Abstract

A cost-efficient P-D fiber structure-based Sagnac loop sensor is proposed and experimentally demonstrated for measuring temperature and liquid refractive index (RI). The P-D structure is fabricated by fusion splicing a section of polarization-maintaining fiber (PMF) to a piece of multimode D-shaped optical fiber (MMDF). Then the P-D structure is built into a Sagnac loop using a 3dB coupler. The temperature and RI characteristics of the sensor are investigated experimentally. The results show that two resonant dips have different spectral responses of temperature and RI, which indicate that the sensor can realize simultaneous temperature and RI measurement. The high sensitivities of −1.804nm/°C and −131.49nm/RIU are achieved. The obtained resolutions of temperature and RI of the proposed sensor can reach 0.01°C and 2.46 × 10−4RIU, respectively. The proposed sensor has the potential application in biological and chemical fields.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reflective long-period fiber grating-based sensor with Sagnac fiber loop mirror for simultaneous measurement of refractive index and temperature

Jianying Yuan, Chun-Liu Zhao, Yumeng Zhou, Xiangdong Yu, Juan Kang, Jianfeng Wang, and Shangzhong Jin
Appl. Opt. 53(29) H85-H90 (2014)

Femtosecond-induced spiral micro-structured SMS fiber structure for refractive index measurement

F. Liu, H. F. Lin, Y. Liu, A. Zhou, and Y. T. Dai
Opt. Express 26(13) 17388-17396 (2018)

Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure

Ke Tian, Gerald Farrell, Xianfan Wang, Wenlei Yang, Yifan Xin, Haidong Liang, Elfed Lewis, and Pengfei Wang
Opt. Express 25(16) 18885-18896 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
    [Crossref]
  2. H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
    [Crossref]
  3. J. Harris, P. Lu, H. Larocque, Y. Xu, L. Chen, and X. Bao, “Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation,” Opt. Express 21(8), 9996–10009 (2013).
    [Crossref] [PubMed]
  4. C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sens. Actuators B Chem. 177(1), 717–723 (2013).
    [Crossref]
  5. J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “Fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
    [Crossref]
  6. R. M. André, M. B. Marques, P. Roy, and O. Frazão, “Fiber loop mirror using a small core microstructured fiber for strain and temperature discrimination,” IEEE Photonics Technol. Lett. 22(15), 1120–1122 (2010).
    [Crossref]
  7. Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photonics Technol. Lett. 23(2), 130–132 (2011).
    [Crossref]
  8. D. Feng, M. Zhang, G. Liu, X. Liu, and D. Jia, “D-Shaped plastic optical fiber sensor for testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
    [Crossref]
  9. H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
    [Crossref] [PubMed]
  10. H. Lu, Y. Cao, Y. Zhao, Z. Tong, and Y. Wang, “Magnetic field sensor based on peanut-shape structure and multimode fiber,” Optoelectron. Lett. 13(3), 184–187 (2017).
    [Crossref]
  11. H. H. Qazi, A. B. Mohammad, H. Ahmad, and M. Z. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors (Basel) 16(9), 1505 (2016).
    [Crossref] [PubMed]
  12. F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications,” Sensors (Basel) 16(12), 2119 (2016).
    [Crossref] [PubMed]
  13. S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17(12), 2706–2708 (2005).
    [Crossref]
  14. L. Bilro, N. J. Alberto, L. M. Sá, J. L. Pinto, and R. Nogueira, “Analytical analysis of side-polished plastic optical fiber as curvature and refractive index sensor,” J. Lightwave Technol. 29(6), 864–870 (2011).
    [Crossref]
  15. N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15(5), 2898–2901 (2015).
  16. C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
    [Crossref]
  17. C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
    [Crossref]
  18. S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
    [Crossref]
  19. P. Xian, G. Feng, Y. Ju, W. Zhang, and S. Zhou, “Single-mode all-fiber structured modal interference for temperature and refractive index sensing,” Laser Phys. Lett. 14(8), 085101 (2017).
    [Crossref]
  20. L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180(6), 19–24 (2012).

2017 (4)

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

H. Lu, Y. Cao, Y. Zhao, Z. Tong, and Y. Wang, “Magnetic field sensor based on peanut-shape structure and multimode fiber,” Optoelectron. Lett. 13(3), 184–187 (2017).
[Crossref]

S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
[Crossref]

P. Xian, G. Feng, Y. Ju, W. Zhang, and S. Zhou, “Single-mode all-fiber structured modal interference for temperature and refractive index sensing,” Laser Phys. Lett. 14(8), 085101 (2017).
[Crossref]

2016 (3)

H. H. Qazi, A. B. Mohammad, H. Ahmad, and M. Z. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors (Basel) 16(9), 1505 (2016).
[Crossref] [PubMed]

F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications,” Sensors (Basel) 16(12), 2119 (2016).
[Crossref] [PubMed]

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

2015 (1)

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15(5), 2898–2901 (2015).

