Abstract

New continuously tunable RF-spectrum analyzers, RF receivers, and RF signal generators are proposed and analyzed for the silicon-on-insulator integrated-photonic platform at the ~1550 nm wavelength. These RF system-on-a-chip applications are enabled by a new narrowband 2x2 Mach-Zehnder interferometer (MZI) tuned filters for reconfigurable multiplexing, demultiplexing and RF channel selection. The filter can be optimized for ~100 MHz 3-dB bandwidth (BW) by utilizing N closely coupled Bragg-grating resonators to form one effective waveguide resonator in the single-mode silicon nanowire used for each MZI arm. The number of periods M within each individual resonator is selected to engineer BW in the 0.1 to 1 GHz range. Butterworth design is employed. Continuous tuning of the 100 MHz-BW devices over 18.6 GHz has been simulated by using local micron-scale thermo-optical heater stripes on the MZI arms with a temperature rise from 0 to 48K. For the case of N = 3 and 100-nm silicon side teeth, some representative performance predictions are: insertion loss (IL) = −10.7 dB, BW = 80.5 MHz and L = 113 μm for M = 58; while IL = −0.74 dB, BW = 1210 MHz and L = 86 μm for M = 44.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mach-Zehnder crossbar switching and tunable filtering using N-coupled waveguide Bragg resonators

Richard A. Soref, Francesco De Leonardis, and Vittorio M. N. Passaro
Opt. Express 26(12) 14959-14971 (2018)

Reconfigurable optical-microwave filter banks using thermo-optically tuned Bragg Mach-Zehnder devices

Richard A. Soref, Francesco De Leonardis, and Vittorio M. N. Passaro
Opt. Express 26(12) 14879-14893 (2018)

Positive link gain microwave photonic bandpass filter using Si3N4-ring-enabled sideband filtering and carrier suppression

Zihang Zhu, Yang Liu, Moritz Merklein, Okky Daulay, David Marpaung, and Benjamin J. Eggleton
Opt. Express 27(22) 31727-31740 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).
  3. W. Zhang and J. Yao, “A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing,” Nat. Commun. 9(1), 1396 (2018).
    [Crossref] [PubMed]
  4. M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39(21), 6241–6244 (2014).
    [Crossref] [PubMed]
  5. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
    [Crossref] [PubMed]
  6. J. Čtyroký, J. Gonzalo Wangüemert-Pérez, P. Kwiecien, I. Richter, J. Litvik, J. H. Schmid, Í. Molina-Fernández, A. Ortega-Moñux, M. Dado, and P. Cheben, “Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides,” Opt. Express 26(1), 179–194 (2018).
    [Crossref] [PubMed]
  7. Y. Hung, K. H. Lin, C. Wu, C. Y. Wang, and Y. J. Chen, “Narrowband Reflection from Weakly Coupled Cladding-Modulated Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 22(6), 4402507 (2016).
    [Crossref]
  8. D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si3N4 Bragg gratings,” Opt. Express 23(23), 30329–30336 (2015).
    [Crossref] [PubMed]
  9. M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-Insulator Modulators Using a Quarter-Wave Phase-Shifted Bragg Grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
    [Crossref]
  10. J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
    [Crossref]
  11. A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a Silicon nanowire,” arXiv:1506.07637v1 [physics.optics] 25 Jun (2015).
  12. L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. H. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-Filtering (De)Multiplexer Using a Ring Resonator Assisted Interferometer Circuit,” J. Lightwave Technol. 34(8), 1732–1738 (2016).
    [Crossref]
  13. H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, and R. Soref, “Compact, submilliwatt 2 x 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5(2), 108–112 (2017).
    [Crossref]
  14. X. Jiang, H. Zhang, C. Qiu, Y. Zhang, Y. Su, and R. Soref, “Compact and power-efficient 2 x 2 thermo-optical switch based on the dual-nanobeam MZI,” Optical Fiber Communication Conference, paper Th2A.7, San Diego, 25 March 2018.
    [Crossref]
  15. R. Soref, “Resonant and slow-light 2 x 2 switches enabled by nanobeams and grating-assisted waveguides,” Progress in Electromagnetics Research Symposium, invited paper IP5.9, St. Petersburg, Russia (2017).
  16. R. Soref, “Tutorial: Integrated- Photonic Switching Structures,” APL Photonics 3(2), 021101 (2018).
    [Crossref]
  17. V. Veerasubramanian, G. Beaudin, A. Giguère, B. Le Drogoff, V. Aimez, and A. G. Kirk, “Waveguide-coupled drop filters on SOI using quarter-wave shifted sidewalled grating resonators,” Opt. Express 20(14), 15983–15990 (2012).
    [Crossref] [PubMed]
  18. R. Soref and J. Hendrickson, “Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N × N switching, logic, and wavelength multiplexing,” Opt. Express 23(25), 32582–32596 (2015).
    [Crossref] [PubMed]
  19. J. R. Hendrickson, R. Soref, and R. Gibson, “Improved 2 × 2 Mach-Zehnder switching using coupled-resonator photonic-crystal nanobeams,” Opt. Lett. 43(2), 287–290 (2018).
    [Crossref] [PubMed]
  20. R. Soref, J. R. Hendrickson, and J. Sweet, “Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region,” Opt. Express 24(9), 9369–9382 (2016).
    [Crossref] [PubMed]
  21. H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Su, and R. Soref, “Compact, submilliwatt 2 × 2 silicon thermos-optic switch based on photonic crystal nanobeam cavities,” Photon. Res. 5(2), 108–112 (2017).
  22. R. Soref, F. De Leonardis, V. M. N. Passaro, “Mach-Zehnder Crossbar Switching and Tunable Filtering Using N-coupled Waveguide Bragg Resonators,” Opt. Express, in publication (2018).
  23. C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3(7), 37 (2015).
  24. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives,” Photon. Res. 3(5), B10–B27 (2015).
    [Crossref]
  25. R. Soref, F. De Leonardis, V. M. N. Passaro, “Reconfigurable Optical-Microwave Filter Banks using Thermo-Optically Tuned Bragg Mach-Zehnder Devices,” Opt. Express, in publication (2018).
  26. M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
    [Crossref] [PubMed]
  27. C. Taddei, L. Zhuang, M. Hoekman, A. Leinse, R. Oldenbeuving, P. van Dijk, and C. Roeloffzen, “Fully Riconfigurable Coupled Ring Resonator-based Bandpass Filter For Microwave Signal Processing,” Int. Topical Meeting on Microwave Photonics, 978–4-88552–290–1 (2014).

