Abstract

We present the potential of an antireflection self-reference method based on ultra-thin tantalum nitride (TaN) nanofilms for improving terahertz (THz) reflection spectroscopy. The antireflection self-reference method is proposed to eliminate mutual interference caused by unwanted reflections, which significantly interferes with the important reflection from the actual sample in THz reflection measurement. The antireflection self-reference model was investigated using a wave-impedance matching approach, and the theoretical model was verified in experimental studies. We experimentally demonstrated this antireflection self-reference method can completely eliminate the effect of mutual interference, accurately recover the actual sample’s reflection and improve THz reflection spectroscopy. Our method paves the way to implement a straightforward, accurate and efficient approach to investigate THz properties of the liquids and biological samples.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband antireflection coating for optimized terahertz beam splitters

Weien Lai, Norman Born, Lorenz Maximilian Schneider, Arash Rahimi-Iman, Jan C. Balzer, and Martin Koch
Opt. Mater. Express 5(12) 2812-2819 (2015)

Self-referenced ultra-broadband transient terahertz spectroscopy using air-photonics

F. D’Angelo, H. Němec, S. H. Parekh, P. Kužel, M. Bonn, and D. Turchinovich
Opt. Express 24(9) 10157-10171 (2016)

Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy

Peter Uhd Jepsen, Uffe Møller, and Hannes Merbold
Opt. Express 15(22) 14717-14737 (2007)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).
    [Crossref]
  4. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  5. E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
    [Crossref] [PubMed]
  6. U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, “Terahertz reflection spectroscopy of Debye relaxation in polar liquids,” J. Opt. Soc. Am. B 26(9), A113–A125 (2009).
    [Crossref]
  7. J. Shi, Y. Wang, T. Chen, D. Xu, H. Zhao, L. Chen, C. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “Automatic evaluation of traumatic brain injury based on terahertz imaging with machine learning,” Opt. Express 26(5), 6371–6381 (2018).
    [Crossref] [PubMed]
  8. W. E. Lai, H. W. Zhang, Y. H. Zhu, and Q. Y. Wen, “A novel method of terahertz spectroscopy and imaging in reflection geometry,” Appl. Spectrosc. 67(1), 36–39 (2013).
    [Crossref] [PubMed]
  9. W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
    [Crossref] [PubMed]
  10. P. U. Jepsen, U. Møller, and H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy,” Opt. Express 15(22), 14717–14737 (2007).
    [Crossref] [PubMed]
  11. P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
    [Crossref] [PubMed]
  12. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
    [Crossref] [PubMed]
  13. C. Rønne and S. R. Keiding, “Low frequency spectroscopy of liquid water using THz-time domain spectroscopy,” J. Mol. Liq. 101(1-3), 199–218 (2002).
    [Crossref]
  14. S. Y. Huang, Y. X. Wang, D. K. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-Macpherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149–160 (2009).
    [Crossref] [PubMed]
  15. M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27(4), 505–515 (2006).
    [Crossref]
  16. S. Huang, P. C. Ashworth, K. W. Kan, Y. Chen, V. P. Wallace, Y. T. Zhang, and E. Pickwell-MacPherson, “Improved sample characterization in terahertz reflection imaging and spectroscopy,” Opt. Express 17(5), 3848–3854 (2009).
    [Crossref] [PubMed]
  17. M. Dressel and G. Grüner, “Electrodynamics of solids: optical properties of electrons in matter,” (AAPT, 2002).
  18. A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
    [Crossref]
  19. W. E. Lai, H. W. Zhang, Y. H. Zhu, Q. Y. Wen, W. W. Du, and X. L. Tang, “Bilayer metallic nanofilms as broadband antireflection coatings in terahertz optical systems,” Opt. Express 22(3), 2174–2184 (2014).
    [Crossref] [PubMed]
  20. W. Lai, N. Born, L. M. Schneider, A. Rahimi-Iman, J. C. Balzer, and M. Koch, “Broadband antireflection coating for optimized terahertz beam splitters,” Opt. Mater. Express 5(12), 2812–2819 (2015).
    [Crossref]
  21. J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express 15(11), 6552–6560 (2007).
    [Crossref] [PubMed]
  22. M. Born and E. Wolf, Principles of Optics (Pergamon Press 1980).
  23. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range,” Opt. Express 17(5), 3063–3077 (2009).
    [Crossref] [PubMed]
  24. S. McKnight, K. Stewart, H. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. 27(5), 327–333 (1987).
    [Crossref]
  25. E. Pickwell, B. Cole, A. Fitzgerald, V. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
    [Crossref]
  26. J. Kindt and C. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996).
    [Crossref]
  27. J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols,” Chem. Phys. Lett. 165(4), 369–373 (1990).
    [Crossref]

2018 (1)

2015 (1)

2014 (2)

2013 (1)

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

2009 (5)

2008 (1)

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

2007 (3)

2006 (2)

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).
[Crossref]

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27(4), 505–515 (2006).
[Crossref]

2004 (2)

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

E. Pickwell, B. Cole, A. Fitzgerald, V. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[Crossref]

2002 (3)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

C. Rønne and S. R. Keiding, “Low frequency spectroscopy of liquid water using THz-time domain spectroscopy,” J. Mol. Liq. 101(1-3), 199–218 (2002).
[Crossref]

1996 (1)

J. Kindt and C. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996).
[Crossref]

1990 (1)

J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols,” Chem. Phys. Lett. 165(4), 369–373 (1990).
[Crossref]

1987 (1)

S. McKnight, K. Stewart, H. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. 27(5), 327–333 (1987).
[Crossref]

Ahuja, A. T.

