Abstract

Distributed acoustic sensing (DAS) via fiber-optic reflectometry techniques is finding more and more applications in recent years. In many of these applications, the position of detected acoustic or seismic sources is defined with a single longitudinal coordinate which specifies the distance between the detection point in the fiber to the DAS interrogator. In this paper we describe a DAS system which is intended to operate in a fluid (air or water) and to detect and localize moving objects, with three spatial coordinates, using the acoustic waves they generate or reflect and their Doppler shifts. The new method uses optical frequency domain reflectometry (OFDR) and lumped Rayleigh reflectors (LRR's) to ensure sufficiently high sensitivity for operation in fluid media. The new method was used to track a narrowband (CW) signal source.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sinusoidal frequency scan OFDR with fast processing algorithm for distributed acoustic sensing

Lihi Shiloh and Avishay Eyal
Opt. Express 25(16) 19205-19215 (2017)

Distributed acoustic sensing for 2D and 3D acoustic source localization

Liang Jiajing, Wang Zhaoyong, Lu Bin, Wang Xiao, Li Luchuan, Ye Qing, Qu Ronghui, and Cai Haiwen
Opt. Lett. 44(7) 1690-1693 (2019)

On the sensitivity of distributed acoustic sensing

Haniel Gabai and Avishay Eyal
Opt. Lett. 41(24) 5648-5651 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Fernandez-Ruiz, A. Garcia-Ruiz, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Protecting fiber-optic links from third party intrusion using distributed acoustic sensors,” in 2017 19th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2017), pp. 1–4.
    [Crossref]
  2. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  3. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed Fiber-Optic Intrusion Sensor System,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  4. M. Froggatt and J. Moore, “Distributed measurement of static strain in an optical fiber with multiple Bragg gratings at nominally equal wavelengths,” Appl. Opt. 37(10), 1741–1746 (1998).
    [Crossref] [PubMed]
  5. A. D. Kersey, “Optical fiber sensors for downwell monitoring applications in the oil and gas industry,” in 13th International Conference on Optical Fiber Sensors (SPIE, 1999), p. 141.
    [Crossref]
  6. H. Gabai, I. Shpatz, and A. Eyal, “Lumped Rayleigh reflectors,” Opt. Lett. 42(21), 4529–4532 (2017).
    [Crossref] [PubMed]
  7. D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
    [Crossref] [PubMed]
  8. S. R. Martin, M. Genesca, J. Romeu, and R. Arcos, “Passive acoustic method for aircraft states estimation based on the Doppler effect,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1330–1346 (2014).
    [Crossref]
  9. M. B. Guldogan, D. Lindgren, F. Gustafsson, H. Habberstad, and U. Orguner, “Multi-target tracking with PHD filter using Doppler-only measurements,” Digit. Signal Process. 27, 1–11 (2014).
    [Crossref]
  10. Y. T. Chan and J. J. Towers, “Passive localization from Doppler-shifted frequency measurements,” IEEE Trans. Signal Process. 40(10), 2594–2598 (1992).
    [Crossref]
  11. H. Gabai, I. Steinberg, and A. Eyal, “Broadband ultrasonic sensor array via optical frequency domain reflectometry,” in Progress in Biomedical Optics and Imaging - Proceedings of SPIE (2015), Vol. 9323.
  12. R. E. Wilcox, “Underwater Doppler tracking using optimization techniques,” J. Acoust. Soc. Am. 63(3), 870–875 (1978).
    [Crossref]
  13. S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, J. L. Santos, and V. Miranda, “Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—a Proof of Concept,” IEEE Trans. Power Deliv. 25(4), 2526–2534 (2010).
    [Crossref]
  14. J. A. Bucaro and T. R. Hickman, “Measurement of sensitivity of optical fibers for acoustic detection,” Appl. Opt. 18(6), 938–940 (1979).
    [Crossref] [PubMed]
  15. G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” J. Lightwave Technol. 18(9), 1233–1243 (2000).
    [Crossref]

2017 (1)

2014 (3)

D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
[Crossref] [PubMed]

S. R. Martin, M. Genesca, J. Romeu, and R. Arcos, “Passive acoustic method for aircraft states estimation based on the Doppler effect,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1330–1346 (2014).
[Crossref]

M. B. Guldogan, D. Lindgren, F. Gustafsson, H. Habberstad, and U. Orguner, “Multi-target tracking with PHD filter using Doppler-only measurements,” Digit. Signal Process. 27, 1–11 (2014).
[Crossref]