2018 (4)

2017 (3)

2016 (4)

Y. Hung, K. H. Lin, C. Wu, C. Y. Wang, and Y. J. Chen, “Narrowband Reflection from Weakly Coupled Cladding-Modulated Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 22(6), 4402507 (2016).
[Crossref]

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. H. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-Filtering (De)Multiplexer Using a Ring Resonator Assisted Interferometer Circuit,” J. Lightwave Technol. 34(8), 1732–1738 (2016).
[Crossref]

R. Soref, J. R. Hendrickson, and J. Sweet, “Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region,” Opt. Express 24(9), 9369–9382 (2016).
[Crossref] [PubMed]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (1)

2012 (2)

2010 (1)

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Aimez, V.

Azaña, J.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39(21), 6241–6244 (2014).
[Crossref] [PubMed]

Beaudin, G.

Boller, K.

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

Bowers, J. E.

Burla, M.

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. H. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-Filtering (De)Multiplexer Using a Ring Resonator Assisted Interferometer Circuit,” J. Lightwave Technol. 34(8), 1732–1738 (2016).
[Crossref]

M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39(21), 6241–6244 (2014).
[Crossref] [PubMed]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Caverley, M.

M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-Insulator Modulators Using a Quarter-Wave Phase-Shifted Bragg Grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
[Crossref]

Cheben, P.

Chen, Y. J.

Y. Hung, K. H. Lin, C. Wu, C. Y. Wang, and Y. J. Chen, “Narrowband Reflection from Weakly Coupled Cladding-Modulated Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 22(6), 4402507 (2016).
[Crossref]

Chrostowski, L.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-Insulator Modulators Using a Quarter-Wave Phase-Shifted Bragg Grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
[Crossref]

M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39(21), 6241–6244 (2014).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

Corcoran, B.

Cortés, L. R.

Ctyroký, J.

Dado, M.

Davenport, M.

Doerr, C.

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3(7), 37 (2015).

Fernández-Ruiz, M. R.

Galán, J. V.

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Geng, Z.

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

Gibson, R.

Giguère, A.

Gonzalo Wangüemert-Pérez, J.

Grist, S.

He, Y.

Hendrickson, J.

Hendrickson, J. R.

Hoekman, M.

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. H. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-Filtering (De)Multiplexer Using a Ring Resonator Assisted Interferometer Circuit,” J. Lightwave Technol. 34(8), 1732–1738 (2016).
[Crossref]

Hung, Y.

Y. Hung, K. H. Lin, C. Wu, C. Y. Wang, and Y. J. Chen, “Narrowband Reflection from Weakly Coupled Cladding-Modulated Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 22(6), 4402507 (2016).
[Crossref]

Jaeger, N. A. F.

