Abstract

A new technology for chaotic Brillouin optical correlation domain analysis (BOCDA) has been proposed and experimentally demonstrated with high spatial resolution. However, the off-peak amplification induced by the chaotic autocorrelation sidelobes limits the measurement range of chaotic BOCDA system. The time-gated scheme is introduced to suppress the off-peak amplification. With the pump pulse of 120 ns duration, the time-gated chaotic BOCDA has been experimentally achieved with a 9 cm spatial resolution over a 10.2 km measurement range. The standard deviation in the local Brillouin frequency shift is ± 1.8 MHz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Double-pulse pair Brillouin optical correlation-domain analysis

Orel Shlomi, Eyal Preter, Dexin Ba, Yosef London, Yair Antman, and Avi Zadok
Opt. Express 24(23) 26867-26876 (2016)

High-resolution Brillouin optical correlation domain analysis with no spectral scanning

Eyal Preter, Dexin Ba, Yosef London, Orel Shlomi, Yair Antman, and Avi Zadok
Opt. Express 24(24) 27253-27267 (2016)

Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement

Yong Hyun Kim, Kwanil Lee, and Kwang Yong Song
Opt. Express 23(26) 33241-33248 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
    [Crossref] [PubMed]
  2. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [Crossref] [PubMed]
  3. J. Hu, X. Zhang, Y. Yao, and X. Zhao, “A BOTDA with break interrogation function over 72 km sensing length,” Opt. Express 21(1), 145–153 (2013).
    [Crossref] [PubMed]
  4. A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors (1997 OSA Technical Digest Series), Opt. Soc. America 16, 324–327 (1997).
    [Crossref]
  5. Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009).
    [Crossref] [PubMed]
  6. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [Crossref] [PubMed]
  7. J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
    [Crossref]
  8. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
    [Crossref]
  9. L. Thévenaz and S. F. Mafang, “Distributed fiber sensing using Brillouin echoes,” Proc. SPIE 7004, 70043N (2008).
    [Crossref]
  10. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
    [Crossref] [PubMed]
  11. Q. Sun, S. L. Sun, J. F. Wang, and Z. Meng, ““Long-range distributed temperature sensing with sub-meter scale spatial resolution based on BOTDA employing pre-pumped Golay coding,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 10323, 1032386 (2017).
    [Crossref]
  12. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [Crossref]
  13. X. H. Jia, Y. J. Rao, C. X. Yuan, J. Li, X. D. Yan, Z. N. Wang, W. L. Zhang, H. Wu, Y. Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21(21), 24611–24619 (2013).
    [Crossref] [PubMed]
  14. J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
    [Crossref] [PubMed]
  15. Y. H. Kim and K. Y. Song, “Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification,” Opt. Express 25(13), 14098–14105 (2017).
    [Crossref] [PubMed]
  16. D. W. Zhou, Y. K. Dong, B. Z. Wang, C. Pang, D. X. Ba, H. Y. Zhang, Z. W. Lu, H. Li, and X. Y. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light-Sci. Appl. (to be published).
  17. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. 83(3), 405–412 (2000).
  18. Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
    [Crossref] [PubMed]
  19. K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photonics Technol. Lett. 18(3), 499–501 (2006).
    [Crossref]
  20. J. H. Jeong, K. Lee, K. Y. Song, J. M. Jeong, and S. B. Lee, “Differential measurement scheme for Brillouin optical correlation domain analysis,” Opt. Express 20(24), 27094–27101 (2012).
    [Crossref] [PubMed]
  21. Y. H. Kim, K. Lee, and K. Y. Song, “Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement,” Opt. Express 23(26), 33241–33248 (2015).
    [Crossref] [PubMed]
  22. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
    [Crossref]
  23. A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
    [Crossref]
  24. Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440 000 resolution points,” J. Lightwave Technol. 34(19), 4421–4429 (2016).
    [Crossref]
  25. O. Shlomi, E. Preter, D. Ba, Y. London, Y. Antman, and A. Zadok, “Double-pulse pair Brillouin optical correlation-domain analysis,” Opt. Express 24(23), 26867–26876 (2016).
    [Crossref] [PubMed]
  26. A. López-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Phase-measuring time-gated BOCDA,” Opt. Lett. 42(19), 3924–3927 (2017).
    [Crossref] [PubMed]
  27. D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
    [Crossref] [PubMed]
  28. B. Wang, X. Y. Fan, Q. W. Liu, and Z. Y. He, ““Increasing effective sensing points of Brillouin optical correlation domain analysis using four-wave-mixing process,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 103231, 03238K (2017).
  29. R. Cohen, Y. London, Y. Antman, and A. Zadok, “Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission,” Opt. Express 22(10), 12070–12078 (2014).
    [Crossref] [PubMed]
  30. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
    [Crossref]
  31. Y. N. Ji, M. J. Zhang, Y. C. Wang, P. Wang, A. B. Wang, Y. Wu, H. Xu, and Y. N. Zhang, “Microwave-Photonic sensor for remote water-level monitoring based on Chaotic laser,” Int. J. Bifurcat. Chaos 24(3), 1450032 (2014).
    [Crossref]
  32. J. Zhang, M. Zhang, M. Zhang, Y. Liu, C. Feng, Y. Wang, and Y. Wang, “Chaotic Brillouin optical correlation-domain analysis,” Opt. Lett. 43(8), 1722–1725 (2018).
    [Crossref] [PubMed]
  33. J. Zhang, C. Feng, M. Zhang, Y. Liu, C. Wu, and Y. Wang, “Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature,” Opt. Express 26(6), 6962–6972 (2018).
    [Crossref] [PubMed]
  34. J. Z. Zhang, Z. P. Li, M. J. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
    [Crossref]
  35. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]

