Abstract

In this study, the ultrafast optical properties of type-II CdZnS/ZnSe core-shell quantum dots were investigated using the Z-scan and transient absorption technique with femtosecond pulses. With 800-nm wavelength excitation, the CdZnS/ZnSe quantum dots exhibited two-photon absorption, and the two-photon absorption cross section was obtained as about 3.37 × 106 GM. In addition, the transfer time of electrons and the recombination lifetime of a single exciton were obtained. For the photoluminescence of the CdZnS/ZnSe quantum dots at temperatures from 80 to 280 K, the peak position redshifted by 60 meV, width broadened by 3 meV, and intensity decreased by a factor of four.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Linear and nonlinear photophysical properties of ZnSe/CdS/ZnS core/shell/shell type II nanocrystals

Yang Gao, Xin Qiu, Fuli Zhao, Shuyu Xiao, Junzi Li, Xiaodong Lin, Rui Chen, and Tingchao He
Photon. Res. 8(9) 1416-1421 (2020)

Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots

Dea Uk Lee, Dae Hun Kim, Dong Hyuk Choi, Sang Wook Kim, Hong Seok Lee, Keon-Ho Yoo, and Tae Whan Kim
Opt. Express 24(2) A350-A357 (2016)

One pot synthesis of thick shell blue emitting CdZnS/ZnS quantum dots with narrow emission line width

Bing Xu, Tingting Zhang, Xinru Lin, Huimin Yang, Xiao Jin, Zhen Huang, Zhenghe Zhang, Dongyu Li, and Qinghua Li
Opt. Mater. Express 10(5) 1232-1240 (2020)

References

  • View by:
  • |
  • |
  • |

  1. S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, “Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
    [Crossref] [PubMed]
  2. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
    [Crossref] [PubMed]
  3. A. P. Alivisatos, “Semiconductor Nanocrystals and quantum dots,” Science 271(5251), 933 (1996).
    [Crossref]
  4. V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Doped Glasses,” J. Mod. Opt. 35(12), 1979–1993 (1988).
    [Crossref]
  5. S. V. G. L. G. Zmm and V. Yu. Lebe, “Room -Temperature Optical Nonlinearity in Semiconductor-Doped Glasses,” Phys. Status Solidi 150, 656 (1988).
  6. S. V. G. L. G. Zimin, V. Yu. Lebed, I. E. Malinovskll, and I. N. Germanenko, “Nonlinear Optical Absorption of CuCI and CdSxSe1-x Under Quantum Confinement Microcrystallites,” J. Lumin. 46, 107 (1990).
    [Crossref]
  7. L. Brus, “Quantum Crystallites and Nonlinear Optics,” Appl. Phys., A Mater. Sci. Process. 53(6), 465 (1991).
    [Crossref]
  8. F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).
  9. A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
    [Crossref] [PubMed]
  10. H. Zhu, N. Song, and T. Lian, “Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots,” J. Am. Chem. Soc. 133(22), 8762–8771 (2011).
    [Crossref] [PubMed]
  11. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
    [Crossref] [PubMed]
  12. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
    [Crossref] [PubMed]
  13. A. Sitt, F. Della Sala, G. Menagen, and U. Banin, “Multiexciton Engineering in Seeded Core/Shell Nanorods: Transfer from Type-I to Quasi-type-II Regimes,” Nano Lett. 9(10), 3470–3476 (2009).
    [Crossref] [PubMed]
  14. A. Piryatinski, S. A. Ivanov, S. Tretiak, and V. I. Klimov, “Effect of Quantum and Dielectric Confinement on the Exciton-Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals,” Nano Lett. 7(1), 108–115 (2007).
    [Crossref] [PubMed]
  15. Y. S. Park, W. K. Bae, L. A. Padilha, J. M. Pietryga, and V. I. Klimov, “Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy,” Nano Lett. 14(2), 396–402 (2014).
    [Crossref] [PubMed]
  16. B. Mahler, N. Lequeux, and B. Dubertret, “Ligand-Controlled Polytypism of Thick-Shell CdSe/CdS Nanocrystals,” J. Am. Chem. Soc. 132(3), 953–959 (2010).
    [Crossref] [PubMed]
  17. W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
    [Crossref] [PubMed]
  18. M. D. G. G. Morello, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton-Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C 111(16), 5846 (2007).
    [Crossref]
  19. D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidalCdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
    [Crossref]
  20. G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
    [Crossref]
  21. A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, “Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots,” Angew. Chem. Int. Ed. Engl. 54(51), 15424–15428 (2015).
    [Crossref] [PubMed]
  22. L.-y. Huang and W. R. L. Lambrecht, “Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3,” Phys. Rev. B 88(16), 165203 (2013).
    [Crossref]
  23. K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, and T. Jiang, “Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots,” Opt. Lett. 41(16), 3821–3824 (2016).
    [Crossref] [PubMed]
  24. Z. Zaaboub, F. Hassen, M. Naffouti, X. Marie, R. M’ghaieth, and H. Maaref, “Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots,” Opt. Quantum Electron. 49(4), 142 (2017).
    [Crossref]
  25. D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
    [Crossref]
  26. C. Pu and X. Peng, “To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment,” J. Am. Chem. Soc. 138(26), 8134–8142 (2016).
    [Crossref] [PubMed]
  27. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
    [Crossref] [PubMed]
  28. M. A. W. Eric, W. Van Stryland, H. Vanherzeele, and M. J. Soileau, “<Energy band-gap dependence of two-photon absorption.pdf>,” Opt. Lett. 10, 492 (1985).
  29. J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976).
    [Crossref]
  30. B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
    [Crossref] [PubMed]
  31. M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, “Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets,” ACS Nano 9(5), 5041–5050 (2015).
    [Crossref] [PubMed]
  32. G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
    [Crossref] [PubMed]
  33. B. Guzelturk, Y. Kelestemur, M. Olutas, Q. Li, T. Lian, and H. V. Demir, “High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells,” J. Phys. Chem. Lett. 8(21), 5317–5324 (2017).
    [Crossref] [PubMed]
  34. Q. L. K. Wu, Y. Jia, J. R. McBride, Z. Xie, and T. Lian, “Efficient and Ultrafast Formation of Long-Lived Charge-Transfer Exciton State in Atomically Thin Cadmium Selenide/Cadmium Telluride Type-II Heteronanosheets,” ACS Nano 9, 968 (2015).
  35. Y. P. Varshi, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 154 (1967).
  36. L. Zhang, D. Shen, X. Fan, and S. Lu, “Exciton phonon stattering in CdSe/ZnSe quantum dots,” Chin. Phys. Lett. 19, 580 (2002).
  37. A. C. D. Valerini, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
    [Crossref]

