y. P. Gao, C. Cao, and C. Wang, “Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system,” Opt. Express 23(18), 23817–23826 (2015).
    [Crossref] [PubMed]
  61. B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
    [Crossref] [PubMed]
  62. S.-Y. Zhu and M. O. Scully, “Quantum interference effects in the Autler-Townes spontaneous spectrum,” Phys. Lett. A 201(1), 85–90 (1995).
    [Crossref]
  63. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
    [Crossref] [PubMed]
  64. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
    [Crossref]
  65. A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, “Photon blockade in the ultrastrong coupling regime,” Phys. Rev. Lett. 109(19), 193602 (2012).
    [Crossref] [PubMed]
  66. C. J. Zhu, Y. P. Yang, and G. S. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
    [Crossref]
  67. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  68. V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
    [Crossref]
  69. P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
    [Crossref]
  70. Y. Huang, H. Xu, Y. Lu, and Y. Chen, “All-dielectric metasurface for achieving perfect reflection at visible wavelengths,” J. Phys. Chem. C 122(5), 2990–2996 (2018).
    [Crossref]
  71. J.-E. Broquin, G. Nunzi Conti, C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low ҡ-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
    [Crossref]
  72. J. Dimmock, “Losses in left-handed materials,” Opt. Express 11(19), 2397–2402 (2003).
    [Crossref] [PubMed]
  73. A. Kiraz, M. Atatüre, and A. Imamoğlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
    [Crossref]
  74. Y. Sun, Y. Yang, H. Chen, and S. Zhu, “Dephasing-induced control of interference nature in three-level electromagnetically induced tansparency systems,” Sci. Rep. 5(1), 16370 (2015).
    [Crossref] [PubMed]
  75. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
    [Crossref] [PubMed]
  76. F. Beaudoin, J. M. Gambetta, and A. Blais, “Dissipation and ultrastrong coupling in circuit QED,” Phys. Rev. A 84(4), 043832 (2011).
    [Crossref]
  77. G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
    [Crossref] [PubMed]
  78. J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model,” 6Phys. Rev. Lett. 105(26), 263603 (2010).
    [Crossref] [PubMed]
  79. S. De Liberato, “Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect,” Phys. Rev. Lett. 112(1), 016401 (2014).
    [Crossref] [PubMed]
  80. N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
    [Crossref] [PubMed]
  81. C. Kurter, T. Lan, L. Sarytchev, and S. M. Anlage, “Tunable negative permeability in a three-dimensional superconducting metamaterial,” Phys. Rev. Appl. 3(5), 054010 (2015).
    [Crossref]
  82. M. Sadatgol, Ş. K. Özdemir, L. Yang, and D. Ö. Güney, “Plasmon injection to compensate and control losses in negative index metamaterials,” Phys. Rev. Lett. 115(3), 035502 (2015).
    [Crossref] [PubMed]
  83. I. Al-Naib and W. Withayachumnankul, “Editorial introduction to the special issue: Terahertz metamaterials and photonic crystals,” J. Infrared Millim. Terahertz Waves 38(9), 1031–1033 (2017).
    [Crossref]

2018 (2)

Y. Huang, H. Xu, Y. Lu, and Y. Chen, “All-dielectric metasurface for achieving perfect reflection at visible wavelengths,” J. Phys. Chem. C 122(5), 2990–2996 (2018).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

2017 (6)

I. Al-Naib and W. Withayachumnankul, “Editorial introduction to the special issue: Terahertz metamaterials and photonic crystals,” J. Infrared Millim. Terahertz Waves 38(9), 1031–1033 (2017).
[Crossref]

C. J. Zhu, Y. P. Yang, and G. S. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
[Crossref]

Y.-P. Gao, C. Cao, T.-J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

A. R. Azeez, T. A. Elwi, and Z. A. A. AL-Hussain, “Design and analysis of a novel concentric rings based crossed lines single negative metamaterial structure,” Eng. Sci. Technol. 20, 1140–1146 (2017).

2016 (3)

Y. H. Lien, G. Barontini, M. Scheucher, M. Mergenthaler, J. Goldwin, and E. A. Hinds, “Observing coherence effects in an overdamped quantum system,” Nat. Commun. 7, 13933 (2016).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

J.-E. Broquin, G. Nunzi Conti, C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low ҡ-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
[Crossref]

2015 (8)

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

L. Y. He, T. J. Wang, Y. P. Gao, C. Cao, and C. Wang, “Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system,” Opt. Express 23(18), 23817–23826 (2015).
[Crossref] [PubMed]

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Appl. 4(2), 024013 (2015).
[Crossref]

Y. Sun, Y. Yang, H. Chen, and S. Zhu, “Dephasing-induced control of interference nature in three-level electromagnetically induced tansparency systems,” Sci. Rep. 5(1), 16370 (2015).
[Crossref] [PubMed]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

C. Kurter, T. Lan, L. Sarytchev, and S. M. Anlage, “Tunable negative permeability in a three-dimensional superconducting metamaterial,” Phys. Rev. Appl. 3(5), 054010 (2015).
[Crossref]

M. Sadatgol, Ş. K. Özdemir, L. Yang, and D. Ö. Güney, “Plasmon injection to compensate and control losses in negative index metamaterials,” Phys. Rev. Lett. 115(3), 035502 (2015).
[Crossref] [PubMed]

2014 (5)

S. De Liberato, “Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect,” Phys. Rev. Lett. 112(1), 016401 (2014).
[Crossref] [PubMed]

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90(2), 023817 (2014).
[Crossref]

G. Song, J. P. Xu, and Y. P. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
[Crossref]

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

2013 (4)

H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi splitting in a semiconductor circuit QED system,” Phys. Rev. Lett. 110(6), 066802 (2013).
[Crossref] [PubMed]

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

C. Zhu, C. Tan, and G. Huang, “Crossover from electromagnetically induced transparency to Autler-Townes splitting in open V-type molecular systems,” Phys. Rev. A 87(4), 043813 (2013).
[Crossref]

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

2012 (3)

A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, “Photon blockade in the ultrastrong coupling regime,” Phys. Rev. Lett. 109(19), 193602 (2012).
[Crossref] [PubMed]

X. Zeng, G. Li, Y. Yang, and S. Zhu, “Enhancement of the vacuum Rabi oscillation via surface plasma modes in single-negative metamaterials,” Phys. Rev. A 86(3), 033819 (2012).
[Crossref]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

2011 (8)

F. Beaudoin, J. M. Gambetta, and A. Blais, “Dissipation and ultrastrong coupling in circuit QED,” Phys. Rev. A 84(4), 043832 (2011).
[Crossref]

R. Zeng and Y. Yang, “Tunable polarity of the Casimir force based on saturated ferrites,” Phys. Rev. A 83(1), 012517 (2011).
[Crossref]

L. Zhang, Y. Zhang, Y. Yang, and H. Chen, “Experimental study of Rabi-type oscillation induced by tunneling modes in effective near-zero-index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046604 (2011).
[Crossref] [PubMed]

P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
[Crossref] [PubMed]

M. I. Aslam and D. Ö. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84(19), 195465 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon, and V. Vuletić, “Vacuum-induced transparency,” Science 333(6047), 1266–1269 (2011).
[Crossref] [PubMed]