M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-Insulator Modulators Using a Quarter-Wave Phase-Shifted Bragg Grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
[Crossref]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

Jiang, X.

Khurgin, J.

Kirk, A. G.

Kwiecien, P.

Le Drogoff, B.

Leinse, A.

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

Li, M.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39(21), 6241–6244 (2014).
[Crossref] [PubMed]

Li, Y.

Lin, K. H.

Y. Hung, K. H. Lin, C. Wu, C. Y. Wang, and Y. J. Chen, “Narrowband Reflection from Weakly Coupled Cladding-Modulated Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 22(6), 4402507 (2016).
[Crossref]

Litvik, J.

Lowery, A. J.

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. H. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-Filtering (De)Multiplexer Using a Ring Resonator Assisted Interferometer Circuit,” J. Lightwave Technol. 34(8), 1732–1738 (2016).
[Crossref]

Martí, J.

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Molina-Fernández, Í.

Morton, P. A.

Murray, K.

M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-Insulator Modulators Using a Quarter-Wave Phase-Shifted Bragg Grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ortega-Moñux, A.

Palací, J.

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Poon, A. W.

Qiu, C.

Richter, I.

Roeloffzen, C.

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

Roeloffzen, C. G. H.

Schmid, J. H.

Shi, W.

Soref, R.

Spencer, D. T.

Srinivasan, S.

Su, Y.

Sweet, J.

Taddei, C.

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

Veerasubramanian, V.

Vidal, B.

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Villanueva, G. E.

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Wang, C. Y.

Y. Hung, K. H. Lin, C. Wu, C. Y. Wang, and Y. J. Chen, “Narrowband Reflection from Weakly Coupled Cladding-Modulated Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 22(6), 4402507 (2016).
[Crossref]

Wang, X.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-Insulator Modulators Using a Quarter-Wave Phase-Shifted Bragg Grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
[Crossref]

M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39(21), 6241–6244 (2014).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

Wu, C.

Y. Hung, K. H. Lin, C. Wu, C. Y. Wang, and Y. J. Chen, “Narrowband Reflection from Weakly Coupled Cladding-Modulated Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 22(6), 4402507 (2016).
[Crossref]

Xi, Y.

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

Xie, Y.

Yao, J.

W. Zhang and J. Yao, “A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing,” Nat. Commun. 9(1), 1396 (2018).
[Crossref] [PubMed]

Yun, H.

Zhang, L.

Zhang, W.

W. Zhang and J. Yao, “A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing,” Nat. Commun. 9(1), 1396 (2018).
[Crossref] [PubMed]

Zhang, Y.

Zhou, H.

Zhu, C.

Zhu, Q.

Zhuang, L.

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

L. Zhuang, C. Zhu, Y. Xie, M. Burla, C. G. H. Roeloffzen, M. Hoekman, B. Corcoran, and A. J. Lowery, “Nyquist-Filtering (De)Multiplexer Using a Ring Resonator Assisted Interferometer Circuit,” J. Lightwave Technol. 34(8), 1732–1738 (2016).
[Crossref]

APL Photonics (1)

R. Soref, “Tutorial: Integrated- Photonic Switching Structures,” APL Photonics 3(2), 021101 (2018).
[Crossref]

Front. Phys. (1)

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3(7), 37 (2015).

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Hung, K. H. Lin, C. Wu, C. Y. Wang, and Y. J. Chen, “Narrowband Reflection from Weakly Coupled Cladding-Modulated Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 22(6), 4402507 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-Insulator Modulators Using a Quarter-Wave Phase-Shifted Bragg Grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
[Crossref]

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

J. Lightwave Technol. (1)

Nanophotonics (1)

Y. Xi, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz.band selectivity,” Nanophotonics 7(2), 421–454 (2017).

Nat. Commun. (2)

W. Zhang and J. Yao, “A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing,” Nat. Commun. 9(1), 1396 (2018).
[Crossref] [PubMed]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7, 13004–13012 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Photon. Res. (3)

Other (6)

R. Soref, F. De Leonardis, V. M. N. Passaro, “Reconfigurable Optical-Microwave Filter Banks using Thermo-Optically Tuned Bragg Mach-Zehnder Devices,” Opt. Express, in publication (2018).

R. Soref, F. De Leonardis, V. M. N. Passaro, “Mach-Zehnder Crossbar Switching and Tunable Filtering Using N-coupled Waveguide Bragg Resonators,” Opt. Express, in publication (2018).