2018 (2)

2017 (5)

J. Z. Zhang, Z. P. Li, M. J. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

B. Wang, X. Y. Fan, Q. W. Liu, and Z. Y. He, ““Increasing effective sensing points of Brillouin optical correlation domain analysis using four-wave-mixing process,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 103231, 03238K (2017).

A. López-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Phase-measuring time-gated BOCDA,” Opt. Lett. 42(19), 3924–3927 (2017).
[Crossref] [PubMed]

Q. Sun, S. L. Sun, J. F. Wang, and Z. Meng, ““Long-range distributed temperature sensing with sub-meter scale spatial resolution based on BOTDA employing pre-pumped Golay coding,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 10323, 1032386 (2017).
[Crossref]

Y. H. Kim and K. Y. Song, “Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification,” Opt. Express 25(13), 14098–14105 (2017).
[Crossref] [PubMed]

2016 (5)

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440 000 resolution points,” J. Lightwave Technol. 34(19), 4421–4429 (2016).
[Crossref]

O. Shlomi, E. Preter, D. Ba, Y. London, Y. Antman, and A. Zadok, “Double-pulse pair Brillouin optical correlation-domain analysis,” Opt. Express 24(23), 26867–26876 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

2013 (3)

2012 (3)

2011 (1)

2009 (2)

2008 (1)

L. Thévenaz and S. F. Mafang, “Distributed fiber sensing using Brillouin echoes,” Proc. SPIE 7004, 70043N (2008).
[Crossref]

2007 (1)

2006 (1)

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photonics Technol. Lett. 18(3), 499–501 (2006).
[Crossref]

2005 (1)

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. 83(3), 405–412 (2000).

1990 (1)

Alahbabi, M. N.

Antman, Y.

Ba, D.

Bao, X.

Barrias, A.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Bolognini, G.

Brown, A. W.

Brown, K.

Casas, J. R.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Chen, L.

Cho, Y. T.

Cohen, R.

Colpitts, B. G.

Denisov, A.

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Di Pasquale, F.

Dong, Y.

Dong, Y. K.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Elooz, D.

Fan, X. Y.

B. Wang, X. Y. Fan, Q. W. Liu, and Z. Y. He, ““Increasing effective sensing points of Brillouin optical correlation domain analysis using four-wave-mixing process,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 103231, 03238K (2017).

Feng, C.

Gonzalez-Herraez, M.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. 83(3), 405–412 (2000).

He, S. Y.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

He, Z.

He, Z. Y.

B. Wang, X. Y. Fan, Q. W. Liu, and Z. Y. He, ““Increasing effective sensing points of Brillouin optical correlation domain analysis using four-wave-mixing process,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 103231, 03238K (2017).