2014 (3)

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “Fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

D. Feng, M. Zhang, G. Liu, X. Liu, and D. Jia, “D-Shaped plastic optical fiber sensor for testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

2013 (3)

J. Harris, P. Lu, H. Larocque, Y. Xu, L. Chen, and X. Bao, “Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation,” Opt. Express 21(8), 9996–10009 (2013).
[Crossref] [PubMed]

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sens. Actuators B Chem. 177(1), 717–723 (2013).
[Crossref]

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

2012 (2)

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180(6), 19–24 (2012).

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
[Crossref]

2011 (2)

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photonics Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

L. Bilro, N. J. Alberto, L. M. Sá, J. L. Pinto, and R. Nogueira, “Analytical analysis of side-polished plastic optical fiber as curvature and refractive index sensor,” J. Lightwave Technol. 29(6), 864–870 (2011).
[Crossref]

2010 (1)

R. M. André, M. B. Marques, P. Roy, and O. Frazão, “Fiber loop mirror using a small core microstructured fiber for strain and temperature discrimination,” IEEE Photonics Technol. Lett. 22(15), 1120–1122 (2010).
[Crossref]

2005 (1)

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17(12), 2706–2708 (2005).
[Crossref]

Ahmad, H.

H. H. Qazi, A. B. Mohammad, H. Ahmad, and M. Z. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors (Basel) 16(9), 1505 (2016).
[Crossref] [PubMed]

Alberto, N. J.

André, R. M.

R. M. André, M. B. Marques, P. Roy, and O. Frazão, “Fiber loop mirror using a small core microstructured fiber for strain and temperature discrimination,” IEEE Photonics Technol. Lett. 22(15), 1120–1122 (2010).
[Crossref]

Bao, X.

Baptista, J. M.

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sens. Actuators B Chem. 177(1), 717–723 (2013).
[Crossref]

Bilro, L.

F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications,” Sensors (Basel) 16(12), 2119 (2016).
[Crossref] [PubMed]

L. Bilro, N. J. Alberto, L. M. Sá, J. L. Pinto, and R. Nogueira, “Analytical analysis of side-polished plastic optical fiber as curvature and refractive index sensor,” J. Lightwave Technol. 29(6), 864–870 (2011).
[Crossref]

Cao, Y.

H. Lu, Y. Cao, Y. Zhao, Z. Tong, and Y. Wang, “Magnetic field sensor based on peanut-shape structure and multimode fiber,” Optoelectron. Lett. 13(3), 184–187 (2017).
[Crossref]

Cennamo, N.

F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications,” Sensors (Basel) 16(12), 2119 (2016).
[Crossref] [PubMed]

Chandani, S. M.

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17(12), 2706–2708 (2005).
[Crossref]

Chen, L.

Chen, Z.

Chesini, G.

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sens. Actuators B Chem. 177(1), 717–723 (2013).
[Crossref]

Chu, J.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
[Crossref]

Cordeiro, C. M. B.

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sens. Actuators B Chem. 177(1), 717–723 (2013).
[Crossref]

Dong, X.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “Fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
[Crossref]

Dong, Y.

S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
[Crossref]

Duarte, D.

F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications,” Sensors (Basel) 16(12), 2119 (2016).
[Crossref] [PubMed]

Farrell, G.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photonics Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

Feng, D.

D. Feng, M. Zhang, G. Liu, X. Liu, and D. Jia, “D-Shaped plastic optical fiber sensor for testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Feng, G.

P. Xian, G. Feng, Y. Ju, W. Zhang, and S. Zhou, “Single-mode all-fiber structured modal interference for temperature and refractive index sensing,” Laser Phys. Lett. 14(8), 085101 (2017).
[Crossref]

Frazão, O.

R. M. André, M. B. Marques, P. Roy, and O. Frazão, “Fiber loop mirror using a small core microstructured fiber for strain and temperature discrimination,” IEEE Photonics Technol. Lett. 22(15), 1120–1122 (2010).
[Crossref]

Gouveia, C.

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sens. Actuators B Chem. 177(1), 717–723 (2013).
[Crossref]

Hao, L.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180(6), 19–24 (2012).

Harris, J.

Hatta, A. M.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photonics Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

Huang, B.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Huang, X.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Jaeger, N. A. F.

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17(12), 2706–2708 (2005).
[Crossref]

Jia, D.

D. Feng, M. Zhang, G. Liu, X. Liu, and D. Jia, “D-Shaped plastic optical fiber sensor for testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Jian, S.

S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
[Crossref]

Jiang, Y.

S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
[Crossref]

Jin, S.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “Fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Jin, W.