M. Fleischhauer, “Physics. Switching light by vacuum,” Science 333(6047), 1228–1229 (2011).
[Crossref] [PubMed]

2010 (8)

M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
[Crossref] [PubMed]

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Y. Yang, R. Zeng, H. Chen, S. Zhu, and M. S. Zubairy, “Controlling the Casimir force via the electromagnetic properties of materials,” Phys. Rev. A 81(2), 022114 (2010).
[Crossref]

J. Xu and Y. Yang, “Quantum interference of V-type three-level atom in structures made of left-handed materials and mirrors,” Phys. Rev. A 81(1), 013816 (2010).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

A. R. Katko, S. Gu, J. P. Barrett, B. I. Popa, G. Shvets, and S. A. Cummer, “Phase conjugation and negative refraction using nonlinear active metamaterials,” Phys. Rev. Lett. 105(12), 123905 (2010).
[Crossref] [PubMed]

A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model,” 6Phys. Rev. Lett. 105(26), 263603 (2010).
[Crossref] [PubMed]

2009 (2)

M. O. Scully, “Collective lamb shift in single photon Dicke superradiance,” Phys. Rev. Lett. 102(14), 143601 (2009).
[Crossref] [PubMed]

J.-P. Xu, Y.-P. Yang, Q. Lin, and S.-Y. Zhu, “Spontaneous decay of a two-level atom near the left-handed slab,” Phys. Rev. A 79(4), 043812 (2009).
[Crossref]

2008 (4)

L. Zhang, Y. Zhang, Y. Yang, H. Li, H. Chen, and S. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[Crossref] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

Y. Yang, R. Zeng, J. Xu, and S. Liu, “Casimir force between left-handed-material slabs,” Phys. Rev. A 77(1), 015803 (2008).
[Crossref]

2007 (1)

2006 (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

2005 (4)

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95(23), 237401 (2005).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2004 (2)

L. Zhang, X. Feng, G. Fu, X. Li, L. Han, N. B. Manson, and C. Wei, “Coherent transient in dressed-state and transient spectra of Autler-Townes doublet,” Phys. Rev. A 70(6), 063404 (2004).
[Crossref]

A. Kiraz, M. Atatüre, and A. Imamoğlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
[Crossref]

2003 (3)

J. Dimmock, “Losses in left-handed materials,” Opt. Express 11(19), 2397–2402 (2003).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[Crossref]

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68(4), 043816 (2003).
[Crossref]

2000 (2)

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85(11), 2392–2395 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1999 (4)

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83(24), 4987–4990 (1999).
[Crossref]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60(5), 4094–4104 (1999).
[Crossref]

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68(1), 1–25 (1999).
[Crossref]

1997 (1)

G. S. Agarwal, “Nature of the quantum interference in electromagnetic-field-induced control of absorption,” Phys. Rev. A 55(3), 2467–2470 (1997).
[Crossref]

1996 (4)

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
[Crossref] [PubMed]

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Y. Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
[Crossref] [PubMed]

S. E. Harris, “Electromagnetically induced transparency in an ideal plasma,” Phys. Rev. Lett. 77(27), 5357–5360 (1996).
[Crossref] [PubMed]

1995 (2)

M. S. Tomaš, “Green function for multilayers: Light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
[Crossref] [PubMed]

S.-Y. Zhu and M. O. Scully, “Quantum interference effects in the Autler-Townes spontaneous spectrum,” Phys. Lett. A 201(1), 85–90 (1995).
[Crossref]

1993 (1)

J. E. Field, “Vacuum-Rabi-splitting-induced transparency,” Phys. Rev. A 47(6), 5064–5067 (1993).
[Crossref] [PubMed]

1955 (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

1948 (1)

H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73(4), 360–372 (1948).
[Crossref]

1947 (1)

W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72(3), 241–243 (1947).
[Crossref]

Agarwal, G. S.

C. J. Zhu, Y. P. Yang, and G. S. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
[Crossref]

G. S. Agarwal, “Nature of the quantum interference in electromagnetic-field-induced control of absorption,” Phys. Rev. A 55(3), 2467–2470 (1997).
[Crossref]

AL-Hussain, Z. A. A.

A. R. Azeez, T. A. Elwi, and Z. A. A. AL-Hussain, “Design and analysis of a novel concentric rings based crossed lines single negative metamaterial structure,” Eng. Sci. Technol. 20, 1140–1146 (2017).

Al-Naib, I.

I. Al-Naib and W. Withayachumnankul, “Editorial introduction to the special issue: Terahertz metamaterials and photonic crystals,” J. Infrared Millim. Terahertz Waves 38(9), 1031–1033 (2017).
[Crossref]

Alu, A.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[Crossref]

Anisimov, P. M.

P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
[Crossref] [PubMed]

Anlage, S. M.

C. Kurter, T. Lan, L. Sarytchev, and S. M. Anlage, “Tunable negative permeability in a three-dimensional superconducting metamaterial,” Phys. Rev. Appl. 3(5), 054010 (2015).
[Crossref]

Aslam, M. I.

M. I. Aslam and D. Ö. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84(19), 195465 (2011).
[Crossref]

Atatüre, M.

A. Kiraz, M. Atatüre, and A. Imamoğlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
[Crossref]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

Awschalom, D. D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Azeez, A. R.

A. R. Azeez, T. A. Elwi, and Z. A. A. AL-Hussain, “Design and analysis of a novel concentric rings based crossed lines single negative metamaterial structure,” Eng. Sci. Technol. 20, 1140–1146 (2017).

Barontini, G.

Y. H. Lien, G. Barontini, M. Scheucher, M. Mergenthaler, J. Goldwin, and E. A. Hinds, “Observing coherence effects in an overdamped quantum system,” Nat. Commun. 7, 13933 (2016).
[Crossref] [PubMed]

Barrett, J. P.

A. R. Katko, S. Gu, J. P. Barrett, B. I. Popa, G. Shvets, and S. A. Cummer, “Phase conjugation and negative refraction using nonlinear active metamaterials,” Phys. Rev. Lett. 105(12), 123905 (2010).
[Crossref] [PubMed]

Beaudoin, F.

F. Beaudoin, J. M. Gambetta, and A. Blais, “Dissipation and ultrastrong coupling in circuit QED,” Phys. Rev. A 84(4), 043832 (2011).
[Crossref]

Beck, K. M.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Beck, M.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Belov, P.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Binder, J. M.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

Birnbaum, K. M.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Blais, A.

F. Beaudoin, J. M. Gambetta, and A. Blais, “Dissipation and ultrastrong coupling in circuit QED,” Phys. Rev. A 84(4), 043832 (2011).
[Crossref]

Boca, A.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Bochmann, J.

M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
[Crossref] [PubMed]

Boozer, A. D.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Briggs, D. P.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Broquin, J.-E.

J.-E. Broquin, G. Nunzi Conti, C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low ҡ-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
[Crossref]

Bücker, R.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Buhmann, S. Y.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68(4), 043816 (2003).
[Crossref]

Burkard, G.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Burks, S.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Cao, C.

Cao, Q.-T.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

Casanova, J.