Horiguchi, T.

Hotate, K.

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[Crossref] [PubMed]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photonics Technol. Lett. 18(3), 499–501 (2006).
[Crossref]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. 83(3), 405–412 (2000).

Hu, J.

Jeong, J. H.

Jeong, J. M.

Ji, Y. N.

Y. N. Ji, M. J. Zhang, Y. C. Wang, P. Wang, A. B. Wang, Y. Wu, H. Xu, and Y. N. Zhang, “Microwave-Photonic sensor for remote water-level monitoring based on Chaotic laser,” Int. J. Bifurcat. Chaos 24(3), 1450032 (2014).
[Crossref]

Jia, X. H.

Kim, Y. H.

Kurashima, T.

Lee, K.

Lee, S. B.

Levanon, N.

Li, H.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Li, J.

Li, S. L.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Li, W.

Li, Y.

J. Z. Zhang, Z. P. Li, M. J. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

Li, Z. P.

J. Z. Zhang, Z. P. Li, M. J. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

Lin, J.

Liu, Q. W.

B. Wang, X. Y. Fan, Q. W. Liu, and Z. Y. He, ““Increasing effective sensing points of Brillouin optical correlation domain analysis using four-wave-mixing process,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 103231, 03238K (2017).

Liu, Y.

Loayssa, A.

London, Y.

López-Gil, A.

Mafang, S. F.

Martin-Lopez, S.

Meng, Z.

Q. Sun, S. L. Sun, J. F. Wang, and Z. Meng, ““Long-range distributed temperature sensing with sub-meter scale spatial resolution based on BOTDA employing pre-pumped Golay coding,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 10323, 1032386 (2017).
[Crossref]

Mizuno, Y.

Newson, T. P.

Peng, F.

Preter, E.

Primerov, N.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Rao, Y. J.

Sagues, M.

Sancho, J.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Sciamanna, M.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Shlomi, O.

Shore, K. A.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Song, K. Y.

Soto, M. A.

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
[Crossref] [PubMed]

Sun, Q.

Q. Sun, S. L. Sun, J. F. Wang, and Z. Meng, ““Long-range distributed temperature sensing with sub-meter scale spatial resolution based on BOTDA employing pre-pumped Golay coding,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 10323, 1032386 (2017).
[Crossref]

Sun, S. L.

Q. Sun, S. L. Sun, J. F. Wang, and Z. Meng, ““Long-range distributed temperature sensing with sub-meter scale spatial resolution based on BOTDA employing pre-pumped Golay coding,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 10323, 1032386 (2017).
[Crossref]

Tateda, M.

Thévenaz, L.

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

L. Thévenaz and S. F. Mafang, “Distributed fiber sensing using Brillouin echoes,” Proc. SPIE 7004, 70043N (2008).
[Crossref]

Urricelqui, J.

Villalba, S.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Wang, A. B.

Y. N. Ji, M. J. Zhang, Y. C. Wang, P. Wang, A. B. Wang, Y. Wu, H. Xu, and Y. N. Zhang, “Microwave-Photonic sensor for remote water-level monitoring based on Chaotic laser,” Int. J. Bifurcat. Chaos 24(3), 1450032 (2014).
[Crossref]

Wang, B.

B. Wang, X. Y. Fan, Q. W. Liu, and Z. Y. He, ““Increasing effective sensing points of Brillouin optical correlation domain analysis using four-wave-mixing process,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 103231, 03238K (2017).

Wang, J. F.

Q. Sun, S. L. Sun, J. F. Wang, and Z. Meng, ““Long-range distributed temperature sensing with sub-meter scale spatial resolution based on BOTDA employing pre-pumped Golay coding,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 10323, 1032386 (2017).
[Crossref]

Wang, P.

Y. N. Ji, M. J. Zhang, Y. C. Wang, P. Wang, A. B. Wang, Y. Wu, H. Xu, and Y. N. Zhang, “Microwave-Photonic sensor for remote water-level monitoring based on Chaotic laser,” Int. J. Bifurcat. Chaos 24(3), 1450032 (2014).
[Crossref]

Wang, Y.

Wang, Y. C.