S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
[Crossref]

Jin, Y.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
[Crossref]

Jing, G.

Jing, N.

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15(5), 2898–2901 (2015).

Jorge, P. A. S.

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sens. Actuators B Chem. 177(1), 717–723 (2013).
[Crossref]

Ju, Y.

P. Xian, G. Feng, Y. Ju, W. Zhang, and S. Zhou, “Single-mode all-fiber structured modal interference for temperature and refractive index sensing,” Laser Phys. Lett. 14(8), 085101 (2017).
[Crossref]

Kang, J.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “Fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Larocque, H.

Li, H.

S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
[Crossref]

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Li, L.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180(6), 19–24 (2012).

Li, Y.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

Liao, G.

Liu, D.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180(6), 19–24 (2012).

Liu, G.

D. Feng, M. Zhang, G. Liu, X. Liu, and D. Jia, “D-Shaped plastic optical fiber sensor for testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Liu, X.

D. Feng, M. Zhang, G. Liu, X. Liu, and D. Jia, “D-Shaped plastic optical fiber sensor for testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Lu, H.

Lu, P.

Luan, F.

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Luo, Y.

Marques, M. B.

R. M. André, M. B. Marques, P. Roy, and O. Frazão, “Fiber loop mirror using a small core microstructured fiber for strain and temperature discrimination,” IEEE Photonics Technol. Lett. 22(15), 1120–1122 (2010).
[Crossref]

Meng, H.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Mohammad, A. B.

H. H. Qazi, A. B. Mohammad, H. Ahmad, and M. Z. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors (Basel) 16(9), 1505 (2016).
[Crossref] [PubMed]

Nogueira, R.

Pesavento, M.

F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications,” Sensors (Basel) 16(12), 2119 (2016).
[Crossref] [PubMed]

Pinto, J. L.

Qazi, H. H.

H. H. Qazi, A. B. Mohammad, H. Ahmad, and M. Z. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors (Basel) 16(9), 1505 (2016).
[Crossref] [PubMed]

Qi, Y.

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Roy, P.

R. M. André, M. B. Marques, P. Roy, and O. Frazão, “Fiber loop mirror using a small core microstructured fiber for strain and temperature discrimination,” IEEE Photonics Technol. Lett. 22(15), 1120–1122 (2010).
[Crossref]

Rudnitskaya, A.

F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications,” Sensors (Basel) 16(12), 2119 (2016).
[Crossref] [PubMed]

Sá, L. M.

Semenova, Y.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photonics Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

Sequeira, F.

F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications,” Sensors (Basel) 16(12), 2119 (2016).
[Crossref] [PubMed]

Shen, C.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
[Crossref]

Shuai, B.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180(6), 19–24 (2012).

Si, G.

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Tan, C.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Tang, J.

Teng, C.

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15(5), 2898–2901 (2015).

Tian, Z.

Tong, Z.

H. Lu, Y. Cao, Y. Zhao, Z. Tong, and Y. Wang, “Magnetic field sensor based on peanut-shape structure and multimode fiber,” Optoelectron. Lett. 13(3), 184–187 (2017).
[Crossref]

Wang, H.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Wang, J.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
[Crossref]

Wang, L.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

Wang, P.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photonics Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

Wang, Q.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Wang, Y.

H. Lu, Y. Cao, Y. Zhao, Z. Tong, and Y. Wang, “Magnetic field sensor based on peanut-shape structure and multimode fiber,” Optoelectron. Lett. 13(3), 184–187 (2017).
[Crossref]

Wu, Q.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photonics Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

Wu, Y.

S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
[Crossref]

Xia, L.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180(6), 19–24 (2012).

Xian, P.

P. Xian, G. Feng, Y. Ju, W. Zhang, and S. Zhou, “Single-mode all-fiber structured modal interference for temperature and refractive index sensing,” Laser Phys. Lett. 14(8), 085101 (2017).
[Crossref]

Xiao, H.

S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
[Crossref]

Xiao, S.

S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
[Crossref]

Xie, Z.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180(6), 19–24 (2012).

Xiong, R.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Xu, K.

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Xu, Y.

Yang, B.

Ying, Y.

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

You, Y.

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
[Crossref]

Yu, H.

Yu, J.

Yu, W.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Zeni, L.

F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications,” Sensors (Basel) 16(12), 2119 (2016).
[Crossref] [PubMed]

Zhang, J.

Zhang, M.

D. Feng, M. Zhang, G. Liu, X. Liu, and D. Jia, “D-Shaped plastic optical fiber sensor for testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Zhang, W.

P. Xian, G. Feng, Y. Ju, W. Zhang, and S. Zhou, “Single-mode all-fiber structured modal interference for temperature and refractive index sensing,” Laser Phys. Lett. 14(8), 085101 (2017).
[Crossref]

Zhang, X.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Zhao, X.