2013 (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

2010 (1)

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, J. L. Santos, and V. Miranda, “Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—a Proof of Concept,” IEEE Trans. Power Deliv. 25(4), 2526–2534 (2010).
[Crossref]

2005 (1)

2000 (1)

1998 (1)

1992 (1)

Y. T. Chan and J. J. Towers, “Passive localization from Doppler-shifted frequency measurements,” IEEE Trans. Signal Process. 40(10), 2594–2598 (1992).
[Crossref]

1979 (1)

1978 (1)

R. E. Wilcox, “Underwater Doppler tracking using optimization techniques,” J. Acoust. Soc. Am. 63(3), 870–875 (1978).
[Crossref]

Araujo, F. M.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, J. L. Santos, and V. Miranda, “Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—a Proof of Concept,” IEEE Trans. Power Deliv. 25(4), 2526–2534 (2010).
[Crossref]

Arbel, D.

Arcos, R.

S. R. Martin, M. Genesca, J. Romeu, and R. Arcos, “Passive acoustic method for aircraft states estimation based on the Doppler effect,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1330–1346 (2014).
[Crossref]

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Bucaro, J. A.

Chan, Y. T.

Y. T. Chan and J. J. Towers, “Passive localization from Doppler-shifted frequency measurements,” IEEE Trans. Signal Process. 40(10), 2594–2598 (1992).
[Crossref]

Choi, K. N.

Cranch, G. A.

Eyal, A.

Farias, R. G.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, J. L. Santos, and V. Miranda, “Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—a Proof of Concept,” IEEE Trans. Power Deliv. 25(4), 2526–2534 (2010).
[Crossref]

Ferreira, L. A.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, J. L. Santos, and V. Miranda, “Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—a Proof of Concept,” IEEE Trans. Power Deliv. 25(4), 2526–2534 (2010).
[Crossref]

Frazao, O.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, J. L. Santos, and V. Miranda, “Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—a Proof of Concept,” IEEE Trans. Power Deliv. 25(4), 2526–2534 (2010).
[Crossref]

Froggatt, M.

Gabai, H.

Genesca, M.

S. R. Martin, M. Genesca, J. Romeu, and R. Arcos, “Passive acoustic method for aircraft states estimation based on the Doppler effect,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1330–1346 (2014).
[Crossref]

Guldogan, M. B.

M. B. Guldogan, D. Lindgren, F. Gustafsson, H. Habberstad, and U. Orguner, “Multi-target tracking with PHD filter using Doppler-only measurements,” Digit. Signal Process. 27, 1–11 (2014).
[Crossref]

Gustafsson, F.

M. B. Guldogan, D. Lindgren, F. Gustafsson, H. Habberstad, and U. Orguner, “Multi-target tracking with PHD filter using Doppler-only measurements,” Digit. Signal Process. 27, 1–11 (2014).
[Crossref]

Habberstad, H.

M. B. Guldogan, D. Lindgren, F. Gustafsson, H. Habberstad, and U. Orguner, “Multi-target tracking with PHD filter using Doppler-only measurements,” Digit. Signal Process. 27, 1–11 (2014).
[Crossref]

Hickman, T. R.

Juarez, J. C.

Kersey, A. D.

A. D. Kersey, “Optical fiber sensors for downwell monitoring applications in the oil and gas industry,” in 13th International Conference on Optical Fiber Sensors (SPIE, 1999), p. 141.
[Crossref]

Lima, S. E. U.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, J. L. Santos, and V. Miranda, “Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—a Proof of Concept,” IEEE Trans. Power Deliv. 25(4), 2526–2534 (2010).
[Crossref]

Lindgren, D.

M. B. Guldogan, D. Lindgren, F. Gustafsson, H. Habberstad, and U. Orguner, “Multi-target tracking with PHD filter using Doppler-only measurements,” Digit. Signal Process. 27, 1–11 (2014).
[Crossref]

Maier, E. W.

Martin, S. R.

S. R. Martin, M. Genesca, J. Romeu, and R. Arcos, “Passive acoustic method for aircraft states estimation based on the Doppler effect,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1330–1346 (2014).
[Crossref]

Masoudi, A.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Miranda, V.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, J. L. Santos, and V. Miranda, “Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—a Proof of Concept,” IEEE Trans. Power Deliv. 25(4), 2526–2534 (2010).
[Crossref]

Moore, J.

