Abstract

White light generated by mixing the red, green, and blue laser diodes (RGB LDs) for simultaneous high-speed underwater wireless optical communication (UWOC) and high-efficiency underwater solid-state lighting (SSL) was proposed and demonstrated experimentally for the first time. The allowable maximum real-time data transmission rates of 3.2 Gbps, 3.4 Gbps, and 3.1 Gbps for RGB LDs with corresponding BERs of 3.6 × 10−3, 3.5 × 10−3 and 3.7 × 10−3 were obtained at a 2.3 m underwater transmission distance using an on-off keying (OOK) modulation scheme, respectively. And the corresponding UWOC aggregate data rate of 9.7 Gbps was achieved based on RGB LDs-based wavelength-division multiplexing (WDM) UWOC. Moreover, UWOC and underwater SSL by using RGB LDs mixed white light were investigated at different scenarios over an underwater link of 2.3 m. The RGB LDs mixed white light-based UWOC system without optical diffusers yielded a maximum allowable data rate of 8.7 Gbps with Commission International de l’Eclairage coordinates (CIE) of (0.3154, 0.3354), a correlated color temperature of 6322 K, a color rendering index of 69.3 and a corresponding illuminance of 7084 lux. Furthermore, optical diffusers were employed to provide large-area underwater SSL. The LDs mixed white light-based UWOC system with line and circle optical diffusers implemented data rates of 5.9 Gbps and 6.6 Gbps with CIE coordinates of (0.3183, 0.3269) and (0.3298, 0.3390), respectively. This work suggests the potential of LDs for applications in high-efficiency underwater white-light SSL and high-speed UWOC.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication

Meiwei Kong, Weichao Lv, Tariq Ali, Rohail Sarwar, Chuying Yu, Yang Qiu, Fengzhong Qu, Zhiwei Xu, Jun Han, and Jing Xu
Opt. Express 25(17) 20829-20834 (2017)

20-meter underwater wireless optical communication link with 1.5 Gbps data rate

Chao Shen, Yujian Guo, Hassan M. Oubei, Tien Khee Ng, Guangyu Liu, Ki-Hong Park, Kang-Ting Ho, Mohamed-Slim Alouini, and Boon S. Ooi
Opt. Express 24(22) 25502-25509 (2016)

34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation

Xiaoyan Liu, Suyu Yi, Xiaolin Zhou, Zhilai Fang, Zhi-Jun Qiu, Laigui Hu, Chunxiao Cong, Lirong Zheng, Ran Liu, and Pengfei Tian
Opt. Express 25(22) 27937-27947 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
    [Crossref]
  2. Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
    [Crossref]
  3. P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
    [Crossref] [PubMed]
  4. F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63(3), 882–891 (2015).
    [Crossref]
  5. C. Wang, H. Y. Yu, Y. J. Zhu, T. Wang, and Y. W. Ji, “Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver,” Opt. Commun. 410, 889–895 (2018).
    [Crossref]
  6. C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2017).
  7. B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
    [Crossref] [PubMed]
  8. Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
    [Crossref] [PubMed]
  9. Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
    [Crossref] [PubMed]
  10. X. Liu, S. Yi, X. Zhou, Z. Fang, Z. J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
    [Crossref] [PubMed]
  11. Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
    [Crossref] [PubMed]
  12. C. Y. Li, H. H. Lu, W. S. Tsai, M. T. Cheng, C. M. Ho, Y. C. Wang, Z. Y. Yang, and D. Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
    [Crossref] [PubMed]
  13. F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: Toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
    [Crossref]
  14. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
    [Crossref] [PubMed]
  15. M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, and J. Xu, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express 25(17), 20829–20834 (2017).
    [Crossref] [PubMed]
  16. A. Burton, H. L. Minh, N. Aslam, L. Le, and T. D. Nguyen, “LED based lighting and communications: An emerging technology for a greener more sustainable future,” EAI. EU 4(13), 152982 (2017).
  17. S. C. Shen, H. J. Huang, C. C. Chao, and M. C. Huang, “Design and analysis of a high-intensity LED lighting module for underwater illumination,” Appl. Ocean Res. 39(1), 89–96 (2013).
    [Crossref]
  18. A. Susanto, R. Irnawati, M. Mustahal, and M. A. Syabana, “Fishing efficiency of LED lamps for fixed lift net fisheries in Banten Bay indonesia,” Turk. J. Fish. Aquat. Sci. 17(2), 283–291 (2017).
    [Crossref]
  19. P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
    [Crossref]
  20. P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
    [Crossref]
  21. H. Singh, J. Howland, and O. Pizarro, “Advances in large-area photomosaicking underwater,” IEEE J. Oceanic Eng. 29(3), 872–886 (2004).
    [Crossref]
  22. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
    [Crossref] [PubMed]
  23. D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
    [Crossref] [PubMed]
  24. Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
    [Crossref]
  25. M. A. D. Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, “Unraveling the “Green Gap” problem: The role of random alloy fluctuations in InGaN/GaN light emitting diodes,” Phys. Rev. Lett. 116(2), 27401 (2015).
    [Crossref]
  26. E. Taylor, P. R. Edwards, and R. W. Martin, “Colorimetry and efficiency of white LEDs: Spectral width dependence,” Phys. Status Solidi., A Appl. Mater. Sci. 209(3), 461–464 (2012).
    [Crossref]
  27. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Globecom Workshops (IEEE, 2011), pp. 833–837.