S. Y. Huang, Y. X. Wang, D. K. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-Macpherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149–160 (2009).
[Crossref] [PubMed]

Al-Naib, I.

Arikawa, T.

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27(4), 505–515 (2006).
[Crossref]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Ashworth, P. C.

Bachhuber, K.

J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols,” Chem. Phys. Lett. 165(4), 369–373 (1990).
[Crossref]

Balzer, J. C.

Barthel, J.

J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols,” Chem. Phys. Lett. 165(4), 369–373 (1990).
[Crossref]

Born, N.

Brückner, C.

Buchner, R.

J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols,” Chem. Phys. Lett. 165(4), 369–373 (1990).
[Crossref]

Cao, W.

Chen, L.

Chen, T.

Chen, Y.

Cole, B.

E. Pickwell, B. Cole, A. Fitzgerald, V. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[Crossref]

Cole, B. E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, “Terahertz reflection spectroscopy of Debye relaxation in polar liquids,” J. Opt. Soc. Am. B 26(9), A113–A125 (2009).
[Crossref]

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).
[Crossref]

Darmo, J.

Drew, H.

S. McKnight, K. Stewart, H. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. 27(5), 327–333 (1987).
[Crossref]

Du, W. W.

Feng, H.

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fitzgerald, A.

E. Pickwell, B. Cole, A. Fitzgerald, V. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[Crossref]

Fitzgerald, A. J.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

He, Y.

Hegmann, F. A.

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).
[Crossref]

Helm, H.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Hetzenauer, H.

J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols,” Chem. Phys. Lett. 165(4), 369–373 (1990).
[Crossref]

Huang, S.

Huang, S. Y.

S. Y. Huang, Y. X. Wang, D. K. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-Macpherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149–160 (2009).
[Crossref] [PubMed]

Jepsen, P. U.

Kan, K. W.

Käsebier, T.

Keiding, S. R.

C. Rønne and S. R. Keiding, “Low frequency spectroscopy of liquid water using THz-time domain spectroscopy,” J. Mol. Liq. 101(1-3), 199–218 (2002).
[Crossref]

Kern, A.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Kindt, J.

J. Kindt and C. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996).
[Crossref]

Kley, E.-B.

Koch, M.

W. Lai, N. Born, L. M. Schneider, A. Rahimi-Iman, J. C. Balzer, and M. Koch, “Broadband antireflection coating for optimized terahertz beam splitters,” Opt. Mater. Express 5(12), 2812–2819 (2015).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Kröll, J.

Lai, W.

Lai, W. E.

Linfield, E. H.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

McKnight, S.

S. McKnight, K. Stewart, H. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. 27(5), 327–333 (1987).
[Crossref]

Merbold, H.

Møller, U.

Moorjani, K.

S. McKnight, K. Stewart, H. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. 27(5), 327–333 (1987).
[Crossref]

Nagai, M.

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27(4), 505–515 (2006).
[Crossref]

Notni, G.

O’Hara, J. F.

Pepper, M.

P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
[Crossref] [PubMed]

E. Pickwell, B. Cole, A. Fitzgerald, V. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[Crossref]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Pickwell, E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

E. Pickwell, B. Cole, A. Fitzgerald, V. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[Crossref]

Pickwell-Macpherson, E.

Pinder, S. E.

Pradarutti, B.

Provenzano, E.

Purushotham, A. D.

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Rahimi-Iman, A.

Riehemann, S.

Rønne, C.

C. Rønne and S. R. Keiding, “Low frequency spectroscopy of liquid water using THz-time domain spectroscopy,” J. Mol. Liq. 101(1-3), 199–218 (2002).
[Crossref]

Schmuttenmaer, C.

J. Kindt and C. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996).
[Crossref]

Schneider, L. M.

Shi, J.

Stewart, K.

S. McKnight, K. Stewart, H. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. 27(5), 327–333 (1987).
[Crossref]

Tanaka, K.

U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, “Terahertz reflection spectroscopy of Debye relaxation in polar liquids,” J. Opt. Soc. Am. B 26(9), A113–A125 (2009).
[Crossref]

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27(4), 505–515 (2006).
[Crossref]

Tang, L.

Tang, X. L.

Thoman, A.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Tiedje, T.

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tünnermann, A.

Unterrainer, K.

Wallace, V.

E. Pickwell, B. Cole, A. Fitzgerald, V. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[Crossref]

Wallace, V. P.

S. Huang, P. C. Ashworth, K. W. Kan, Y. Chen, V. P. Wallace, Y. T. Zhang, and E. Pickwell-MacPherson, “Improved sample characterization in terahertz reflection imaging and spectroscopy,” Opt. Express 17(5), 3848–3854 (2009).
[Crossref] [PubMed]

P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
[Crossref] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Walther, M.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Wang, Y.