2017 (2)

B. Guzelturk, Y. Kelestemur, M. Olutas, Q. Li, T. Lian, and H. V. Demir, “High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells,” J. Phys. Chem. Lett. 8(21), 5317–5324 (2017).
[Crossref] [PubMed]

Z. Zaaboub, F. Hassen, M. Naffouti, X. Marie, R. M’ghaieth, and H. Maaref, “Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots,” Opt. Quantum Electron. 49(4), 142 (2017).
[Crossref]

2016 (2)

C. Pu and X. Peng, “To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment,” J. Am. Chem. Soc. 138(26), 8134–8142 (2016).
[Crossref] [PubMed]

K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, and T. Jiang, “Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots,” Opt. Lett. 41(16), 3821–3824 (2016).
[Crossref] [PubMed]

2015 (4)

A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, “Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots,” Angew. Chem. Int. Ed. Engl. 54(51), 15424–15428 (2015).
[Crossref] [PubMed]

Q. L. K. Wu, Y. Jia, J. R. McBride, Z. Xie, and T. Lian, “Efficient and Ultrafast Formation of Long-Lived Charge-Transfer Exciton State in Atomically Thin Cadmium Selenide/Cadmium Telluride Type-II Heteronanosheets,” ACS Nano 9, 968 (2015).

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, “Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets,” ACS Nano 9(5), 5041–5050 (2015).
[Crossref] [PubMed]

2014 (1)

Y. S. Park, W. K. Bae, L. A. Padilha, J. M. Pietryga, and V. I. Klimov, “Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy,” Nano Lett. 14(2), 396–402 (2014).
[Crossref] [PubMed]

2013 (2)

L.-y. Huang and W. R. L. Lambrecht, “Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3,” Phys. Rev. B 88(16), 165203 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

2012 (3)

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
[Crossref] [PubMed]

2011 (1)

H. Zhu, N. Song, and T. Lian, “Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots,” J. Am. Chem. Soc. 133(22), 8762–8771 (2011).
[Crossref] [PubMed]

2010 (1)

B. Mahler, N. Lequeux, and B. Dubertret, “Ligand-Controlled Polytypism of Thick-Shell CdSe/CdS Nanocrystals,” J. Am. Chem. Soc. 132(3), 953–959 (2010).
[Crossref] [PubMed]

2009 (2)

A. Sitt, F. Della Sala, G. Menagen, and U. Banin, “Multiexciton Engineering in Seeded Core/Shell Nanorods: Transfer from Type-I to Quasi-type-II Regimes,” Nano Lett. 9(10), 3470–3476 (2009).
[Crossref] [PubMed]

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

2008 (1)

F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).

2007 (3)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

A. Piryatinski, S. A. Ivanov, S. Tretiak, and V. I. Klimov, “Effect of Quantum and Dielectric Confinement on the Exciton-Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals,” Nano Lett. 7(1), 108–115 (2007).
[Crossref] [PubMed]

M. D. G. G. Morello, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton-Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C 111(16), 5846 (2007).
[Crossref]

2006 (1)

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[Crossref] [PubMed]

2005 (2)

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidalCdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

A. C. D. Valerini, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

2003 (2)

S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, “Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[Crossref] [PubMed]

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[Crossref]

2002 (1)

L. Zhang, D. Shen, X. Fan, and S. Lu, “Exciton phonon stattering in CdSe/ZnSe quantum dots,” Chin. Phys. Lett. 19, 580 (2002).

