Abstract

Various types of pre- and post-treatments to optical fibers are typically used to improve and/or change the properties of fiber Bragg grating (FBG). Here, we investigate experimentally the effects of NIR femtosecond (fs) laser pulses used for pre- and post-treatment on the refractive index of the fiber, and the resulting center wavelength shift of an fs inscribed FBG. We observe “red”-shift when applying a suitable pre-treatment, and both “blue”- and “red”-shifts when applying post-treatment. We characterize the photo-treatment parameters and compare to an FBG inscribed on a fresh fiber without any treatment. We also show that when the photo-treatment is saturated the result is a phase-shifted grating. Our results give further insight into the process of fs photo-treatments and quantify the effects in the case of fs FBG inscription.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of femtosecond photo-treatment on inscription of fiber Bragg gratings

Avishay Shamir and Amiel A. Ishaaya
Opt. Lett. 41(4) 765-768 (2016)

Strain-assisted femtosecond inscription of phase-shifted gratings

Aviran Halstuch and Amiel. A. Ishaaya
Opt. Lett. 43(16) 3893-3896 (2018)

High-temperature stable π-phase-shifted fiber Bragg gratings inscribed using infrared femtosecond pulses and a phase mask

Cyril Hnatovsky, Dan Grobnic, and Stephen J. Mihailov
Opt. Express 26(18) 23550-23564 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
    [Crossref]
  2. J. Thomas, C. Voigtlaender, R. G. Becker, D. Richter, A. Tuennermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
    [Crossref]
  3. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
    [Crossref]
  4. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  5. K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
    [Crossref]
  6. P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, K. A. Zagorul’ko, A. Dragomir, D. N. Nikogosyan, and A. A. Ruth, “Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths,” Microelectron. Eng. 69(2–4), 248–255 (2003).
    [Crossref]
  7. P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
    [Crossref]
  8. J. Shi, Y. Li, S. Liu, H. Wang, N. Liu, and P. Lu, “Bandwidth-narrowed Bragg gratings inscribed in double-cladding fiber by femtosecond laser,” Opt. Express 19(3), 1734–1742 (2011).
    [Crossref] [PubMed]
  9. G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Blank beam fabrication of regenerated type IA gratings,” Meas. Sci. Technol. 15(8), 1665–1669 (2004).
    [Crossref]
  10. K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-power near-infrared lasers,” Meas. Sci. Technol. 17(5), 968–974 (2006).
    [Crossref]
  11. M. L. Åslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid Decay of Type-II Femtosecond Laser Inscribed Gratings Within-switched Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 22(7), 504–506 (2010).
    [Crossref]
  12. P. Dekker, M. Ams, G. D. Marshall, D. J. Little, and M. J. Withford, “Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres,” Opt. Express 18(4), 3274–3283 (2010).
    [Crossref] [PubMed]
  13. A. Shamir and A. A. Ishaaya, “Effect of femtosecond photo-treatment on inscription of fiber Bragg gratings,” Opt. Lett. 41(4), 765–768 (2016).
    [Crossref] [PubMed]
  14. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
    [Crossref] [PubMed]
  15. H. Venghaus, Wavelength Filters in Fibre Optics (Springer, 2006), Chap. 5.
  16. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]

2016 (1)

2012 (1)

J. Thomas, C. Voigtlaender, R. G. Becker, D. Richter, A. Tuennermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

2011 (2)

2010 (2)

M. L. Åslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid Decay of Type-II Femtosecond Laser Inscribed Gratings Within-switched Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 22(7), 504–506 (2010).
[Crossref]

P. Dekker, M. Ams, G. D. Marshall, D. J. Little, and M. J. Withford, “Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres,” Opt. Express 18(4), 3274–3283 (2010).
[Crossref] [PubMed]

2009 (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

2006 (1)

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-power near-infrared lasers,” Meas. Sci. Technol. 17(5), 968–974 (2006).
[Crossref]

2005 (1)

2004 (2)

2003 (1)

P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, K. A. Zagorul’ko, A. Dragomir, D. N. Nikogosyan, and A. A. Ruth, “Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths,” Microelectron. Eng. 69(2–4), 248–255 (2003).
[Crossref]

2001 (1)

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

1997 (1)

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1993 (1)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Ams, M.

Åslund, M. L.

M. L. Åslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid Decay of Type-II Femtosecond Laser Inscribed Gratings Within-switched Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 22(7), 504–506 (2010).
[Crossref]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Becker, R. G.

J. Thomas, C. Voigtlaender, R. G. Becker, D. Richter, A. Tuennermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Bennion, I.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-power near-infrared lasers,” Meas. Sci. Technol. 17(5), 968–974 (2006).
[Crossref]

G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Blank beam fabrication of regenerated type IA gratings,” Meas. Sci. Technol. 15(8), 1665–1669 (2004).
[Crossref]

Birkin, D.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-power near-infrared lasers,” Meas. Sci. Technol. 17(5), 968–974 (2006).
[Crossref]

Canning, J.