Wang, Y. X.

S. Y. Huang, Y. X. Wang, D. K. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-Macpherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149–160 (2009).
[Crossref] [PubMed]

Wen, Q. Y.

Withayachumnankul, W.

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Xu, D.

Yada, H.

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27(4), 505–515 (2006).
[Crossref]

Yan, C.

Yao, J.

Yeung, D. K.

S. Y. Huang, Y. X. Wang, D. K. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-Macpherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149–160 (2009).
[Crossref] [PubMed]

Young, E. C.

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).
[Crossref]

Zhang, H. W.

Zhang, W.

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhang, Y. T.

S. Y. Huang, Y. X. Wang, D. K. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-Macpherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149–160 (2009).
[Crossref] [PubMed]

S. Huang, P. C. Ashworth, K. W. Kan, Y. Chen, V. P. Wallace, Y. T. Zhang, and E. Pickwell-MacPherson, “Improved sample characterization in terahertz reflection imaging and spectroscopy,” Opt. Express 17(5), 3848–3854 (2009).
[Crossref] [PubMed]

Zhao, H.

Zhu, Y. H.

Appl. Phys. Lett. (2)

D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).
[Crossref]

E. Pickwell, B. Cole, A. Fitzgerald, V. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[Crossref]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols,” Chem. Phys. Lett. 165(4), 369–373 (1990).
[Crossref]

Infrared Phys. (1)

S. McKnight, K. Stewart, H. Drew, and K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. 27(5), 327–333 (1987).
[Crossref]

Int. J. Infrared Millim. Waves (1)

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27(4), 505–515 (2006).
[Crossref]

J. Mol. Liq. (1)

C. Rønne and S. R. Keiding, “Low frequency spectroscopy of liquid water using THz-time domain spectroscopy,” J. Mol. Liq. 101(1-3), 199–218 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

J. Kindt and C. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (8)

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref] [PubMed]

P. U. Jepsen, U. Møller, and H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy,” Opt. Express 15(22), 14717–14737 (2007).
[Crossref] [PubMed]

P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
[Crossref] [PubMed]

J. Shi, Y. Wang, T. Chen, D. Xu, H. Zhao, L. Chen, C. Yan, L. Tang, Y. He, H. Feng, and J. Yao, “Automatic evaluation of traumatic brain injury based on terahertz imaging with machine learning,” Opt. Express 26(5), 6371–6381 (2018).
[Crossref] [PubMed]

S. Huang, P. C. Ashworth, K. W. Kan, Y. Chen, V. P. Wallace, Y. T. Zhang, and E. Pickwell-MacPherson, “Improved sample characterization in terahertz reflection imaging and spectroscopy,” Opt. Express 17(5), 3848–3854 (2009).
[Crossref] [PubMed]

W. E. Lai, H. W. Zhang, Y. H. Zhu, Q. Y. Wen, W. W. Du, and X. L. Tang, “Bilayer metallic nanofilms as broadband antireflection coatings in terahertz optical systems,” Opt. Express 22(3), 2174–2184 (2014).
[Crossref] [PubMed]

J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express 15(11), 6552–6560 (2007).
[Crossref] [PubMed]

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range,” Opt. Express 17(5), 3063–3077 (2009).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Med. Biol. (3)

S. Y. Huang, Y. X. Wang, D. K. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-Macpherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149–160 (2009).
[Crossref] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

Phys. Rev. B (1)

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics (Pergamon Press 1980).

M. Dressel and G. Grüner, “Electrodynamics of solids: optical properties of electrons in matter,” (AAPT, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of THz pulses propagating through the interfaces between two media covered by a metallic antireflection coating.
Fig. 2
Fig. 2 AFM image of a TaN film produced by RF magnetron sputtering onto the silicon substrate (a); The main and the second terahertz pulses transmitted through bare silicon substrate and the silicon substrate with ultrathin TaN film in reflection geometry respectively (b).
Fig. 3
Fig. 3 Time domain waveforms of the measured reference reflection R r e f , the measured superposed reflection R r e f + R s a m and recovered sample reflection R s a m using our proposed method.
Fig. 4
Fig. 4 The real and imaginary part of the dielectric function of water from the experiment and Debye model fitting.
Fig. 5
Fig. 5 Application of auto-measurement spectroscopy systems using the self-reference method.

Tables (1)

Tables Icon

Table 1 Parameters of double Debye model of water

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E s a m ( ω ) = E i ( ω ) t a i r / s u b r s u b / f i l m / s a m t s u b / a i r exp ( i ω c 2 n s u b d s u b cos θ 2 )
E r e f ( ω ) = E i ( ω ) r a i r / s u b ,
E s a m ( ω ) E r e f ( ω ) = t a i r / s u b r s u b / f i l m / s a m t s u b / a i r r a i r / s u b exp ( i ω c 2 n s u b d s u b cos θ 2 ) .
ε ˜ r ( ω ) = ε + ε s ε m 1 + i ω τ 1 + ε m ε 1 + i ω τ 2

Metrics