Nash, P. J.

Newson, T. P.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Orguner, U.

M. B. Guldogan, D. Lindgren, F. Gustafsson, H. Habberstad, and U. Orguner, “Multi-target tracking with PHD filter using Doppler-only measurements,” Digit. Signal Process. 27, 1–11 (2014).
[Crossref]

Romeu, J.

S. R. Martin, M. Genesca, J. Romeu, and R. Arcos, “Passive acoustic method for aircraft states estimation based on the Doppler effect,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1330–1346 (2014).
[Crossref]

Santos, J. L.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, J. L. Santos, and V. Miranda, “Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—a Proof of Concept,” IEEE Trans. Power Deliv. 25(4), 2526–2534 (2010).
[Crossref]

Shpatz, I.

Taylor, H. F.

Towers, J. J.

Y. T. Chan and J. J. Towers, “Passive localization from Doppler-shifted frequency measurements,” IEEE Trans. Signal Process. 40(10), 2594–2598 (1992).
[Crossref]

Wilcox, R. E.

R. E. Wilcox, “Underwater Doppler tracking using optimization techniques,” J. Acoust. Soc. Am. 63(3), 870–875 (1978).
[Crossref]

Appl. Opt. (2)

Digit. Signal Process. (1)

M. B. Guldogan, D. Lindgren, F. Gustafsson, H. Habberstad, and U. Orguner, “Multi-target tracking with PHD filter using Doppler-only measurements,” Digit. Signal Process. 27, 1–11 (2014).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

S. R. Martin, M. Genesca, J. Romeu, and R. Arcos, “Passive acoustic method for aircraft states estimation based on the Doppler effect,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1330–1346 (2014).
[Crossref]

IEEE Trans. Power Deliv. (1)

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, J. L. Santos, and V. Miranda, “Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—a Proof of Concept,” IEEE Trans. Power Deliv. 25(4), 2526–2534 (2010).
[Crossref]

IEEE Trans. Signal Process. (1)

Y. T. Chan and J. J. Towers, “Passive localization from Doppler-shifted frequency measurements,” IEEE Trans. Signal Process. 40(10), 2594–2598 (1992).
[Crossref]

J. Acoust. Soc. Am. (1)

R. E. Wilcox, “Underwater Doppler tracking using optimization techniques,” J. Acoust. Soc. Am. 63(3), 870–875 (1978).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (3)

M. R. Fernandez-Ruiz, A. Garcia-Ruiz, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Protecting fiber-optic links from third party intrusion using distributed acoustic sensors,” in 2017 19th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2017), pp. 1–4.
[Crossref]

A. D. Kersey, “Optical fiber sensors for downwell monitoring applications in the oil and gas industry,” in 13th International Conference on Optical Fiber Sensors (SPIE, 1999), p. 141.
[Crossref]

H. Gabai, I. Steinberg, and A. Eyal, “Broadband ultrasonic sensor array via optical frequency domain reflectometry,” in Progress in Biomedical Optics and Imaging - Proceedings of SPIE (2015), Vol. 9323.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup (a) and an example of single step velocity calculation (b).
Fig. 2
Fig. 2 Experimental results: (a) Spectrogram obtained from a single sensor as a target emanating a 9kHz tone passed in its vicinity. (b) The extracted frequency shifts (relative to the rest tone frequency) in sensor 1 (blue) and sensor 2 (red).
Fig. 3
Fig. 3 The target's trajectory estimated based on the DAS system (circles) and the trajectory as recorded by the camera (axes). The sensors locations are marked in blue.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R U ( k ) r U ( 0 ) r U ( k )= r U ( 0 ) e j φ U ( k ) R V ( k ) r V ( 0 ) r V ( k )= r V ( 0 ) e j φ V ( k )
φ signal ( k ) φ V ( k ) φ U ( k )=Arg[ R V ( k ) R U * ( k ) ]
f ˜ signal ( j )= argmax i { Φ( i,j ) }Δf
v l r ( j )= v s f ˜ signal ( j ) f signal f ˜ signal ( j )
v = v l r v ^ l r + v l t v ^ l t
v ^ l r = r l r | r l r |
v ^ l t = v ^ l r × n ^
r (j+1)= r (j)+ v ( j )Δt
v min =4 v s L cT

Metrics