2000 (1)

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

1996 (1)

A. P. Alivisatos, “Semiconductor Nanocrystals and quantum dots,” Science 271(5251), 933 (1996).
[Crossref]

1991 (1)

L. Brus, “Quantum Crystallites and Nonlinear Optics,” Appl. Phys., A Mater. Sci. Process. 53(6), 465 (1991).
[Crossref]

1990 (1)

S. V. G. L. G. Zimin, V. Yu. Lebed, I. E. Malinovskll, and I. N. Germanenko, “Nonlinear Optical Absorption of CuCI and CdSxSe1-x Under Quantum Confinement Microcrystallites,” J. Lumin. 46, 107 (1990).
[Crossref]

1988 (2)

S. V. G. L. G. Zmm and V. Yu. Lebe, “Room -Temperature Optical Nonlinearity in Semiconductor-Doped Glasses,” Phys. Status Solidi 150, 656 (1988).

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Doped Glasses,” J. Mod. Opt. 35(12), 1979–1993 (1988).
[Crossref]

1985 (1)

M. A. W. Eric, W. Van Stryland, H. Vanherzeele, and M. J. Soileau, “<Energy band-gap dependence of two-photon absorption.pdf>,” Opt. Lett. 10, 492 (1985).

1976 (1)

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976).
[Crossref]

1967 (1)

Y. P. Varshi, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 154 (1967).

Achermann, M.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

Akgul, M. Z.

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Alivisatos, A. P.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

A. P. Alivisatos, “Semiconductor Nanocrystals and quantum dots,” Science 271(5251), 933 (1996).
[Crossref]

Anni, M.

M. D. G. G. Morello, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton-Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C 111(16), 5846 (2007).
[Crossref]

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidalCdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

A. C. D. Valerini, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

Bae, W. K.

Y. S. Park, W. K. Bae, L. A. Padilha, J. M. Pietryga, and V. I. Klimov, “Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy,” Nano Lett. 14(2), 396–402 (2014).
[Crossref] [PubMed]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Banin, U.

A. Sitt, F. Della Sala, G. Menagen, and U. Banin, “Multiexciton Engineering in Seeded Core/Shell Nanorods: Transfer from Type-I to Quasi-type-II Regimes,” Nano Lett. 9(10), 3470–3476 (2009).
[Crossref] [PubMed]

Bawendi, M.

S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, “Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[Crossref] [PubMed]

Bawendi, M. G.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[Crossref]

Bechtel, J. H.

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976).
[Crossref]

Bezel, I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

Brus, L.

L. Brus, “Quantum Crystallites and Nonlinear Optics,” Appl. Phys., A Mater. Sci. Process. 53(6), 465 (1991).
[Crossref]

Carbone, L.

F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).

Casson, J. L.

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

Chakrabortty, S.

G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
[Crossref] [PubMed]

Chan, Y.

G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
[Crossref] [PubMed]

Chang, Q.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

Char, K.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Chen, R.

K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, and T. Jiang, “Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots,” Opt. Lett. 41(16), 3821–3824 (2016).
[Crossref] [PubMed]

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Cheng, X.

Cho, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Chowdhury, A.

A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, “Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots,” Angew. Chem. Int. Ed. Engl. 54(51), 15424–15428 (2015).
[Crossref] [PubMed]

Chulliyil, R.

A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, “Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots,” Angew. Chem. Int. Ed. Engl. 54(51), 15424–15428 (2015).
[Crossref] [PubMed]

Cingolani, D. P. R.

F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).

Cingolani, R.

M. D. G. G. Morello, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton-Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C 111(16), 5846 (2007).
[Crossref]

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidalCdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

A. C. D. Valerini, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

Cretí, A.

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidalCdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

Dang, C.

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Delikanli, S.

M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, “Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets,” ACS Nano 9(5), 5041–5050 (2015).
[Crossref] [PubMed]

Della Sala, F.

A. Sitt, F. Della Sala, G. Menagen, and U. Banin, “Multiexciton Engineering in Seeded Core/Shell Nanorods: Transfer from Type-I to Quasi-type-II Regimes,” Nano Lett. 9(10), 3470–3476 (2009).
[Crossref] [PubMed]

Demir, H. V.

B. Guzelturk, Y. Kelestemur, M. Olutas, Q. Li, T. Lian, and H. V. Demir, “High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells,” J. Phys. Chem. Lett. 8(21), 5317–5324 (2017).
[Crossref] [PubMed]

M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, “Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets,” ACS Nano 9(5), 5041–5050 (2015).
[Crossref] [PubMed]

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Dennis, A. M.

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

Dubertret, B.