J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model,” 6Phys. Rev. Lett. 105(26), 263603 (2010).
[Crossref] [PubMed]

Casimir, H. B. G.

H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73(4), 360–372 (1948).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chao, Y.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Chen, B. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Chen, H.

Y. Sun, Y. Yang, H. Chen, and S. Zhu, “Dephasing-induced control of interference nature in three-level electromagnetically induced tansparency systems,” Sci. Rep. 5(1), 16370 (2015).
[Crossref] [PubMed]

L. Zhang, Y. Zhang, Y. Yang, and H. Chen, “Experimental study of Rabi-type oscillation induced by tunneling modes in effective near-zero-index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046604 (2011).
[Crossref] [PubMed]

Y. Yang, R. Zeng, H. Chen, S. Zhu, and M. S. Zubairy, “Controlling the Casimir force via the electromagnetic properties of materials,” Phys. Rev. A 81(2), 022114 (2010).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

L. Zhang, Y. Zhang, Y. Yang, H. Li, H. Chen, and S. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[Crossref] [PubMed]

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

H. T. Jiang, H. Chen, and S. Y. Zhu, “Rabi splitting with excitons in effective (near) zero-index media,” Opt. Lett. 32(14), 1980–1982 (2007).
[Crossref] [PubMed]

Chen, M. K.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Chen, W.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon, and V. Vuletić, “Vacuum-induced transparency,” Science 333(6047), 1266–1269 (2011).
[Crossref] [PubMed]

Chen, X.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

Chen, Y.

Y. Huang, H. Xu, Y. Lu, and Y. Chen, “All-dielectric metasurface for achieving perfect reflection at visible wavelengths,” J. Phys. Chem. C 122(5), 2990–2996 (2018).
[Crossref]

Chen, Y. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Ciuti, C.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Cook, J. J. H.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Cummer, S. A.

A. R. Katko, S. Gu, J. P. Barrett, B. I. Popa, G. Shvets, and S. A. Cummer, “Phase conjugation and negative refraction using nonlinear active metamaterials,” Phys. Rev. Lett. 105(12), 123905 (2010).
[Crossref] [PubMed]

Danz, N.

J.-E. Broquin, G. Nunzi Conti, C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low ҡ-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
[Crossref]

De Liberato, S.

S. De Liberato, “Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect,” Phys. Rev. Lett. 112(1), 016401 (2014).
[Crossref] [PubMed]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Dimmock, J.

DiVincenzo, D. P.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Dong, C.-H.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

Dowling, J. P.

P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
[Crossref] [PubMed]

Dung, H. T.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68(4), 043816 (2003).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Elwi, T. A.

A. R. Azeez, T. A. Elwi, and Z. A. A. AL-Hussain, “Design and analysis of a novel concentric rings based crossed lines single negative metamaterial structure,” Eng. Sci. Technol. 20, 1140–1146 (2017).

Engheta, N.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[Crossref]

Englund, D.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Faist, J.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Falco, A. D.

A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Fan, H.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Faraon, A.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Feng, X.

L. Zhang, X. Feng, G. Fu, X. Li, L. Han, N. B. Manson, and C. Wei, “Coherent transient in dressed-state and transient spectra of Autler-Townes doublet,” Phys. Rev. A 70(6), 063404 (2004).
[Crossref]

Field, J. E.

J. E. Field, “Vacuum-Rabi-splitting-induced transparency,” Phys. Rev. A 47(6), 5064–5067 (1993).
[Crossref] [PubMed]

Figueroa, E.

M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
[Crossref] [PubMed]

Fink, M.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, “Physics. Switching light by vacuum,” Science 333(6047), 1228–1229 (2011).
[Crossref] [PubMed]

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Fu, G.

L. Zhang, X. Feng, G. Fu, X. Li, L. Han, N. B. Manson, and C. Wei, “Coherent transient in dressed-state and transient spectra of Autler-Townes doublet,” Phys. Rev. A 70(6), 063404 (2004).
[Crossref]

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Gambetta, J. M.

F. Beaudoin, J. M. Gambetta, and A. Blais, “Dissipation and ultrastrong coupling in circuit QED,” Phys. Rev. A 84(4), 043832 (2011).
[Crossref]

Gao, Y. P.

Gao, Y.-P.

Y.-P. Gao, C. Cao, T.-J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

García-Ripoll, J. J.

J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model,” 6Phys. Rev. Lett. 105(26), 263603 (2010).
[Crossref] [PubMed]

Ge, L.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

Giacobino, E.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Giner, L.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Goldwin, J.

Y. H. Lien, G. Barontini, M. Scheucher, M. Mergenthaler, J. Goldwin, and E. A. Hinds, “Observing coherence effects in an overdamped quantum system,” Nat. Commun. 7, 13933 (2016).
[Crossref] [PubMed]

Gong, Q.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

Gu, S.

A. R. Katko, S. Gu, J. P. Barrett, B. I. Popa, G. Shvets, and S. A. Cummer, “Phase conjugation and negative refraction using nonlinear active metamaterials,” Phys. Rev. Lett. 105(12), 123905 (2010).
[Crossref] [PubMed]

Gu, X.

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90(2), 023817 (2014).
[Crossref]

Gullans, M.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Güney, D. Ö.

M. Sadatgol, Ş. K. Özdemir, L. Yang, and D. Ö. Güney, “Plasmon injection to compensate and control losses in negative index metamaterials,” Phys. Rev. Lett. 115(3), 035502 (2015).
[Crossref] [PubMed]

M. I. Aslam and D. Ö. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84(19), 195465 (2011).
[Crossref]

Guo, G. C.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85(11), 2392–2395 (2000).
[Crossref] [PubMed]

Hagenmüller, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Hahn, C.

M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
[Crossref] [PubMed]

Hamm, J. M.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Han, L.

L. Zhang, X. Feng, G. Fu, X. Li, L. Han, N. B. Manson, and C. Wei, “Coherent transient in dressed-state and transient spectra of Autler-Townes doublet,” Phys. Rev. A 70(6), 063404 (2004).
[Crossref]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency in an ideal plasma,” Phys. Rev. Lett. 77(27), 5357–5360 (1996).
[Crossref] [PubMed]

Hartmann, M. J.

A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, “Photon blockade in the ultrastrong coupling regime,” Phys. Rev. Lett. 109(19), 193602 (2012).
[Crossref] [PubMed]

He, L. Y.

Hemmer, P.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

Hess, O.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Hinds, E. A.

Y. H. Lien, G. Barontini, M. Scheucher, M. Mergenthaler, J. Goldwin, and E. A. Hinds, “Observing coherence effects in an overdamped quantum system,” Nat. Commun. 7, 13933 (2016).
[Crossref] [PubMed]

Huang, G.

C. Zhu, C. Tan, and G. Huang, “Crossover from electromagnetically induced transparency to Autler-Townes splitting in open V-type molecular systems,” Phys. Rev. A 87(4), 043813 (2013).
[Crossref]

Huang, T. T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, H. Xu, Y. Lu, and Y. Chen, “All-dielectric metasurface for achieving perfect reflection at visible wavelengths,” J. Phys. Chem. C 122(5), 2990–2996 (2018).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

A. Kiraz, M. Atatüre, and A. Imamoğlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
[Crossref]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95(23), 237401 (2005).
[Crossref] [PubMed]

Isoya, J.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahnke, K. D.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

Jelezko, F.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

Jiang, H. T.