Y. N. Ji, M. J. Zhang, Y. C. Wang, P. Wang, A. B. Wang, Y. Wu, H. Xu, and Y. N. Zhang, “Microwave-Photonic sensor for remote water-level monitoring based on Chaotic laser,” Int. J. Bifurcat. Chaos 24(3), 1450032 (2014).
[Crossref]

Wang, Z. N.

Wu, C.

Wu, H.

Wu, Y.

Y. N. Ji, M. J. Zhang, Y. C. Wang, P. Wang, A. B. Wang, Y. Wu, H. Xu, and Y. N. Zhang, “Microwave-Photonic sensor for remote water-level monitoring based on Chaotic laser,” Int. J. Bifurcat. Chaos 24(3), 1450032 (2014).
[Crossref]

Xu, H.

Y. N. Ji, M. J. Zhang, Y. C. Wang, P. Wang, A. B. Wang, Y. Wu, H. Xu, and Y. N. Zhang, “Microwave-Photonic sensor for remote water-level monitoring based on Chaotic laser,” Int. J. Bifurcat. Chaos 24(3), 1450032 (2014).
[Crossref]

Xu, J. L.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Yan, X. D.

Yao, Y.

Yuan, C. X.

Zadok, A.

Zhang, H.

Zhang, J.

Zhang, J. Z.

J. Z. Zhang, Z. P. Li, M. J. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

Zhang, M.

Zhang, M. J.

J. Z. Zhang, Z. P. Li, M. J. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

Y. N. Ji, M. J. Zhang, Y. C. Wang, P. Wang, A. B. Wang, Y. Wu, H. Xu, and Y. N. Zhang, “Microwave-Photonic sensor for remote water-level monitoring based on Chaotic laser,” Int. J. Bifurcat. Chaos 24(3), 1450032 (2014).
[Crossref]

Zhang, W. L.

Zhang, X.

Zhang, Y. N.

Y. N. Ji, M. J. Zhang, Y. C. Wang, P. Wang, A. B. Wang, Y. Wu, H. Xu, and Y. N. Zhang, “Microwave-Photonic sensor for remote water-level monitoring based on Chaotic laser,” Int. J. Bifurcat. Chaos 24(3), 1450032 (2014).
[Crossref]

Zhang, Z. H.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Zhao, X.

Zhu, Y. Y.

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (1)

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photonics Technol. Lett. 18(3), 499–501 (2006).
[Crossref]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. 83(3), 405–412 (2000).

Int. J. Bifurcat. Chaos (1)

Y. N. Ji, M. J. Zhang, Y. C. Wang, P. Wang, A. B. Wang, Y. Wu, H. Xu, and Y. N. Zhang, “Microwave-Photonic sensor for remote water-level monitoring based on Chaotic laser,” Int. J. Bifurcat. Chaos 24(3), 1450032 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Light Sci. Appl. (1)

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

Meas. Sci. Technol. (1)

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Nat. Photonics (1)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Opt. Commun. (1)

J. Z. Zhang, Z. P. Li, M. J. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

Opt. Express (12)

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

J. Zhang, C. Feng, M. Zhang, Y. Liu, C. Wu, and Y. Wang, “Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature,” Opt. Express 26(6), 6962–6972 (2018).
[Crossref] [PubMed]

R. Cohen, Y. London, Y. Antman, and A. Zadok, “Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission,” Opt. Express 22(10), 12070–12078 (2014).
[Crossref] [PubMed]

J. H. Jeong, K. Lee, K. Y. Song, J. M. Jeong, and S. B. Lee, “Differential measurement scheme for Brillouin optical correlation domain analysis,” Opt. Express 20(24), 27094–27101 (2012).
[Crossref] [PubMed]

Y. H. Kim, K. Lee, and K. Y. Song, “Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement,” Opt. Express 23(26), 33241–33248 (2015).
[Crossref] [PubMed]

O. Shlomi, E. Preter, D. Ba, Y. London, Y. Antman, and A. Zadok, “Double-pulse pair Brillouin optical correlation-domain analysis,” Opt. Express 24(23), 26867–26876 (2016).
[Crossref] [PubMed]

D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
[Crossref] [PubMed]

J. Hu, X. Zhang, Y. Yao, and X. Zhao, “A BOTDA with break interrogation function over 72 km sensing length,” Opt. Express 21(1), 145–153 (2013).
[Crossref] [PubMed]