C. Taddei, L. Zhuang, M. Hoekman, A. Leinse, R. Oldenbeuving, P. van Dijk, and C. Roeloffzen, “Fully Riconfigurable Coupled Ring Resonator-based Bandpass Filter For Microwave Signal Processing,” Int. Topical Meeting on Microwave Photonics, 978–4-88552–290–1 (2014).

X. Jiang, H. Zhang, C. Qiu, Y. Zhang, Y. Su, and R. Soref, “Compact and power-efficient 2 x 2 thermo-optical switch based on the dual-nanobeam MZI,” Optical Fiber Communication Conference, paper Th2A.7, San Diego, 25 March 2018.
[Crossref]

R. Soref, “Resonant and slow-light 2 x 2 switches enabled by nanobeams and grating-assisted waveguides,” Progress in Electromagnetics Research Symposium, invited paper IP5.9, St. Petersburg, Russia (2017).

A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a Silicon nanowire,” arXiv:1506.07637v1 [physics.optics] 25 Jun (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 System-on-a-chip for RF/microwave spectrum analysis or for the tunable RF receiver function.
Fig. 2
Fig. 2 Detailed explanation of the system function using fixed and tuned MZI Bragg-grating coupled-resonator filters that can serve, if desired, as ROADMs.
Fig. 3
Fig. 3 Spectral transmission of the 2 x 2 MZI devices: (a) the mux and demux devices; (b) the RF channelizer device.
Fig. 4
Fig. 4 Selectable-frequency RF signal generator architecture using fixed and tunable MZI Bragg-grating coupled-resonator filters to induce an optical frequency difference signal (microwave or millimeter wave) at the photodetector output.
Fig. 5
Fig. 5 Spectral transmission of the 2 x 2 MZI devices: (a) the left-sidebad filter devices; (b) MUX filter.
Fig. 6
Fig. 6 (a) The i-th waveguide Bragg resonator; (b) Electric field x component of TE00 modal distribution.
Fig. 7
Fig. 7 Insertion loss and bandwidth as a function of the number N, assuming M = 50. The simulations are performed by considering:  W = 450 nm, H = 250 nm, W t = 100 nm, Λ = 315 nm, and α l = 0.2 dB/cm.
Fig. 8
Fig. 8 Insertion loss and bandwidth (Log scale) as a function of the number of periods M, assuming N = 3 and 4. The simulations are performed by considering:  W = 450 nm, H = 250 nm, W t = 100 nm, Λ = 315 nm, and α l = 0.2 dB/cm.
Fig. 9
Fig. 9 (a) Insertion loss as a function of the number of periods M, for different values of W t ; (b) Bandwidth as a function of the number of periods M, for different values of W t . The simulations are performed by considering:  W = 450 nm, H = 250 nm, N = 3, Λ = 315 nm, and α l = 0.2 dB/cm.
Fig. 10
Fig. 10 MZI Through spectrum for M = 54, and 58: (a) Zoom out; (b) Zoom in. The simulations are performed by considering:  W = 450 nm, H = 250 nm, N = 3, Λ = 315 nm, W t = 100 nm, and α l = 0.2 dB/cm.
Fig. 11
Fig. 11 MZI Drop spectrum for M = 54 and 58: (a) Zoom out; (b) Zoom in. The simulations are performed by considering:  W = 450 nm, H = 250 nm, N = 3, Λ = 315 nm, W t = 100 nm, and α l = 0.2 dB/cm.
Fig. 12
Fig. 12 MZI Through spectrum for M = 44, and 47 (a) Zoom out; (b) Zoom in. The simulations are performed by considering:  W = 450 nm, H = 250 nm, N = 3, Λ = 315 nm, W t = 100 nm, and α l = 0.2 dB/cm.
Fig. 13
Fig. 13 MZI Drop spectrum for M = 44, and 47 (a) Zoom out; (b) Zoom in. The simulations are performed by considering:  W = 450 nm, H = 250 nm, N = 3, Λ = 315 nm, W t = 100 nm, and α l = 0.2 dB/cm.
Fig. 14
Fig. 14 MZI Through spectrum for M = 54, and 58, changing Δn with a step of 0.0009 (local heating approach). The simulations are performed by considering:  W = 450 nm, H = 250 nm, N = 3, Λ = 315 nm, W t = 100 nm, and α l = 0.2 dB/cm.

Tables (1)

Tables Icon

Table 1 Coefficients g i .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L B i = 1 2 κ c log( g i g 1 )+L B 1 ; i>1
[ b 2 a 2 b 4 a 4 ]= T MZI [ b 1 a 1 b 3 a 3 ]=[ E F G H ][ b 1 a 1 b 3 a 3 ]

Metrics