2018 (1)

C. Wang, H. Y. Yu, Y. J. Zhu, T. Wang, and Y. W. Ji, “Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver,” Opt. Commun. 410, 889–895 (2018).
[Crossref]

2017 (14)

C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2017).

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
[Crossref] [PubMed]

A. Susanto, R. Irnawati, M. Mustahal, and M. A. Syabana, “Fishing efficiency of LED lamps for fixed lift net fisheries in Banten Bay indonesia,” Turk. J. Fish. Aquat. Sci. 17(2), 283–291 (2017).
[Crossref]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z. J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

C. Y. Li, H. H. Lu, W. S. Tsai, M. T. Cheng, C. M. Ho, Y. C. Wang, Z. Y. Yang, and D. Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
[Crossref] [PubMed]

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: Toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, and J. Xu, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express 25(17), 20829–20834 (2017).
[Crossref] [PubMed]

A. Burton, H. L. Minh, N. Aslam, L. Le, and T. D. Nguyen, “LED based lighting and communications: An emerging technology for a greener more sustainable future,” EAI. EU 4(13), 152982 (2017).

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

2016 (1)

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

2015 (5)

2014 (1)

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

2013 (1)

S. C. Shen, H. J. Huang, C. C. Chao, and M. C. Huang, “Design and analysis of a high-intensity LED lighting module for underwater illumination,” Appl. Ocean Res. 39(1), 89–96 (2013).
[Crossref]

2012 (2)

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

E. Taylor, P. R. Edwards, and R. W. Martin, “Colorimetry and efficiency of white LEDs: Spectral width dependence,” Phys. Status Solidi., A Appl. Mater. Sci. 209(3), 461–464 (2012).
[Crossref]

2004 (1)

H. Singh, J. Howland, and O. Pizarro, “Advances in large-area photomosaicking underwater,” IEEE J. Oceanic Eng. 29(3), 872–886 (2004).
[Crossref]

Akhoundi, F.

F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63(3), 882–891 (2015).
[Crossref]

Ali, T.

Aslam, N.

A. Burton, H. L. Minh, N. Aslam, L. Le, and T. D. Nguyen, “LED based lighting and communications: An emerging technology for a greener more sustainable future,” EAI. EU 4(13), 152982 (2017).

Bakaul, M.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: Toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Burton, A.