Jing, H.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

Kaina, N.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

Kästel, J.

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68(4), 043816 (2003).
[Crossref]

Katko, A. R.

A. R. Katko, S. Gu, J. P. Barrett, B. I. Popa, G. Shvets, and S. A. Cummer, “Phase conjugation and negative refraction using nonlinear active metamaterials,” Phys. Rev. Lett. 105(12), 123905 (2010).
[Crossref] [PubMed]

Kawata, S.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95(23), 237401 (2005).
[Crossref] [PubMed]

Keitel, C. H.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Kimble, H. J.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83(24), 4987–4990 (1999).
[Crossref]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Kiraz, A.

A. Kiraz, M. Atatüre, and A. Imamoğlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
[Crossref]

Kitano, M.

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Appl. 4(2), 024013 (2015).
[Crossref]

Kivshar, Y.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Knight, P. L.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Knöll, L.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68(4), 043816 (2003).
[Crossref]

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60(5), 4094–4104 (1999).
[Crossref]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Komiyama, S.

H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi splitting in a semiconductor circuit QED system,” Phys. Rev. Lett. 110(6), 066802 (2013).
[Crossref] [PubMed]

Krasnok, A.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Krauss, T. F.

A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Kravchencko, I. I.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Kuan, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Kumar, S.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Kuo, H. Y.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Kupriyanov, D. V.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Kurter, C.

C. Kurter, T. Lan, L. Sarytchev, and S. M. Anlage, “Tunable negative permeability in a three-dimensional superconducting metamaterial,” Phys. Rev. Appl. 3(5), 054010 (2015).
[Crossref]

Kuzmiak, V.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Lai, Y. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Lam, P. K.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Lamb, W. E.

W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72(3), 241–243 (1947).
[Crossref]

Lan, T.

C. Kurter, T. Lan, L. Sarytchev, and S. M. Anlage, “Tunable negative permeability in a three-dimensional superconducting metamaterial,” Phys. Rev. Appl. 3(5), 054010 (2015).
[Crossref]

Landig, R.

H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon, and V. Vuletić, “Vacuum-induced transparency,” Science 333(6047), 1266–1269 (2011).
[Crossref] [PubMed]

Laurat, J.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Leib, M.

A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, “Photon blockade in the ultrastrong coupling regime,” Phys. Rev. Lett. 109(19), 193602 (2012).
[Crossref] [PubMed]

Lemoult, F.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

Lerosey, G.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

Li, G.

X. Zeng, G. Li, Y. Yang, and S. Zhu, “Enhancement of the vacuum Rabi oscillation via surface plasma modes in single-negative metamaterials,” Phys. Rev. A 86(3), 033819 (2012).
[Crossref]

Li, H.

L. Zhang, Y. Zhang, Y. Yang, H. Li, H. Chen, and S. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[Crossref] [PubMed]

Li, T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

li, W.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Li, X.

L. Zhang, X. Feng, G. Fu, X. Li, L. Han, N. B. Manson, and C. Wei, “Coherent transient in dressed-state and transient spectra of Autler-Townes doublet,” Phys. Rev. A 70(6), 063404 (2004).
[Crossref]

Li, Y. Q.

Li, Y.-Q.

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
[Crossref] [PubMed]

Lien, Y. H.

Y. H. Lien, G. Barontini, M. Scheucher, M. Mergenthaler, J. Goldwin, and E. A. Hinds, “Observing coherence effects in an overdamped quantum system,” Nat. Commun. 7, 13933 (2016).
[Crossref] [PubMed]

Lin, Q.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

J.-P. Xu, Y.-P. Yang, Q. Lin, and S.-Y. Zhu, “Spontaneous decay of a two-level atom near the left-handed slab,” Phys. Rev. A 79(4), 043812 (2009).
[Crossref]

Lin, R. M.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Ling, H. Y.

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
[Crossref] [PubMed]

Liu, R.-S.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

Liu, S.

Y. Yang, R. Zeng, J. Xu, and S. Liu, “Casimir force between left-handed-material slabs,” Phys. Rev. A 77(1), 015803 (2008).
[Crossref]

Liu, Y. X.

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90(2), 023817 (2014).
[Crossref]

Lizuain, I.

J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model,” 6Phys. Rev. Lett. 105(26), 263603 (2010).
[Crossref] [PubMed]

Loss, D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Lu, Y.

Y. Huang, H. Xu, Y. Lu, and Y. Chen, “All-dielectric metasurface for achieving perfect reflection at visible wavelengths,” J. Phys. Chem. C 122(5), 2990–2996 (2018).
[Crossref]

Lukin, M. D.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Maissen, C.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Makarov, S.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Manson, N. B.

L. Zhang, X. Feng, G. Fu, X. Li, L. Han, N. B. Manson, and C. Wei, “Coherent transient in dressed-state and transient spectra of Autler-Townes doublet,” Phys. Rev. A 70(6), 063404 (2004).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Markos, P.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Mergenthaler, M.

Y. H. Lien, G. Barontini, M. Scheucher, M. Mergenthaler, J. Goldwin, and E. A. Hinds, “Observing coherence effects in an overdamped quantum system,” Nat. Commun. 7, 13933 (2016).
[Crossref] [PubMed]

Metsch, M. H.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

Michelotti, F.

J.-E. Broquin, G. Nunzi Conti, C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low ҡ-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
[Crossref]

Miller, R.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Miranowicz, A.

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90(2), 023817 (2014).
[Crossref]

Mishina, O. S.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Moitra, P.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Mücke, M.

M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
[Crossref] [PubMed]

Munzert, P.

J.-E. Broquin, G. Nunzi Conti, C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low ҡ-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
[Crossref]

Murr, K.

M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
[Crossref] [PubMed]

Nagel, A.

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68(1), 1–25 (1999).
[Crossref]

Nakajima, T.

H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi splitting in a semiconductor circuit QED system,” Phys. Rev. Lett. 110(6), 066802 (2013).
[Crossref] [PubMed]

Nakanishi, T.

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Appl. 4(2), 024013 (2015).
[Crossref]

Nicolas, A.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Nori, F.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90(2), 023817 (2014).
[Crossref]

Northup, T. E.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Nunzi Conti, G.

J.-E. Broquin, G. Nunzi Conti, C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low ҡ-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
[Crossref]

Özdemir, S. K.

M. Sadatgol, Ş. K. Özdemir, L. Yang, and D. Ö. Güney, “Plasmon injection to compensate and control losses in negative index metamaterials,” Phys. Rev. Lett. 115(3), 035502 (2015).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Painter, O.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Peng, B.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Petch, J. C.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Petroff, P.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Petrov, M.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Ploschner, M.

A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Polder, D.

H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73(4), 360–372 (1948).
[Crossref]

Popa, B. I.

A. R. Katko, S. Gu, J. P. Barrett, B. I. Popa, G. Shvets, and S. A. Cummer, “Phase conjugation and negative refraction using nonlinear active metamaterials,” Phys. Rev. Lett. 105(12), 123905 (2010).
[Crossref] [PubMed]

Reichl, C.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Rempe, G.