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15(5), 2898–2901 (2015).

Zhao, Y.

H. Lu, Y. Cao, Y. Zhao, Z. Tong, and Y. Wang, “Magnetic field sensor based on peanut-shape structure and multimode fiber,” Optoelectron. Lett. 13(3), 184–187 (2017).
[Crossref]

Zheng, J.

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15(5), 2898–2901 (2015).

Zhong, C.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
[Crossref]

Zhou, S.

P. Xian, G. Feng, Y. Ju, W. Zhang, and S. Zhou, “Single-mode all-fiber structured modal interference for temperature and refractive index sensing,” Laser Phys. Lett. 14(8), 085101 (2017).
[Crossref]

Zhu, Y.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “Fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Zhuang, S.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “Fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Zou, X.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
[Crossref]

Zulkifli, M. Z.

H. H. Qazi, A. B. Mohammad, H. Ahmad, and M. Z. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors (Basel) 16(9), 1505 (2016).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (3)

R. M. André, M. B. Marques, P. Roy, and O. Frazão, “Fiber loop mirror using a small core microstructured fiber for strain and temperature discrimination,” IEEE Photonics Technol. Lett. 22(15), 1120–1122 (2010).
[Crossref]

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photonics Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17(12), 2706–2708 (2005).
[Crossref]

IEEE Sens. J. (2)

N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sens. J. 15(5), 2898–2901 (2015).

D. Feng, M. Zhang, G. Liu, X. Liu, and D. Jia, “D-Shaped plastic optical fiber sensor for testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

P. Xian, G. Feng, Y. Ju, W. Zhang, and S. Zhou, “Single-mode all-fiber structured modal interference for temperature and refractive index sensing,” Laser Phys. Lett. 14(8), 085101 (2017).
[Crossref]

Opt. Commun. (3)

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287(2), 31–34 (2013).
[Crossref]

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a symmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “Fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (2)

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

S. Xiao, Y. Wu, Y. Dong, H. Xiao, Y. Jiang, W. Jin, H. Li, and S. Jian, “Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop,” Opt. Laser Technol. 96, 254–258 (2017).
[Crossref]

Optoelectron. Lett. (1)

H. Lu, Y. Cao, Y. Zhao, Z. Tong, and Y. Wang, “Magnetic field sensor based on peanut-shape structure and multimode fiber,” Optoelectron. Lett. 13(3), 184–187 (2017).
[Crossref]

Sens. Actuators A Phys. (1)

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180(6), 19–24 (2012).

Sens. Actuators B Chem. (2)

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror-based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(2), 360–364 (2012).
[Crossref]

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sens. Actuators B Chem. 177(1), 717–723 (2013).
[Crossref]

Sensors (Basel) (2)

H. H. Qazi, A. B. Mohammad, H. Ahmad, and M. Z. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors (Basel) 16(9), 1505 (2016).
[Crossref] [PubMed]

F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications,” Sensors (Basel) 16(12), 2119 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The D-shaped optical fiber structure, and (b) the sensor of the P-D structure.
Fig. 2
Fig. 2 (a) The schematic diagram of experimental setup, (b) temperature measurement, (c) refractive index measurement.
Fig. 3
Fig. 3 (a) Measured transmission and spatial frequency spectra of D-shaped structure, (b) measured transmission and spatial frequency spectra of P-D structure.
Fig. 4
Fig. 4 (a) The transmission spectra of senor with the PMF length of 8cm under different temperature, (b) The dips wavelength shift in response to the temperature change.
Fig. 5
Fig. 5 (a) Transmission spectra of senor with PMF length of 8cm for different RI of NaCl solutions. (b)The dips wavelength shift in response to the RI change.

Tables (1)

Tables Icon

Table 1 Sensitivity coefficient of the P-D fiber structure

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I= I in (1cosφ) 2
φ= φ T + φ n = 2π λ L p B p + 2π λ ( n Dco n ext ) L D
λ= 1 m [ L p B p +( n Dco n ext ) L D ]= 1 m [ L p B p +δ n eff L D ]
Δλ=λ[ 1 L p L p T + 1 B p B p T + 1 δ n eff δ n eff T + 1 L D L D T ]ΔT +λ[ 1 δ n eff δ n eff n ]Δn
Δλ= K T ΔT+ K n Δn
K T =λ[ 1 L p L p T + 1 B p B p T + 1 δ n eff δ n eff T + 1 L D L D T ]
K n =λ 1 δ n eff δ n eff T .
[ ΔT Δn ]= 1 K T,RI [ K n2 K n1 K T2 K T1 ][ Δ λ dip1 Δ λ dip2 ]
[ ΔT Δn ]= 1 66.640 [ 131.49 81.43 1.804 1.624 ][ Δ λ dip1 Δ λ dip2 ].

Metrics