B. Mahler, N. Lequeux, and B. Dubertret, “Ligand-Controlled Polytypism of Thick-Shell CdSe/CdS Nanocrystals,” J. Am. Chem. Soc. 132(3), 953–959 (2010).
[Crossref] [PubMed]

Eisler, H. J.

S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, “Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[Crossref] [PubMed]

Eric, M. A. W.

M. A. W. Eric, W. Van Stryland, H. Vanherzeele, and M. J. Soileau, “<Energy band-gap dependence of two-photon absorption.pdf>,” Opt. Lett. 10, 492 (1985).

Fan, X.

L. Zhang, D. Shen, X. Fan, and S. Lu, “Exciton phonon stattering in CdSe/ZnSe quantum dots,” Chin. Phys. Lett. 19, 580 (2002).

Fiore, A.

F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).

Fisher, B.

S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, “Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[Crossref] [PubMed]

Fluegel, B. D.

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Doped Glasses,” J. Mod. Opt. 35(12), 1979–1993 (1988).
[Crossref]

Gao, Y. C.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

Germanenko, I. N.

S. V. G. L. G. Zimin, V. Yu. Lebed, I. E. Malinovskll, and I. N. Germanenko, “Nonlinear Optical Absorption of CuCI and CdSxSe1-x Under Quantum Confinement Microcrystallites,” J. Lumin. 46, 107 (1990).
[Crossref]

Gungor, K.

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Guzelturk, B.

B. Guzelturk, Y. Kelestemur, M. Olutas, Q. Li, T. Lian, and H. V. Demir, “High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells,” J. Phys. Chem. Lett. 8(21), 5317–5324 (2017).
[Crossref] [PubMed]

M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, “Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets,” ACS Nano 9(5), 5041–5050 (2015).
[Crossref] [PubMed]

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Hannah, D. C.

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

Hassen, F.

Z. Zaaboub, F. Hassen, M. Naffouti, X. Marie, R. M’ghaieth, and H. Maaref, “Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots,” Opt. Quantum Electron. 49(4), 142 (2017).
[Crossref]

Hollingsworth, J. A.

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

Htoon, H.

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

Huang, L.-y.

L.-y. Huang and W. R. L. Lambrecht, “Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3,” Phys. Rev. B 88(16), 165203 (2013).
[Crossref]

Irfanullah, M.

A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, “Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots,” Angew. Chem. Int. Ed. Engl. 54(51), 15424–15428 (2015).
[Crossref] [PubMed]

Ivanov, S. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

A. Piryatinski, S. A. Ivanov, S. Tretiak, and V. I. Klimov, “Effect of Quantum and Dielectric Confinement on the Exciton-Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals,” Nano Lett. 7(1), 108–115 (2007).
[Crossref] [PubMed]

Jia, Y.

Q. L. K. Wu, Y. Jia, J. R. McBride, Z. Xie, and T. Lian, “Efficient and Ultrafast Formation of Long-Lived Charge-Transfer Exciton State in Atomically Thin Cadmium Selenide/Cadmium Telluride Type-II Heteronanosheets,” ACS Nano 9, 968 (2015).

Jiang, T.

Kadavanich, A.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Kamat, P. V.

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[Crossref] [PubMed]

Kelestemur, Y.

B. Guzelturk, Y. Kelestemur, M. Olutas, Q. Li, T. Lian, and H. V. Demir, “High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells,” J. Phys. Chem. Lett. 8(21), 5317–5324 (2017).
[Crossref] [PubMed]

M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, “Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets,” ACS Nano 9(5), 5041–5050 (2015).
[Crossref] [PubMed]

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Kim, S.

S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, “Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[Crossref] [PubMed]

Klimov, V. I.

Y. S. Park, W. K. Bae, L. A. Padilha, J. M. Pietryga, and V. I. Klimov, “Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy,” Nano Lett. 14(2), 396–402 (2014).
[Crossref] [PubMed]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

A. Piryatinski, S. A. Ivanov, S. Tretiak, and V. I. Klimov, “Effect of Quantum and Dielectric Confinement on the Exciton-Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals,” Nano Lett. 7(1), 108–115 (2007).
[Crossref] [PubMed]

Koch, S. W.

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Doped Glasses,” J. Mod. Opt. 35(12), 1979–1993 (1988).
[Crossref]

Kong, D. G.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

Kudera, S.

M. D. G. G. Morello, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton-Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C 111(16), 5846 (2007).
[Crossref]

Kuno, M.

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[Crossref] [PubMed]

Kwak, J.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Lambrecht, W. R. L.

L.-y. Huang and W. R. L. Lambrecht, “Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3,” Phys. Rev. B 88(16), 165203 (2013).
[Crossref]

Lanzani, G.

F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).

Lebe, V. Yu.

S. V. G. L. G. Zmm and V. Yu. Lebe, “Room -Temperature Optical Nonlinearity in Semiconductor-Doped Glasses,” Phys. Status Solidi 150, 656 (1988).

Lebed, V. Yu.