A. Burton, H. L. Minh, N. Aslam, L. Le, and T. D. Nguyen, “LED based lighting and communications: An emerging technology for a greener more sustainable future,” EAI. EU 4(13), 152982 (2017).

Carlo, A. D.

M. A. D. Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, “Unraveling the “Green Gap” problem: The role of random alloy fluctuations in InGaN/GaN light emitting diodes,” Phys. Rev. Lett. 116(2), 27401 (2015).
[Crossref]

Chao, C. C.

S. C. Shen, H. J. Huang, C. C. Chao, and M. C. Huang, “Design and analysis of a high-intensity LED lighting module for underwater illumination,” Appl. Ocean Res. 39(1), 89–96 (2013).
[Crossref]

Chen, D. Y.

Chen, H. Y.

Chen, Y.

Chen, Z.

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Cheng, J.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Cheng, M. T.

Chi, Y. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

Cong, C.

Dawson, M. D.

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Deng, N.

Dong, Y.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Durán Retamal, J. R.

Edwards, P. R.

E. Taylor, P. R. Edwards, and R. W. Martin, “Colorimetry and efficiency of white LEDs: Spectral width dependence,” Phys. Status Solidi., A Appl. Mater. Sci. 209(3), 461–464 (2012).
[Crossref]

Fang, Z.

Ferreira, R.

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

Fu, S.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Gong, Z.

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Gu, E.

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Guilhabert, B.

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Guo, C.

Haas, H.

Han, J.

He, J. H.

Herrnsdorf, J.

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

Ho, C. M.

Hofmann, W.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Howland, J.

H. Singh, J. Howland, and O. Pizarro, “Advances in large-area photomosaicking underwater,” IEEE J. Oceanic Eng. 29(3), 872–886 (2004).
[Crossref]

Hsieh, D. H.

Hu, L.

Huang, D. W.

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

Huang, H. J.

S. C. Shen, H. J. Huang, C. C. Chao, and M. C. Huang, “Design and analysis of a high-intensity LED lighting module for underwater illumination,” Appl. Ocean Res. 39(1), 89–96 (2013).
[Crossref]

Huang, M. C.

S. C. Shen, H. J. Huang, C. C. Chao, and M. C. Huang, “Design and analysis of a high-intensity LED lighting module for underwater illumination,” Appl. Ocean Res. 39(1), 89–96 (2013).
[Crossref]

Huang, Y.

Huang, Y. F.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

Irnawati, R.

A. Susanto, R. Irnawati, M. Mustahal, and M. A. Syabana, “Fishing efficiency of LED lamps for fixed lift net fisheries in Banten Bay indonesia,” Turk. J. Fish. Aquat. Sci. 17(2), 283–291 (2017).
[Crossref]

Janjua, B.

Ji, Y. W.

C. Wang, H. Y. Yu, Y. J. Zhu, T. Wang, and Y. W. Ji, “Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver,” Opt. Commun. 410, 889–895 (2018).
[Crossref]

Kaddoum, G.

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

Kao, H. Y.

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

Kaushal, H.

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

Kelly, A. E.

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

Kong, M.

Kuo, H. C.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

Le, L.

A. Burton, H. L. Minh, N. Aslam, L. Le, and T. D. Nguyen, “LED based lighting and communications: An emerging technology for a greener more sustainable future,” EAI. EU 4(13), 152982 (2017).

Li, C. Y.

Li, Z.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Lin, G. R.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

Liu, J.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Liu, R.

Liu, X.

Lu, H. H.

Lv, W.

Martin, R. W.

E. Taylor, P. R. Edwards, and R. W. Martin, “Colorimetry and efficiency of white LEDs: Spectral width dependence,” Phys. Status Solidi., A Appl. Mater. Sci. 209(3), 461–464 (2012).
[Crossref]

Maur, M. A. D.