M. L. Åslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid Decay of Type-II Femtosecond Laser Inscribed Gratings Within-switched Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 22(7), 504–506 (2010).
[Crossref]

Dekker, P.

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Dianov, E. M.

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

Ding, H.

Dragomir, A.

P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, K. A. Zagorul’ko, A. Dragomir, D. N. Nikogosyan, and A. A. Ruth, “Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths,” Microelectron. Eng. 69(2–4), 248–255 (2003).
[Crossref]

Ellingham, T.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-power near-infrared lasers,” Meas. Sci. Technol. 17(5), 968–974 (2006).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fuerbach, A.

M. L. Åslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid Decay of Type-II Femtosecond Laser Inscribed Gratings Within-switched Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 22(7), 504–506 (2010).
[Crossref]

Grobnic, D.

Ishaaya, A. A.

Jackson, S. D.

M. L. Åslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid Decay of Type-II Femtosecond Laser Inscribed Gratings Within-switched Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 22(7), 504–506 (2010).
[Crossref]

Jovanovic, N.

M. L. Åslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid Decay of Type-II Femtosecond Laser Inscribed Gratings Within-switched Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 22(7), 504–506 (2010).
[Crossref]

Kalli, K.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-power near-infrared lasers,” Meas. Sci. Technol. 17(5), 968–974 (2006).
[Crossref]

G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Blank beam fabrication of regenerated type IA gratings,” Meas. Sci. Technol. 15(8), 1665–1669 (2004).
[Crossref]

Kranz, K. S.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Kryukov, P. G.

P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, K. A. Zagorul’ko, A. Dragomir, D. N. Nikogosyan, and A. A. Ruth, “Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths,” Microelectron. Eng. 69(2–4), 248–255 (2003).
[Crossref]

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Larionov, Y. V.

P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, K. A. Zagorul’ko, A. Dragomir, D. N. Nikogosyan, and A. A. Ruth, “Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths,” Microelectron. Eng. 69(2–4), 248–255 (2003).
[Crossref]

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Li, Y.

Little, D. J.

Liu, N.

Liu, S.

Lu, P.

Marshall, G. D.

P. Dekker, M. Ams, G. D. Marshall, D. J. Little, and M. J. Withford, “Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres,” Opt. Express 18(4), 3274–3283 (2010).
[Crossref] [PubMed]

M. L. Åslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid Decay of Type-II Femtosecond Laser Inscribed Gratings Within-switched Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 22(7), 504–506 (2010).
[Crossref]

Mihailov, S.

Mihailov, S. J.

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Nikogosyan, D. N.

P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, K. A. Zagorul’ko, A. Dragomir, D. N. Nikogosyan, and A. A. Ruth, “Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths,” Microelectron. Eng. 69(2–4), 248–255 (2003).
[Crossref]

Nolte, S.

J. Thomas, C. Voigtlaender, R. G. Becker, D. Richter, A. Tuennermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Osellame, R.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Prokhorov, A. M.

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Richter, D.

J. Thomas, C. Voigtlaender, R. G. Becker, D. Richter, A. Tuennermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Ruth, A. A.

P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, K. A. Zagorul’ko, A. Dragomir, D. N. Nikogosyan, and A. A. Ruth, “Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths,” Microelectron. Eng. 69(2–4), 248–255 (2003).
[Crossref]

Rybaltovskii, A. A.

P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, K. A. Zagorul’ko, A. Dragomir, D. N. Nikogosyan, and A. A. Ruth, “Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths,” Microelectron. Eng. 69(2–4), 248–255 (2003).
[Crossref]

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

Shamir, A.

Shchelev, M. Y.

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

Shi, J.

Simpson, A. G.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-power near-infrared lasers,” Meas. Sci. Technol. 17(5), 968–974 (2006).
[Crossref]

Simpson, G.

G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Blank beam fabrication of regenerated type IA gratings,” Meas. Sci. Technol. 15(8), 1665–1669 (2004).
[Crossref]

Smelser, C.

Smelser, C. W.

Smirnov, A. V.

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

Thomas, J.

J. Thomas, C. Voigtlaender, R. G. Becker, D. Richter, A. Tuennermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Tuennermann, A.

J. Thomas, C. Voigtlaender, R. G. Becker, D. Richter, A. Tuennermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Voigtlaender, C.

J. Thomas, C. Voigtlaender, R. G. Becker, D. Richter, A. Tuennermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Vorob’ev, N. S.

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

Walker, K. L.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Walker, R. B.

Wang, H.

Withford, M. J.