S. V. G. L. G. Zimin, V. Yu. Lebed, I. E. Malinovskll, and I. N. Germanenko, “Nonlinear Optical Absorption of CuCI and CdSxSe1-x Under Quantum Confinement Microcrystallites,” J. Lumin. 46, 107 (1990).
[Crossref]

Lee, C.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Lee, D.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Lee, S.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Lequeux, N.

B. Mahler, N. Lequeux, and B. Dubertret, “Ligand-Controlled Polytypism of Thick-Shell CdSe/CdS Nanocrystals,” J. Am. Chem. Soc. 132(3), 953–959 (2010).
[Crossref] [PubMed]

Li, Q.

B. Guzelturk, Y. Kelestemur, M. Olutas, Q. Li, T. Lian, and H. V. Demir, “High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells,” J. Phys. Chem. Lett. 8(21), 5317–5324 (2017).
[Crossref] [PubMed]

Lian, T.

B. Guzelturk, Y. Kelestemur, M. Olutas, Q. Li, T. Lian, and H. V. Demir, “High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells,” J. Phys. Chem. Lett. 8(21), 5317–5324 (2017).
[Crossref] [PubMed]

Q. L. K. Wu, Y. Jia, J. R. McBride, Z. Xie, and T. Lian, “Efficient and Ultrafast Formation of Long-Lived Charge-Transfer Exciton State in Atomically Thin Cadmium Selenide/Cadmium Telluride Type-II Heteronanosheets,” ACS Nano 9, 968 (2015).

H. Zhu, N. Song, and T. Lian, “Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots,” J. Am. Chem. Soc. 133(22), 8762–8771 (2011).
[Crossref] [PubMed]

Liao, Y.

G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
[Crossref] [PubMed]

Lim, J.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Liu, X.

G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
[Crossref] [PubMed]

Lomascolo, M.

A. C. D. Valerini, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidalCdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

Lu, S.

L. Zhang, D. Shen, X. Fan, and S. Lu, “Exciton phonon stattering in CdSe/ZnSe quantum dots,” Chin. Phys. Lett. 19, 580 (2002).

Luer, L.

F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).

M’ghaieth, R.

Z. Zaaboub, F. Hassen, M. Naffouti, X. Marie, R. M’ghaieth, and H. Maaref, “Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots,” Opt. Quantum Electron. 49(4), 142 (2017).
[Crossref]

Maaref, H.

Z. Zaaboub, F. Hassen, M. Naffouti, X. Marie, R. M’ghaieth, and H. Maaref, “Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots,” Opt. Quantum Electron. 49(4), 142 (2017).
[Crossref]

Mahler, B.

B. Mahler, N. Lequeux, and B. Dubertret, “Ligand-Controlled Polytypism of Thick-Shell CdSe/CdS Nanocrystals,” J. Am. Chem. Soc. 132(3), 953–959 (2010).
[Crossref] [PubMed]

Malinovskll, I. E.

S. V. G. L. G. Zimin, V. Yu. Lebed, I. E. Malinovskll, and I. N. Germanenko, “Nonlinear Optical Absorption of CuCI and CdSxSe1-x Under Quantum Confinement Microcrystallites,” J. Lumin. 46, 107 (1990).
[Crossref]

Mangum, B. D.

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

Manna, L.

F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).

M. D. G. G. Morello, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton-Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C 111(16), 5846 (2007).
[Crossref]

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidalCdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

A. C. D. Valerini, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Maria Grazia Lupo, F. D. S.

F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).

Marie, X.

Z. Zaaboub, F. Hassen, M. Naffouti, X. Marie, R. M’ghaieth, and H. Maaref, “Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots,” Opt. Quantum Electron. 49(4), 142 (2017).
[Crossref]

McBride, J. R.

Q. L. K. Wu, Y. Jia, J. R. McBride, Z. Xie, and T. Lian, “Efficient and Ultrafast Formation of Long-Lived Charge-Transfer Exciton State in Atomically Thin Cadmium Selenide/Cadmium Telluride Type-II Heteronanosheets,” ACS Nano 9, 968 (2015).

McDaniel, H.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

McGuire, J. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

Menagen, G.

A. Sitt, F. Della Sala, G. Menagen, and U. Banin, “Multiexciton Engineering in Seeded Core/Shell Nanorods: Transfer from Type-I to Quasi-type-II Regimes,” Nano Lett. 9(10), 3470–3476 (2009).
[Crossref] [PubMed]

Morello, M. D. G. G.

M. D. G. G. Morello, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton-Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C 111(16), 5846 (2007).
[Crossref]

Naffouti, M.

Z. Zaaboub, F. Hassen, M. Naffouti, X. Marie, R. M’ghaieth, and H. Maaref, “Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots,” Opt. Quantum Electron. 49(4), 142 (2017).
[Crossref]

Nag, A.