M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
[Crossref] [PubMed]

Retherford, R. C.

W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72(3), 241–243 (1947).
[Crossref]

Ridolfo, A.

A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, “Photon blockade in the ultrastrong coupling regime,” Phys. Rev. Lett. 109(19), 193602 (2012).
[Crossref] [PubMed]

Ritter, S.

M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
[Crossref] [PubMed]

Rizzo, R.

J.-E. Broquin, G. Nunzi Conti, C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low ҡ-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
[Crossref]

Rogers, L. J.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

Romero, G.

J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model,” 6Phys. Rev. Lett. 105(26), 263603 (2010).
[Crossref] [PubMed]

Sadatgol, M.

M. Sadatgol, Ş. K. Özdemir, L. Yang, and D. Ö. Güney, “Plasmon injection to compensate and control losses in negative index metamaterials,” Phys. Rev. Lett. 115(3), 035502 (2015).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Sanders, B. C.

P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
[Crossref] [PubMed]

Sarytchev, L.

C. Kurter, T. Lan, L. Sarytchev, and S. M. Anlage, “Tunable negative permeability in a three-dimensional superconducting metamaterial,” Phys. Rev. Appl. 3(5), 054010 (2015).
[Crossref]

Savasta, S.

A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, “Photon blockade in the ultrastrong coupling regime,” Phys. Rev. Lett. 109(19), 193602 (2012).
[Crossref] [PubMed]

Savelev, R.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Scalari, G.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Scheel, S.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68(4), 043816 (2003).
[Crossref]

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60(5), 4094–4104 (1999).
[Crossref]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Scherman, M.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Scheucher, M.

Y. H. Lien, G. Barontini, M. Scheucher, M. Mergenthaler, J. Goldwin, and E. A. Hinds, “Observing coherence effects in an overdamped quantum system,” Nat. Commun. 7, 13933 (2016).
[Crossref] [PubMed]

Schuh, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Scully, M. O.

M. O. Scully, “Collective lamb shift in single photon Dicke superradiance,” Phys. Rev. Lett. 102(14), 143601 (2009).
[Crossref] [PubMed]

S.-Y. Zhu and M. O. Scully, “Quantum interference effects in the Autler-Townes spontaneous spectrum,” Phys. Lett. A 201(1), 85–90 (1995).
[Crossref]

Sedlacek, J.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Shaffer, J. P.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Sheng, J.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Sheremet, A. S.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Sherwin, M.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Shomroni, I.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Shvets, G.

A. R. Katko, S. Gu, J. P. Barrett, B. I. Popa, G. Shvets, and S. A. Cummer, “Phase conjugation and negative refraction using nonlinear active metamaterials,” Phys. Rev. Lett. 105(12), 123905 (2010).
[Crossref] [PubMed]

Simon, J.

H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon, and V. Vuletić, “Vacuum-induced transparency,” Science 333(6047), 1266–1269 (2011).
[Crossref] [PubMed]

Sipahigil, A.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

Slovick, B. A.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Small, A.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Solano, E.

J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model,” 6Phys. Rev. Lett. 105(26), 263603 (2010).
[Crossref] [PubMed]

Song, G.

G. Song, J. P. Xu, and Y. P. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
[Crossref]

Sparkes, B.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Stoltz, N.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Su, V. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Sumiya, H.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, Y. Yang, H. Chen, and S. Zhu, “Dephasing-induced control of interference nature in three-level electromagnetically induced tansparency systems,” Sci. Rep. 5(1), 16370 (2015).
[Crossref] [PubMed]

Szoplik, T.

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Tan, C.

C. Zhu, C. Tan, and G. Huang, “Crossover from electromagnetically induced transparency to Autler-Townes splitting in open V-type molecular systems,” Phys. Rev. A 87(4), 043813 (2013).
[Crossref]

Tanaka, T.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95(23), 237401 (2005).
[Crossref] [PubMed]

Tanji-Suzuki, H.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon, and V. Vuletić, “Vacuum-induced transparency,” Science 333(6047), 1266–1269 (2011).
[Crossref] [PubMed]

Teraji, T.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

Toida, H.

H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi splitting in a semiconductor circuit QED system,” Phys. Rev. Lett. 110(6), 066802 (2013).
[Crossref] [PubMed]

Tomaš, M. S.

M. S. Tomaš, “Green function for multilayers: Light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
[Crossref] [PubMed]

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Turcinková, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Valentine, J.

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Veissier, L.

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

Vernooy, D. W.

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83(24), 4987–4990 (1999).
[Crossref]

Villas-Boas, C. J.

M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
[Crossref] [PubMed]

Vuckovic, J.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Vuletic, V.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon, and V. Vuletić, “Vacuum-induced transparency,” Science 333(6047), 1266–1269 (2011).
[Crossref] [PubMed]

Wächter, C.

J.-E. Broquin, G. Nunzi Conti, C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low ҡ-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
[Crossref]

Wang, C.

Wang, H.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90(2), 023817 (2014).
[Crossref]

Wang, J. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Wang, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Wang, T. J.

Wang, T.-J.

Y.-P. Gao, C. Cao, T.-J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

Wang, Z.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Wartak, M. S.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

Wegscheider, W.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Wei, C.

L. Zhang, X. Feng, G. Fu, X. Li, L. Han, N. B. Manson, and C. Wei, “Coherent transient in dressed-state and transient spectra of Autler-Townes doublet,” Phys. Rev. A 70(6), 063404 (2004).
[Crossref]

Welsch, D. G.

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60(5), 4094–4104 (1999).
[Crossref]

Welsch, D.-G.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68(4), 043816 (2003).
[Crossref]

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Withayachumnankul, W.

I. Al-Naib and W. Withayachumnankul, “Editorial introduction to the special issue: Terahertz metamaterials and photonic crystals,” J. Infrared Millim. Terahertz Waves 38(9), 1031–1033 (2017).
[Crossref]

Wu, P. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Wynands, R.

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68(1), 1–25 (1999).
[Crossref]

Xiao, M.

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
[Crossref] [PubMed]

Y. Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
[Crossref] [PubMed]

Xiao, Y.-F.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

Xu, H.

Y. Huang, H. Xu, Y. Lu, and Y. Chen, “All-dielectric metasurface for achieving perfect reflection at visible wavelengths,” J. Phys. Chem. C 122(5), 2990–2996 (2018).
[Crossref]

Xu, J.

J. Xu and Y. Yang, “Quantum interference of V-type three-level atom in structures made of left-handed materials and mirrors,” Phys. Rev. A 81(1), 013816 (2010).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

Y. Yang, R. Zeng, J. Xu, and S. Liu, “Casimir force between left-handed-material slabs,” Phys. Rev. A 77(1), 015803 (2008).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

Xu, J. P.

G. Song, J. P. Xu, and Y. P. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
[Crossref]

Xu, J.-P.

J.-P. Xu, Y.-P. Yang, Q. Lin, and S.-Y. Zhu, “Spontaneous decay of a two-level atom near the left-handed slab,” Phys. Rev. A 79(4), 043812 (2009).
[Crossref]

Yang, L.