P. Dekker, M. Ams, G. D. Marshall, D. J. Little, and M. J. Withford, “Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres,” Opt. Express 18(4), 3274–3283 (2010).
[Crossref] [PubMed]

M. L. Åslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid Decay of Type-II Femtosecond Laser Inscribed Gratings Within-switched Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 22(7), 504–506 (2010).
[Crossref]

Zagorul’ko, K. A.

P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, K. A. Zagorul’ko, A. Dragomir, D. N. Nikogosyan, and A. A. Ruth, “Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths,” Microelectron. Eng. 69(2–4), 248–255 (2003).
[Crossref]

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

Zhang, L.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-power near-infrared lasers,” Meas. Sci. Technol. 17(5), 968–974 (2006).
[Crossref]

G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Blank beam fabrication of regenerated type IA gratings,” Meas. Sci. Technol. 15(8), 1665–1669 (2004).
[Crossref]

Zhou, K.

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-power near-infrared lasers,” Meas. Sci. Technol. 17(5), 968–974 (2006).
[Crossref]

G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Blank beam fabrication of regenerated type IA gratings,” Meas. Sci. Technol. 15(8), 1665–1669 (2004).
[Crossref]

Electron. Lett. (1)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. L. Åslund, N. Jovanovic, J. Canning, S. D. Jackson, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Rapid Decay of Type-II Femtosecond Laser Inscribed Gratings Within-switched Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 22(7), 504–506 (2010).
[Crossref]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Laser Photonics Rev. (1)

J. Thomas, C. Voigtlaender, R. G. Becker, D. Richter, A. Tuennermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Meas. Sci. Technol. (2)

G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Blank beam fabrication of regenerated type IA gratings,” Meas. Sci. Technol. 15(8), 1665–1669 (2004).
[Crossref]

K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-power near-infrared lasers,” Meas. Sci. Technol. 17(5), 968–974 (2006).
[Crossref]

Microelectron. Eng. (1)

P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, K. A. Zagorul’ko, A. Dragomir, D. N. Nikogosyan, and A. A. Ruth, “Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths,” Microelectron. Eng. 69(2–4), 248–255 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Quantum Electron. (1)

K. A. Zagorul’ko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovskii, E. M. Dianov, N. S. Vorob’ev, A. V. Smirnov, M. Y. Shchelev, and A. M. Prokhorov, “Fabrication of a long-period grating in a fiber by second harmonic radiation from a femtosecond Ti:sapphire laser,” Quantum Electron. 31(11), 999–1002 (2001).
[Crossref]

Other (1)

H. Venghaus, Wavelength Filters in Fibre Optics (Springer, 2006), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 Transmission spectra of an FBG inscribed with fs laser pulses with energy of 370 µJ per pulse for 3 min and 1 KHz repetition rate (experimental results - solid blue and theory - dashed red). (a) fresh fiber; (b) pre-treated fiber (400 µJ pulses, 24 min.); (c) pre-treated fiber (450 µJ pulses, 24 min.); (d) pre-treated fiber (500 µJ pulses, 24 min.); (e) pre-treated fiber (550 µJ pulses, 24 min.); and (f) pre-treated fiber (600 µJ pulses, 24 min.).
Fig. 3
Fig. 3 The Bragg grating wavelength measured (blue diamond) and the change in the effective refractive index (red square) as a function of pre-treatment pulse energy.
Fig. 4
Fig. 4 Transmission spectra of an FBG inscribed with a fs laser with pulse energy of 370 µJ for 2 min. (a) with no treatment (b) post-treatment as a function of the duration time. First, there is a “blue”-shift followed by a continuous “red”-shift. At the end of the post-treatment, the center is “flatten”.
Fig. 5
Fig. 5 Post-treatment with 400 µJ fs pulses. (a) Wavelength shift as a function of the number of post-treatment pulses; blue diamond (red square, no post-treatment). (b) Transmission dip as a function of the number of post-treatment pulses; blue diamond (red square, no post-treatment).
Fig. 6
Fig. 6 Schematic illustration of the index modulation change after post-treatment.
Fig. 7
Fig. 7 Saturation of pre- and post-treatment with NIR fs laser pulses. Transmission spectra of phase-shifted gratings inscribed with NIR fs pulses and a PM. (a) Pre-treatment of 24 min with pulse energy of 650 µJ done prior to FBG inscription (b) Post-treatment of 45 min with pulse energy of 450 µJ done on an FBG inscribed on a fresh fiber.

Tables (1)

Tables Icon

Table 1 Calculated refractive index change and bandwidth of the inscribed FBGs

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m λ m =2 n eff Λ g ,
Δn=Δ n DC +Δ n AC cos( 2π Λ z ),
λ max =( 1+ Δ n DC n eff ) λ D ,
Δλ λ = Δ n AC n eff ,

Metrics