A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, “Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots,” Angew. Chem. Int. Ed. Engl. 54(51), 15424–15428 (2015).
[Crossref] [PubMed]

Nanda, J.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

Nocera, D. G.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[Crossref]

Olbright, G. R.

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Doped Glasses,” J. Mod. Opt. 35(12), 1979–1993 (1988).
[Crossref]

Olutas, M.

B. Guzelturk, Y. Kelestemur, M. Olutas, Q. Li, T. Lian, and H. V. Demir, “High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells,” J. Phys. Chem. Lett. 8(21), 5317–5324 (2017).
[Crossref] [PubMed]

M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, “Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets,” ACS Nano 9(5), 5041–5050 (2015).
[Crossref] [PubMed]

Padilha, L. A.

Y. S. Park, W. K. Bae, L. A. Padilha, J. M. Pietryga, and V. I. Klimov, “Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy,” Nano Lett. 14(2), 396–402 (2014).
[Crossref] [PubMed]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

Park, I.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Park, M.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Park, Y. S.

Y. S. Park, W. K. Bae, L. A. Padilha, J. M. Pietryga, and V. I. Klimov, “Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy,” Nano Lett. 14(2), 396–402 (2014).
[Crossref] [PubMed]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

Peng, X.

C. Pu and X. Peng, “To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment,” J. Am. Chem. Soc. 138(26), 8134–8142 (2016).
[Crossref] [PubMed]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Peyghambarian, N.

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Doped Glasses,” J. Mod. Opt. 35(12), 1979–1993 (1988).
[Crossref]

Pietryga, J. M.

Y. S. Park, W. K. Bae, L. A. Padilha, J. M. Pietryga, and V. I. Klimov, “Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy,” Nano Lett. 14(2), 396–402 (2014).
[Crossref] [PubMed]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

Piryatinski, A.

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

A. Piryatinski, S. A. Ivanov, S. Tretiak, and V. I. Klimov, “Effect of Quantum and Dielectric Confinement on the Exciton-Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals,” Nano Lett. 7(1), 108–115 (2007).
[Crossref] [PubMed]

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

Pu, C.

C. Pu and X. Peng, “To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment,” J. Am. Chem. Soc. 138(26), 8134–8142 (2016).
[Crossref] [PubMed]

Ravi, V. K.

A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, “Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots,” Angew. Chem. Int. Ed. Engl. 54(51), 15424–15428 (2015).
[Crossref] [PubMed]

Robel, I.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[Crossref] [PubMed]

Rudzinski, C. M.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[Crossref]

Schaller, R. D.

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

Scher, E.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Shen, D.

L. Zhang, D. Shen, X. Fan, and S. Lu, “Exciton phonon stattering in CdSe/ZnSe quantum dots,” Chin. Phys. Lett. 19, 580 (2002).

Sitt, A.

A. Sitt, F. Della Sala, G. Menagen, and U. Banin, “Multiexciton Engineering in Seeded Core/Shell Nanorods: Transfer from Type-I to Quasi-type-II Regimes,” Nano Lett. 9(10), 3470–3476 (2009).
[Crossref] [PubMed]

Smith, W. L.

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976).
[Crossref]

Soileau, M. J.

M. A. W. Eric, W. Van Stryland, H. Vanherzeele, and M. J. Soileau, “<Energy band-gap dependence of two-photon absorption.pdf>,” Opt. Lett. 10, 492 (1985).

Song, N.

H. Zhu, N. Song, and T. Lian, “Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots,” J. Am. Chem. Soc. 133(22), 8762–8771 (2011).
[Crossref] [PubMed]

Song, Y. L.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

Subramanian, V.

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[Crossref] [PubMed]

Sum, T. C.

G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
[Crossref] [PubMed]

Sun, H.

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Sundar, V. C.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[Crossref]

Swarnkar, A.

A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, “Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots,” Angew. Chem. Int. Ed. Engl. 54(51), 15424–15428 (2015).
[Crossref] [PubMed]

Tretiak, S.

A. Piryatinski, S. A. Ivanov, S. Tretiak, and V. I. Klimov, “Effect of Quantum and Dielectric Confinement on the Exciton-Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals,” Nano Lett. 7(1), 108–115 (2007).
[Crossref] [PubMed]

Valerini, A. C. D.

A. C. D. Valerini, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

Valerini, D.

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidalCdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

Van Stryland, W.

M. A. W. Eric, W. Van Stryland, H. Vanherzeele, and M. J. Soileau, “<Energy band-gap dependence of two-photon absorption.pdf>,” Opt. Lett. 10, 492 (1985).

Vanherzeele, H.

M. A. W. Eric, W. Van Stryland, H. Vanherzeele, and M. J. Soileau, “<Energy band-gap dependence of two-photon absorption.pdf>,” Opt. Lett. 10, 492 (1985).

Varshi, Y. P.

Y. P. Varshi, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 154 (1967).

Walker, G. W.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[Crossref]

Wang, Y.

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Wang, Y. X.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

Wei, K.

Wickham, J.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Williams, D. J.