M. Sadatgol, Ş. K. Özdemir, L. Yang, and D. Ö. Güney, “Plasmon injection to compensate and control losses in negative index metamaterials,” Phys. Rev. Lett. 115(3), 035502 (2015).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Yang, Y.

Y. Sun, Y. Yang, H. Chen, and S. Zhu, “Dephasing-induced control of interference nature in three-level electromagnetically induced tansparency systems,” Sci. Rep. 5(1), 16370 (2015).
[Crossref] [PubMed]

X. Zeng, G. Li, Y. Yang, and S. Zhu, “Enhancement of the vacuum Rabi oscillation via surface plasma modes in single-negative metamaterials,” Phys. Rev. A 86(3), 033819 (2012).
[Crossref]

R. Zeng and Y. Yang, “Tunable polarity of the Casimir force based on saturated ferrites,” Phys. Rev. A 83(1), 012517 (2011).
[Crossref]

L. Zhang, Y. Zhang, Y. Yang, and H. Chen, “Experimental study of Rabi-type oscillation induced by tunneling modes in effective near-zero-index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046604 (2011).
[Crossref] [PubMed]

Y. Yang, R. Zeng, H. Chen, S. Zhu, and M. S. Zubairy, “Controlling the Casimir force via the electromagnetic properties of materials,” Phys. Rev. A 81(2), 022114 (2010).
[Crossref]

J. Xu and Y. Yang, “Quantum interference of V-type three-level atom in structures made of left-handed materials and mirrors,” Phys. Rev. A 81(1), 013816 (2010).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

Y. Yang, R. Zeng, J. Xu, and S. Liu, “Casimir force between left-handed-material slabs,” Phys. Rev. A 77(1), 015803 (2008).
[Crossref]

L. Zhang, Y. Zhang, Y. Yang, H. Li, H. Chen, and S. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[Crossref] [PubMed]

Yang, Y. P.

C. J. Zhu, Y. P. Yang, and G. S. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
[Crossref]

G. Song, J. P. Xu, and Y. P. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
[Crossref]

Yang, Y.-P.

J.-P. Xu, Y.-P. Yang, Q. Lin, and S.-Y. Zhu, “Spontaneous decay of a two-level atom near the left-handed slab,” Phys. Rev. A 79(4), 043812 (2009).
[Crossref]

Ye, J.

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83(24), 4987–4990 (1999).
[Crossref]

Zeng, R.

R. Zeng and Y. Yang, “Tunable polarity of the Casimir force based on saturated ferrites,” Phys. Rev. A 83(1), 012517 (2011).
[Crossref]

Y. Yang, R. Zeng, H. Chen, S. Zhu, and M. S. Zubairy, “Controlling the Casimir force via the electromagnetic properties of materials,” Phys. Rev. A 81(2), 022114 (2010).
[Crossref]

Y. Yang, R. Zeng, J. Xu, and S. Liu, “Casimir force between left-handed-material slabs,” Phys. Rev. A 77(1), 015803 (2008).
[Crossref]

Zeng, X.

X. Zeng, G. Li, Y. Yang, and S. Zhu, “Enhancement of the vacuum Rabi oscillation via surface plasma modes in single-negative metamaterials,” Phys. Rev. A 86(3), 033819 (2012).
[Crossref]

Zhang, L.

L. Zhang, Y. Zhang, Y. Yang, and H. Chen, “Experimental study of Rabi-type oscillation induced by tunneling modes in effective near-zero-index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046604 (2011).
[Crossref] [PubMed]

L. Zhang, Y. Zhang, Y. Yang, H. Li, H. Chen, and S. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[Crossref] [PubMed]

L. Zhang, X. Feng, G. Fu, X. Li, L. Han, N. B. Manson, and C. Wei, “Coherent transient in dressed-state and transient spectra of Autler-Townes doublet,” Phys. Rev. A 70(6), 063404 (2004).
[Crossref]

Zhang, Y.

Y.-P. Gao, C. Cao, T.-J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

L. Zhang, Y. Zhang, Y. Yang, and H. Chen, “Experimental study of Rabi-type oscillation induced by tunneling modes in effective near-zero-index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046604 (2011).
[Crossref] [PubMed]

L. Zhang, Y. Zhang, Y. Yang, H. Li, H. Chen, and S. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[Crossref] [PubMed]

Zheng, S. B.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85(11), 2392–2395 (2000).
[Crossref] [PubMed]

Zhu, C.

C. Zhu, C. Tan, and G. Huang, “Crossover from electromagnetically induced transparency to Autler-Townes splitting in open V-type molecular systems,” Phys. Rev. A 87(4), 043813 (2013).
[Crossref]

Zhu, C. J.

C. J. Zhu, Y. P. Yang, and G. S. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Y. Sun, Y. Yang, H. Chen, and S. Zhu, “Dephasing-induced control of interference nature in three-level electromagnetically induced tansparency systems,” Sci. Rep. 5(1), 16370 (2015).
[Crossref] [PubMed]

X. Zeng, G. Li, Y. Yang, and S. Zhu, “Enhancement of the vacuum Rabi oscillation via surface plasma modes in single-negative metamaterials,” Phys. Rev. A 86(3), 033819 (2012).
[Crossref]

Y. Yang, R. Zeng, H. Chen, S. Zhu, and M. S. Zubairy, “Controlling the Casimir force via the electromagnetic properties of materials,” Phys. Rev. A 81(2), 022114 (2010).
[Crossref]

L. Zhang, Y. Zhang, Y. Yang, H. Li, H. Chen, and S. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[Crossref] [PubMed]

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

Zhu, S. Y.

Zhu, S.-Y.

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

J.-P. Xu, Y.-P. Yang, Q. Lin, and S.-Y. Zhu, “Spontaneous decay of a two-level atom near the left-handed slab,” Phys. Rev. A 79(4), 043812 (2009).
[Crossref]

S.-Y. Zhu and M. O. Scully, “Quantum interference effects in the Autler-Townes spontaneous spectrum,” Phys. Lett. A 201(1), 85–90 (1995).
[Crossref]

Zubairy, M. S.

Y. Yang, R. Zeng, H. Chen, S. Zhu, and M. S. Zubairy, “Controlling the Casimir force via the electromagnetic properties of materials,” Phys. Rev. A 81(2), 022114 (2010).
[Crossref]

ACS Photonics (1)

P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Appl. Phys. B (1)

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68(1), 1–25 (1999).
[Crossref]

Eng. Sci. Technol. (1)

A. R. Azeez, T. A. Elwi, and Z. A. A. AL-Hussain, “Design and analysis of a novel concentric rings based crossed lines single negative metamaterial structure,” Eng. Sci. Technol. 20, 1140–1146 (2017).