M. A. D. Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, “Unraveling the “Green Gap” problem: The role of random alloy fluctuations in InGaN/GaN light emitting diodes,” Phys. Rev. Lett. 116(2), 27401 (2015).
[Crossref]

Mckendry, J. J. D.

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Mei, Y.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Minh, H. L.

A. Burton, H. L. Minh, N. Aslam, L. Le, and T. D. Nguyen, “LED based lighting and communications: An emerging technology for a greener more sustainable future,” EAI. EU 4(13), 152982 (2017).

Mustahal, M.

A. Susanto, R. Irnawati, M. Mustahal, and M. A. Syabana, “Fishing efficiency of LED lamps for fixed lift net fisheries in Banten Bay indonesia,” Turk. J. Fish. Aquat. Sci. 17(2), 283–291 (2017).
[Crossref]

Nakamura, S.

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

Ng, T. K.

Nguyen, T. D.

A. Burton, H. L. Minh, N. Aslam, L. Le, and T. D. Nguyen, “LED based lighting and communications: An emerging technology for a greener more sustainable future,” EAI. EU 4(13), 152982 (2017).

Ooi, B. S.

Oubei, H. M.

Parthiban, R.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: Toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Pecchia, A.

M. A. D. Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, “Unraveling the “Green Gap” problem: The role of random alloy fluctuations in InGaN/GaN light emitting diodes,” Phys. Rev. Lett. 116(2), 27401 (2015).
[Crossref]

Penazzi, G.

M. A. D. Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, “Unraveling the “Green Gap” problem: The role of random alloy fluctuations in InGaN/GaN light emitting diodes,” Phys. Rev. Lett. 116(2), 27401 (2015).
[Crossref]

Pizarro, O.

H. Singh, J. Howland, and O. Pizarro, “Advances in large-area photomosaicking underwater,” IEEE J. Oceanic Eng. 29(3), 872–886 (2004).
[Crossref]

Qiu, Y.

Qiu, Z. J.

Qu, F.

Rodrigues, W.

M. A. D. Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, “Unraveling the “Green Gap” problem: The role of random alloy fluctuations in InGaN/GaN light emitting diodes,” Phys. Rev. Lett. 116(2), 27401 (2015).
[Crossref]

Salehi, J. A.

F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63(3), 882–891 (2015).
[Crossref]

Sarwar, R.

Shen, S. C.

S. C. Shen, H. J. Huang, C. C. Chao, and M. C. Huang, “Design and analysis of a high-intensity LED lighting module for underwater illumination,” Appl. Ocean Res. 39(1), 89–96 (2013).
[Crossref]

Singh, H.

H. Singh, J. Howland, and O. Pizarro, “Advances in large-area photomosaicking underwater,” IEEE J. Oceanic Eng. 29(3), 872–886 (2004).
[Crossref]

Sun, B.

Susanto, A.

A. Susanto, R. Irnawati, M. Mustahal, and M. A. Syabana, “Fishing efficiency of LED lamps for fixed lift net fisheries in Banten Bay indonesia,” Turk. J. Fish. Aquat. Sci. 17(2), 283–291 (2017).
[Crossref]

Syabana, M. A.

A. Susanto, R. Irnawati, M. Mustahal, and M. A. Syabana, “Fishing efficiency of LED lamps for fixed lift net fisheries in Banten Bay indonesia,” Turk. J. Fish. Aquat. Sci. 17(2), 283–291 (2017).
[Crossref]

Tashakori, A.

F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63(3), 882–891 (2015).
[Crossref]

Taylor, E.

E. Taylor, P. R. Edwards, and R. W. Martin, “Colorimetry and efficiency of white LEDs: Spectral width dependence,” Phys. Status Solidi., A Appl. Mater. Sci. 209(3), 461–464 (2012).
[Crossref]

Tian, P.

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
[Crossref] [PubMed]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z. J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Tsai, C. T.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

Tsai, W. S.