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

Williams, V. S.

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Doped Glasses,” J. Mod. Opt. 35(12), 1979–1993 (1988).
[Crossref]

Woo, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Wu, Q. L. K.

Q. L. K. Wu, Y. Jia, J. R. McBride, Z. Xie, and T. Lian, “Efficient and Ultrafast Formation of Long-Lived Charge-Transfer Exciton State in Atomically Thin Cadmium Selenide/Cadmium Telluride Type-II Heteronanosheets,” ACS Nano 9, 968 (2015).

Wu, W. Z.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

Wu, X.

G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
[Crossref] [PubMed]

Wun, A. W.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[Crossref]

Xie, Z.

Q. L. K. Wu, Y. Jia, J. R. McBride, Z. Xie, and T. Lian, “Efficient and Ultrafast Formation of Long-Lived Charge-Transfer Exciton State in Atomically Thin Cadmium Selenide/Cadmium Telluride Type-II Heteronanosheets,” ACS Nano 9, 968 (2015).

Xing, G.

G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
[Crossref] [PubMed]

Xu, Z.

Yang, K.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

Yang, W.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Ye, H. A.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

Yeltik, A.

M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, “Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets,” ACS Nano 9(5), 5041–5050 (2015).
[Crossref] [PubMed]

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Yeow, E. K.

G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
[Crossref] [PubMed]

Yoon, D. Y.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Zaaboub, Z.

Z. Zaaboub, F. Hassen, M. Naffouti, X. Marie, R. M’ghaieth, and H. Maaref, “Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots,” Opt. Quantum Electron. 49(4), 142 (2017).
[Crossref]

Zavelani-Rossi, M.

F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).

Zhang, L.

L. Zhang, D. Shen, X. Fan, and S. Lu, “Exciton phonon stattering in CdSe/ZnSe quantum dots,” Chin. Phys. Lett. 19, 580 (2002).

Zhang, X. R.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

Zheng, X.

Zhu, H.

H. Zhu, N. Song, and T. Lian, “Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots,” J. Am. Chem. Soc. 133(22), 8762–8771 (2011).
[Crossref] [PubMed]

Zimin, S. V. G. L. G.

S. V. G. L. G. Zimin, V. Yu. Lebed, I. E. Malinovskll, and I. N. Germanenko, “Nonlinear Optical Absorption of CuCI and CdSxSe1-x Under Quantum Confinement Microcrystallites,” J. Lumin. 46, 107 (1990).
[Crossref]

Zmm, S. V. G. L. G.

S. V. G. L. G. Zmm and V. Yu. Lebe, “Room -Temperature Optical Nonlinearity in Semiconductor-Doped Glasses,” Phys. Status Solidi 150, 656 (1988).

ACS Nano (3)

M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, “Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets,” ACS Nano 9(5), 5041–5050 (2015).
[Crossref] [PubMed]

G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. Yeow, Y. Chan, and T. C. Sum, “Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures,” ACS Nano 6(12), 10835–10844 (2012).
[Crossref] [PubMed]

Q. L. K. Wu, Y. Jia, J. R. McBride, Z. Xie, and T. Lian, “Efficient and Ultrafast Formation of Long-Lived Charge-Transfer Exciton State in Atomically Thin Cadmium Selenide/Cadmium Telluride Type-II Heteronanosheets,” ACS Nano 9, 968 (2015).

Adv. Mater. (1)

B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. 27(17), 2741–2746 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, “Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots,” Angew. Chem. Int. Ed. Engl. 54(51), 15424–15428 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

L. Brus, “Quantum Crystallites and Nonlinear Optics,” Appl. Phys., A Mater. Sci. Process. 53(6), 465 (1991).
[Crossref]

Chin. Phys. Lett. (1)

L. Zhang, D. Shen, X. Fan, and S. Lu, “Exciton phonon stattering in CdSe/ZnSe quantum dots,” Chin. Phys. Lett. 19, 580 (2002).

J. Am. Chem. Soc. (5)

C. Pu and X. Peng, “To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment,” J. Am. Chem. Soc. 138(26), 8134–8142 (2016).
[Crossref] [PubMed]

H. Zhu, N. Song, and T. Lian, “Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots,” J. Am. Chem. Soc. 133(22), 8762–8771 (2011).
[Crossref] [PubMed]

S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, “Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[Crossref] [PubMed]

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[Crossref] [PubMed]

B. Mahler, N. Lequeux, and B. Dubertret, “Ligand-Controlled Polytypism of Thick-Shell CdSe/CdS Nanocrystals,” J. Am. Chem. Soc. 132(3), 953–959 (2010).
[Crossref] [PubMed]

J. Lumin. (1)

S. V. G. L. G. Zimin, V. Yu. Lebed, I. E. Malinovskll, and I. N. Germanenko, “Nonlinear Optical Absorption of CuCI and CdSxSe1-x Under Quantum Confinement Microcrystallites,” J. Lumin. 46, 107 (1990).
[Crossref]