IEEE Trans. Antenn. Propag. (1)

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

I. Al-Naib and W. Withayachumnankul, “Editorial introduction to the special issue: Terahertz metamaterials and photonic crystals,” J. Infrared Millim. Terahertz Waves 38(9), 1031–1033 (2017).
[Crossref]

J. Phys. Chem. C (1)

Y. Huang, H. Xu, Y. Lu, and Y. Chen, “All-dielectric metasurface for achieving perfect reflection at visible wavelengths,” J. Phys. Chem. C 122(5), 2990–2996 (2018).
[Crossref]

Nat. Commun. (2)

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Y. H. Lien, G. Barontini, M. Scheucher, M. Mergenthaler, J. Goldwin, and E. A. Hinds, “Observing coherence effects in an overdamped quantum system,” Nat. Commun. 7, 13933 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Nat. Phys. (2)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Nature (4)

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465(7299), 755–758 (2010).
[Crossref] [PubMed]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. A (1)

S.-Y. Zhu and M. O. Scully, “Quantum interference effects in the Autler-Townes spontaneous spectrum,” Phys. Lett. A 201(1), 85–90 (1995).
[Crossref]

Phys. Rev. (3)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73(4), 360–372 (1948).
[Crossref]

W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72(3), 241–243 (1947).
[Crossref]

Phys. Rev. A (25)

J. E. Field, “Vacuum-Rabi-splitting-induced transparency,” Phys. Rev. A 47(6), 5064–5067 (1993).
[Crossref] [PubMed]

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90(2), 023817 (2014).
[Crossref]

Y.-P. Gao, C. Cao, T.-J. Wang, Y. Zhang, and C. Wang, “Cavity-mediated coupling of phonons and magnons,” Phys. Rev. A 96(2), 023826 (2017).
[Crossref]

G. Song, J. P. Xu, and Y. P. Yang, “Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials,” Phys. Rev. A 89(5), 053830 (2014).
[Crossref]

J. Xu and Y. Yang, “Quantum interference of V-type three-level atom in structures made of left-handed materials and mirrors,” Phys. Rev. A 81(1), 013816 (2010).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

Y. Yang, R. Zeng, J. Xu, and S. Liu, “Casimir force between left-handed-material slabs,” Phys. Rev. A 77(1), 015803 (2008).
[Crossref]

Y. Yang, R. Zeng, H. Chen, S. Zhu, and M. S. Zubairy, “Controlling the Casimir force via the electromagnetic properties of materials,” Phys. Rev. A 81(2), 022114 (2010).
[Crossref]

R. Zeng and Y. Yang, “Tunable polarity of the Casimir force based on saturated ferrites,” Phys. Rev. A 83(1), 012517 (2011).
[Crossref]

L. Zhang, X. Feng, G. Fu, X. Li, L. Han, N. B. Manson, and C. Wei, “Coherent transient in dressed-state and transient spectra of Autler-Townes doublet,” Phys. Rev. A 70(6), 063404 (2004).
[Crossref]

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
[Crossref] [PubMed]

G. S. Agarwal, “Nature of the quantum interference in electromagnetic-field-induced control of absorption,” Phys. Rev. A 55(3), 2467–2470 (1997).
[Crossref]

X. Zeng, G. Li, Y. Yang, and S. Zhu, “Enhancement of the vacuum Rabi oscillation via surface plasma modes in single-negative metamaterials,” Phys. Rev. A 86(3), 033819 (2012).
[Crossref]

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60(5), 4094–4104 (1999).
[Crossref]

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68(4), 043816 (2003).
[Crossref]

J.-P. Xu, Y.-P. Yang, Q. Lin, and S.-Y. Zhu, “Spontaneous decay of a two-level atom near the left-handed slab,” Phys. Rev. A 79(4), 043812 (2009).
[Crossref]

M. S. Tomaš, “Green function for multilayers: Light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
[Crossref] [PubMed]

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87(1), 013823 (2013).
[Crossref]

C. Zhu, C. Tan, and G. Huang, “Crossover from electromagnetically induced transparency to Autler-Townes splitting in open V-type molecular systems,” Phys. Rev. A 87(4), 043813 (2013).
[Crossref]

A. Kiraz, M. Atatüre, and A. Imamoğlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
[Crossref]

C. J. Zhu, Y. P. Yang, and G. S. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
[Crossref]

F. Beaudoin, J. M. Gambetta, and A. Blais, “Dissipation and ultrastrong coupling in circuit QED,” Phys. Rev. A 84(4), 043832 (2011).
[Crossref]

Phys. Rev. Appl. (2)

C. Kurter, T. Lan, L. Sarytchev, and S. M. Anlage, “Tunable negative permeability in a three-dimensional superconducting metamaterial,” Phys. Rev. Appl. 3(5), 054010 (2015).
[Crossref]

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Appl. 4(2), 024013 (2015).
[Crossref]

Phys. Rev. B (2)

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81(19), 195128 (2010).
[Crossref]

M. I. Aslam and D. Ö. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84(19), 195465 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

L. Zhang, Y. Zhang, Y. Yang, H. Li, H. Chen, and S. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[Crossref] [PubMed]

L. Zhang, Y. Zhang, Y. Yang, and H. Chen, “Experimental study of Rabi-type oscillation induced by tunneling modes in effective near-zero-index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046604 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (17)

P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
[Crossref] [PubMed]

H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi splitting in a semiconductor circuit QED system,” Phys. Rev. Lett. 110(6), 066802 (2013).
[Crossref] [PubMed]

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113(26), 263602 (2014).
[Crossref] [PubMed]

A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, “Photon blockade in the ultrastrong coupling regime,” Phys. Rev. Lett. 109(19), 193602 (2012).
[Crossref] [PubMed]

Y. Yang, J. Xu, H. Chen, and S. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100(4), 043601 (2008).
[Crossref] [PubMed]

A. R. Katko, S. Gu, J. P. Barrett, B. I. Popa, G. Shvets, and S. A. Cummer, “Phase conjugation and negative refraction using nonlinear active metamaterials,” Phys. Rev. Lett. 105(12), 123905 (2010).
[Crossref] [PubMed]

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95(23), 237401 (2005).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

S. E. Harris, “Electromagnetically induced transparency in an ideal plasma,” Phys. Rev. Lett. 77(27), 5357–5360 (1996).
[Crossref] [PubMed]

J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83(24), 4987–4990 (1999).
[Crossref]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85(11), 2392–2395 (2000).
[Crossref] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118(3), 033901 (2017).
[Crossref] [PubMed]

M. O. Scully, “Collective lamb shift in single photon Dicke superradiance,” Phys. Rev. Lett. 102(14), 143601 (2009).
[Crossref] [PubMed]

M. Sadatgol, Ş. K. Özdemir, L. Yang, and D. Ö. Güney, “Plasmon injection to compensate and control losses in negative index metamaterials,” Phys. Rev. Lett. 115(3), 035502 (2015).
[Crossref] [PubMed]

J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model,” 6Phys. Rev. Lett. 105(26), 263603 (2010).
[Crossref] [PubMed]

S. De Liberato, “Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect,” Phys. Rev. Lett. 112(1), 016401 (2014).
[Crossref] [PubMed]

Proc. SPIE (2)

V. Kuzmiak, P. Markos, T. Szoplik, A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

J.-E. Broquin, G. Nunzi Conti, C. Wächter, R. Rizzo, F. Michelotti, P. Munzert, and N. Danz, “Leaky waveguides for low ҡ-measurement: From structure design to loss evaluation,” Proc. SPIE 9750, 975019 (2016).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Sci. Rep. (1)