Tsonev, D.

Videv, S.

Wang, C.

C. Wang, H. Y. Yu, Y. J. Zhu, T. Wang, and Y. W. Ji, “Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver,” Opt. Commun. 410, 889–895 (2018).
[Crossref]

C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2017).

Wang, H. Y.

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

Wang, J.

Wang, T.

C. Wang, H. Y. Yu, Y. J. Zhu, T. Wang, and Y. W. Ji, “Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver,” Opt. Commun. 410, 889–895 (2018).
[Crossref]

Wang, Y. C.

Watson, I. M.

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Watson, S.

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

Weng, G.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Wu, T. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

Xu, J.

Xu, Z.

Yang, H.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Yang, Z. Y.

Yi, S.

Ying, L.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Yu, C.

Yu, H. Y.

C. Wang, H. Y. Yu, Y. J. Zhu, T. Wang, and Y. W. Ji, “Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver,” Opt. Commun. 410, 889–895 (2018).
[Crossref]

C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2017).

Zafar, F.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: Toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Zeng, Z.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Zhang, B.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Zhang, G.

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Zhang, H.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Zhang, J.

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Zhang, S.

Zheng, L.

Zhou, X.

Zhu, Y. J.

C. Wang, H. Y. Yu, Y. J. Zhu, T. Wang, and Y. W. Ji, “Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver,” Opt. Commun. 410, 889–895 (2018).
[Crossref]

C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2017).

Appl. Ocean Res. (1)

S. C. Shen, H. J. Huang, C. C. Chao, and M. C. Huang, “Design and analysis of a high-intensity LED lighting module for underwater illumination,” Appl. Ocean Res. 39(1), 89–96 (2013).
[Crossref]

Appl. Phys. Lett. (2)

P. Tian, J. J. D. Mckendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, “Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 105(17), 171107 (2014).
[Crossref]

P. Tian, J. J. D. Mckendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

EAI. EU (1)

A. Burton, H. L. Minh, N. Aslam, L. Le, and T. D. Nguyen, “LED based lighting and communications: An emerging technology for a greener more sustainable future,” EAI. EU 4(13), 152982 (2017).

IEEE Access (1)

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

IEEE Commun. Mag. (1)

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: Toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

IEEE J. Oceanic Eng. (1)

H. Singh, J. Howland, and O. Pizarro, “Advances in large-area photomosaicking underwater,” IEEE J. Oceanic Eng. 29(3), 872–886 (2004).
[Crossref]

IEEE Photonics J. (1)

C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2017).

IEEE Trans. Commun. (1)

F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63(3), 882–891 (2015).
[Crossref]

Light Sci. Appl. (1)

Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Opt. Commun. (1)

C. Wang, H. Y. Yu, Y. J. Zhu, T. Wang, and Y. W. Ji, “Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver,” Opt. Commun. 410, 889–895 (2018).
[Crossref]

Opt. Express (8)

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
[Crossref] [PubMed]

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z. J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

C. Y. Li, H. H. Lu, W. S. Tsai, M. T. Cheng, C. M. Ho, Y. C. Wang, Z. Y. Yang, and D. Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, and J. Xu, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express 25(17), 20829–20834 (2017).
[Crossref] [PubMed]

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. A. D. Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, “Unraveling the “Green Gap” problem: The role of random alloy fluctuations in InGaN/GaN light emitting diodes,” Phys. Rev. Lett. 116(2), 27401 (2015).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

E. Taylor, P. R. Edwards, and R. W. Martin, “Colorimetry and efficiency of white LEDs: Spectral width dependence,” Phys. Status Solidi., A Appl. Mater. Sci. 209(3), 461–464 (2012).
[Crossref]

Sci. Rep. (3)

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Y. F. Huang, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, H. C. Kuo, S. Nakamura, D. W. Huang, and G. R. Lin, “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep. 7(1), 10478 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