J. Mod. Opt. (1)

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Doped Glasses,” J. Mod. Opt. 35(12), 1979–1993 (1988).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[Crossref]

J. Phys. Chem. C (1)

M. D. G. G. Morello, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and Size Dependence of Nonradiative Relaxation and Exciton-Phonon Coupling in Colloidal CdTe Quantum Dots,” J. Phys. Chem. C 111(16), 5846 (2007).
[Crossref]

J. Phys. Chem. Lett. (1)

B. Guzelturk, Y. Kelestemur, M. Olutas, Q. Li, T. Lian, and H. V. Demir, “High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells,” J. Phys. Chem. Lett. 8(21), 5317–5324 (2017).
[Crossref] [PubMed]

Nano Lett. (6)

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

A. Sitt, F. Della Sala, G. Menagen, and U. Banin, “Multiexciton Engineering in Seeded Core/Shell Nanorods: Transfer from Type-I to Quasi-type-II Regimes,” Nano Lett. 9(10), 3470–3476 (2009).
[Crossref] [PubMed]

A. Piryatinski, S. A. Ivanov, S. Tretiak, and V. I. Klimov, “Effect of Quantum and Dielectric Confinement on the Exciton-Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals,” Nano Lett. 7(1), 108–115 (2007).
[Crossref] [PubMed]

Y. S. Park, W. K. Bae, L. A. Padilha, J. M. Pietryga, and V. I. Klimov, “Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy,” Nano Lett. 14(2), 396–402 (2014).
[Crossref] [PubMed]

F. D. S. Maria Grazia Lupo, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. P. R. Cingolani, L. Manna, and G. Lanzani*,“Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals,” Nano Lett. 8, 4587 (2008).

A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, and J. A. Hollingsworth, “Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots,” Nano Lett. 12(11), 5545–5551 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref] [PubMed]

Nature (2)

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

M. A. W. Eric, W. Van Stryland, H. Vanherzeele, and M. J. Soileau, “<Energy band-gap dependence of two-photon absorption.pdf>,” Opt. Lett. 10, 492 (1985).

K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, and T. Jiang, “Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots,” Opt. Lett. 41(16), 3821–3824 (2016).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

Z. Zaaboub, F. Hassen, M. Naffouti, X. Marie, R. M’ghaieth, and H. Maaref, “Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots,” Opt. Quantum Electron. 49(4), 142 (2017).
[Crossref]

Phys. Rev. B (4)

L.-y. Huang and W. R. L. Lambrecht, “Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3,” Phys. Rev. B 88(16), 165203 (2013).
[Crossref]

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976).
[Crossref]

A. C. D. Valerini, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, “Temperature dependence of the photoluminescence properties of colloidalCdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix,” Phys. Rev. B 71(23), 235409 (2005).
[Crossref]

Phys. Status Solidi (1)

S. V. G. L. G. Zmm and V. Yu. Lebe, “Room -Temperature Optical Nonlinearity in Semiconductor-Doped Glasses,” Phys. Status Solidi 150, 656 (1988).

Physica (1)

Y. P. Varshi, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 154 (1967).

Science (1)

A. P. Alivisatos, “Semiconductor Nanocrystals and quantum dots,” Science 271(5251), 933 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 UV-vis absorption and PL spectra of CdZnS/ZnSe quantum dots.
Fig. 2
Fig. 2 Dynamic process diagram of CdZnS/ZnSe quantum dots.
Fig. 3
Fig. 3 Open-aperture Z-scan results of CdZnS/ZnSe quantum dots under an incident intensity of 2.7 × 102 GW/cm2 at 800 nm.
Fig. 4
Fig. 4 Transient absorption experimental results of CdZnS/ZnSe quantum dots under an excitation intensity of 5 × 102 GW/cm2 at 400 nm.
Fig. 5
Fig. 5 Transient absorption results of CdZnS/ZnSe quantum dots at a wavelength of 470 nm.
Fig. 6
Fig. 6 Similar to Fig. 5 but at a wavelength of 540 nm.
Fig. 7
Fig. 7 PL spectra of CdZnS/ZnSe quantum dots at temperatures ranging from 80 to 280 K.
Fig. 8
Fig. 8 PL peak position of CdZnS/ZnSe quantum dots at temperatures ranging from 80 to 280. K.
Fig. 9
Fig. 9 Relative PL intensities of CdZnS/ZnSe quantum dots at temperatures ranging from 80 to 280 K.
Fig. 10
Fig. 10 FWHM of CdZnS.ZnSe quantum dots at temperatures ranging from 80 to 280 K.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dI dz = α 0 Iβ I 2 ,
ΔT(t)= A 1 exp( t τ 1 )+ A 2 exp( t τ 2 ),
ΔT(t)=Aexp( t τ ),
E g (T)= E g0 α T 2 (T+γ) ,
Γ(T)= Γ inh +σT+ Γ LO ( e E LO / K B T 1) 1 ,

Metrics