Y. Sun, Y. Yang, H. Chen, and S. Zhu, “Dephasing-induced control of interference nature in three-level electromagnetically induced tansparency systems,” Sci. Rep. 5(1), 16370 (2015).
[Crossref] [PubMed]

Science (4)

H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon, and V. Vuletić, “Vacuum-induced transparency,” Science 333(6047), 1266–1269 (2011).
[Crossref] [PubMed]

M. Fleischhauer, “Physics. Switching light by vacuum,” Science 333(6047), 1228–1229 (2011).
[Crossref] [PubMed]

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Other (2)

A. Sgrò, D. De Carlo, G. Angiulli, F. C. Morabito, and M. Versaci, “Accurate computation of Drude-Lorentz model coefficients of single negative magnetic metamaterials using a micro-genetic algorithm approach,” in Multidisciplinary Approaches to Neural Computing (Springer, 2018), pp. 47–55.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 A single layer of Λ -type three-level atoms located near the interface between a μ -negative slab and a ε -negative slab. The level scheme of an atom is shown in the dashed circle. The directions of polarization are indicated by double-headed arrows.
Fig. 2
Fig. 2 The transmittance spectrum of the combo of EN and MN slabs for the normal incident. Relative parameters are presented in the context.
Fig. 3
Fig. 3 The normalized electric field intensity distribution of the surface mode in the combo of EN and MN slabs at ω = ω 0 = 3 × 10 15 s 1 . Three modes with propagating constants K | | = K 0 , 10 K 0 , 100 K 0 are shown.
Fig. 4
Fig. 4 Cooperativity parameter η (black solid line), the coupling of control field 2g (blue dash line), and the decay rate of atomic transition | a | b Γ a b (red dot line) change with the position of atoms.
Fig. 5
Fig. 5 The real part (blue solid line) and imaginary part (red dash line) of susceptibility of the atom layer in the combo structure. The atom layer is located at z 0 = 0.01 λ 0 which leads to 2 g = 1.4 × 10 9 s 1 and η = 8.4 . Other parameters are Δ c = 0 , Γ a b = 4.7 × 10 9 s 1 , κ = 2 π × 8 × 10 6 H z , = 0.25 .
Fig. 6
Fig. 6 The transmission spectrum of the atomic layer in the combo structure (Blue solid curve). The atom layer is located at z 0 = 0.01 λ 0 which leads to 2 g = 1.4 × 10 9 s 1 and η = 8.4 . Other parameters are Δ c = 0 , Γ a b = 4.7 × 10 9 s 1 , κ = 2 π × 8 × 10 6 H z , = 0.25 . For comparison, the transmission spectrum of the atom layer in free space is also plotted in the red dashed curve.
Fig. 7
Fig. 7 The transmission spectrum of the atom layer in the combo structure. The atom layer is located at z 0 = 0.033 λ 0 , which leads to 2 g = 2.3 × 10 8 s 1 and η = 0.24 . Other parameters are the same with those in Fig. 5. It shows the phenomena of Coherent population trapping. The FWHM of the small peak is 2 π × 8 × 10 6 H z , which is almost equal to the cavity loss.
Fig. 8
Fig. 8 The transmission spectrum of the atom layer in the combo structure. The atom layer is located at z 0 = 0.001 λ 0 , which leads to Ω c = 2 g = 2 π × 7.0 × 10 9 H z and η = 8.3 × 10 3 . Other parameters are the same as those in Fig. 5. Two discrete dips demonstrate the Autler-Townes splitting, and the splitting value is equal to Ω c = 2 g .
Fig. 9
Fig. 9 The transmission spectrum of the atom layer in the combo structure. The blue solid curve refers to the case of n c = 1 , while the red dashed curve refers to the case of n c = 0 . The areal density of atom is N / σ =8 × 10 12 m 2 , so that = 1 . The atomic layer is located at z 0 = 0.001 λ 0 .
Fig. 10
Fig. 10 VIT transmission spectrum under different losses ( z 0 = 0.0001 λ 0 ). For γ e , m = 1.67 × 10 4.5 ω 0 , cavity loss κ is larger than the decay rate of the atom Γ , so what we can see is only a transmission dip around Δ =0 . The transmission at Δ =0 increases when γ e , m = 1.67 × 10 5 ω 0 . As the dissipations decrease to 1.67 × 10 5.5 ω 0 or less, the splitting becomes significant and VIT phenomena can be distinguished clearly.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H = ω a b | a a | + ω c b | c c | ( Ω p e i ω p t | a b | + Ω c e i ω c t | a c | + H . c . ) ,
χ = | μ a b | 2 N ε 0 V 4 δ ( | Ω c | 2 4 δ Δ ) 4 Δ γ b c 2 + i 8 δ 2 γ a b + i 2 γ b c ( | Ω c | 2 + γ b c γ a b ) | | Ω c | 2 + γ a b γ b c 4 Δ δ + i 2 δ γ a b + i 2 Δ γ b c | 2 .
Ω c = 2 g n c + 1
η = 4 g 2 / γ a b γ b c
η = 4 g 2 / κ Γ a b
χ = | μ a b | 2 N ε 0 V [ 2 δ ˜ ( η δ ˜ Δ ˜ ) 2 Δ ˜ + i 2 ( δ ˜ 2 + η + 1 ) ( η + 1 Δ ˜ δ ˜ ) 2 + ( Δ ˜ + δ ˜ ) ] 1 Γ a b
ε 1 = 2
μ 1 = 1 ω m 2 ω 2 + i γ m ω
ε 2 = 1 ω e 2 ω 2 + i γ e ω , μ 2 = 2
4 g 2 = 2 ω a c 2 μ a c 2 c 2 ε 0 Re μ 1 4 π 0 K 3 K 1 2 K 1 z [ 1 + 2 R 12 T M r 10 T M e 2 i K 1 z d 1 + R 12 T M e 2 i K 1 z z 0 + r 10 T M e 2 i K 1 z ( d 1 z 0 ) 1 R 12 T M r 10 T M e 2 i K 1 z d 1 ] d K | ω = ω a c
Γ ab = 2 ω a b 2 μ a b 2 c 2 ε 0 Re μ 1 8 π 0 K K 1 z [ 1 + 2 R 12 T E r 10 T E e 2 i K 1 z d 1 + R 12 T E e 2 i K 1 z z 0 + r 10 T E e 2 i K 1 z ( d 1 z 0 ) 1 R 12 T M r 10 T M e 2 i K 1 z d 1 ] + K 1 z 2 K 1 2 [ 1 + 2 R 12 T M r 10 T M e 2 i K 1 z d 1 + R 12 T M e 2 i K 1 z z 0 + r 10 T M e 2 i K 1 z ( d 1 z 0 ) 1 R 12 T M r 10 T M e 2 i K 1 z d 1 ] d K | ω = ω a b
R 12 q = r 12 q + r 20 q e 2 i k 2 z d 2 1 + r 12 q r 20 q e 2 i k 2 z d 2
χ = 4 K a b L Δ ˜ ( η Δ ˜ δ ˜ ) δ ˜ i ( η + 1 + δ ˜ 2 ) ( η + 1 + δ ˜ 2 ) 2 + ( Δ ˜ + δ ˜ ) 2

Metrics