Turk. J. Fish. Aquat. Sci. (1)

A. Susanto, R. Irnawati, M. Mustahal, and M. A. Syabana, “Fishing efficiency of LED lamps for fixed lift net fisheries in Banten Bay indonesia,” Turk. J. Fish. Aquat. Sci. 17(2), 283–291 (2017).
[Crossref]

Other (1)

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Globecom Workshops (IEEE, 2011), pp. 833–837.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Experiment setup of the proposed RGB LDs-based white-light system for underwater SSL and WDM UWOC.
Fig. 2
Fig. 2 External quantum efficiency versus injection current of the RGB LDs.
Fig. 3
Fig. 3 Normalized frequency responses of the RGB LDs at injection currents of 83 mA, 69 mA and 37 mA, respectively. The dashed line represents the −3 dB bandwidth.
Fig. 4
Fig. 4 Received light-output power versus injection current of the (a) red, (b) green and (c) blue LDs at a 2.3 m transmission distance without and with water in the tank.
Fig. 5
Fig. 5 CIE coordinates of the generated white-light mixing RGB LDs in free-space. Inset: emission spectrum of the white-light.
Fig. 6
Fig. 6 BER characteristics of the (a) red, (b) green and (c) blue LDs under different injection currents (top) and various modulation depths (bottom).
Fig. 7
Fig. 7 Images of the proposed RGB LDs-based WDM UWOC and underwater SSL. Diffusers were not used. Pictures of (a) the system of long-distance UWOC link and underwater SSL, (b) the magnified transmitter consisting of the packaged RGB LDs with the Tx lenses and dichroic mirrors, and (c) collimated light beam through the 2.3 m underwater transmission channel. (d) CIE 1931 chromaticity diagram of the W-RGB.
Fig. 8
Fig. 8 The UWOC performances of the I-RGB and W-RGB at the underwater transmission distance of 2.3 m. BER versus data rate of (a) I-RGB and (b) W-RGB. The FEC threshold is marked in dash line. Eye diagrams of the (c) I-RGB scenario at data rates of 2.5 Gbps, 3.0 Gbps and 2.3 Gbps for RGB LDs, respectively, and (d) W-RGB scenario at data rates of 2.5 Gbps, 3.0 Gbps and 2.3 Gbps for RGB LDs, respectively.
Fig. 9
Fig. 9 Images of the proposed RGB LDs-based WDM UWOC and underwater SSL system with various diffusers. Pictures of (a) the UWOC link, (b) the magnified transmitter including RGB LDs with three Tx lenses, two ND filters, two dichroic mirrors, and optical diffusers, (c) diffused and divergent white light with the optical diffuser, (d) the RGB LDs-based white light diverged by the line diffuser through the water, and (e) the RGB LDs-based white light diverged by the circle diffuser through the water.
Fig. 10
Fig. 10 Angle-dependent illuminance distribution of the white light and CIE 1931 coordinates of the (a) WL-RGB and (b) W20-RGB system. Inset: the corresponding white-light spectra of WL-RGB and W20-RGB, respectively.
Fig. 11
Fig. 11 The UWOC performances of the WL-RGB and W20-RGB at an underwater transmission distance of 2.3 m. BER versus data rate of the (a) WL-RGB and (b) W20-RGB system. The dash line represents the FEC threshold. Eye diagrams of the (c) WL-RGB at data rates of 2.4 Gbps, 1.5 Gbps and 2.0 Gbps, respectively, and (d) W20-RGB at data rates of 2.4 Gbps, 2.5 Gbps and 1.7 Gbps for RGB LDs, respectively.

Tables (2)

Tables Icon

Table 1 The parameters of the RGB LDs for generating white light

Tables Icon

Table 2 Performances of the proposed RGB LDs-based WDM UWOC and underwater SSL system

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P i = P 0 e c l
c = 1 l ln P 0 P i

Metrics