X. H. Jia, Y. J. Rao, C. X. Yuan, J. Li, X. D. Yan, Z. N. Wang, W. L. Zhang, H. Wu, Y. Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21(21), 24611–24619 (2013).
[Crossref] [PubMed]

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
[Crossref] [PubMed]

Y. H. Kim and K. Y. Song, “Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification,” Opt. Express 25(13), 14098–14105 (2017).
[Crossref] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[Crossref] [PubMed]

Opt. Lett. (4)

Proc. SPIE (3)

B. Wang, X. Y. Fan, Q. W. Liu, and Z. Y. He, ““Increasing effective sensing points of Brillouin optical correlation domain analysis using four-wave-mixing process,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 103231, 03238K (2017).

L. Thévenaz and S. F. Mafang, “Distributed fiber sensing using Brillouin echoes,” Proc. SPIE 7004, 70043N (2008).
[Crossref]

Q. Sun, S. L. Sun, J. F. Wang, and Z. Meng, ““Long-range distributed temperature sensing with sub-meter scale spatial resolution based on BOTDA employing pre-pumped Golay coding,” in 25th International Conference on Optical Fiber Sensors,” Proc. SPIE 10323, 1032386 (2017).
[Crossref]

Sensors (Basel) (1)

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Other (2)

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors (1997 OSA Technical Digest Series), Opt. Soc. America 16, 324–327 (1997).
[Crossref]

D. W. Zhou, Y. K. Dong, B. Z. Wang, C. Pang, D. X. Ba, H. Y. Zhang, Z. W. Lu, H. Li, and X. Y. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light-Sci. Appl. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustration of the generated acoustic waves near a correlation peak (CP) in the previous chaotic BOCDA system (a) and the time-gated chaotic BOCDA system (b).
Fig. 2
Fig. 2 The waveforms (a) and the autocorrelation characteristics (b) of the chaotic pump light signals with (red) and without (blue) the amplitude pulse modulation, respectively.
Fig. 3
Fig. 3 The Brillouin gain spectra of the chaotic BOCDA systems with (red) and without (blue) the time-gated scheme at the different fiber positions along a 10.2-km long sensing fiber: (a) 5.0 km, (b) 8.5 km, (c) 10.0 km; (d) The SBR as a function of the fiber position.
Fig. 4
Fig. 4 Optimized parameters of the modulated pump pulse (a) pulse duration; (b) modulation voltage.
Fig. 5
Fig. 5 Experimental setup of the time-gated chaotic BOCDA system. PC1, PC2, polarization controller; DSB.M, double sideband modulator; APM.M, amplitude modulator; PODG, programmable optical delay generator; EDFA1, EDFA2, EDFA3, erbium-doped optical fiber amplifier; PS, polarization scrambler; ISO, isolator; FUT, fiber under test; OC, optical circulator; BPF, band-pass filter; OPM, optical power meter, Room Tem., room temperature.
Fig. 6
Fig. 6 The relationship of the BGS with temperature. (a) temperature-dependence of the BGS along the FUT; (b) that of the BFS along the FUT.
Fig. 7
Fig. 7 The BFS distribution along the FUT in the chaotic BOCDA systems without (a) and with (b) the time-gated scheme.
Fig. 8
Fig. 8 Measured distributions of the BGS (a) and BFS (b) along the FUT.
Fig. 9
Fig. 9 (a) Depletion factor d as a function of the probe power for the lower frequency sideband, where a fixed input pump peak power is 6 W. (b) Depletion factor d as a function of the pump peak power for a fixed input probe power of 3.6 mW. In the time-gated chaotic BOCDA system, the chosen fiber length is 1 km, the duration of the pump pulse is 120 ns, and the chaotic probe wave operates in double-sideband suppress-carrier mode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q(z,t)= 1 2τ 0 t exp( t ' t 2τ ) A P ( t ' z v g ) A S * [ t ' z v g +θ( z ) ]d t ' ,
A P (z=0,t)= A P0 u(t)rect( t τ P ),
A S (z=L,t)= A S0 u(t),
Q(t,z) ¯ = A P0 A S0 * 2τ 0 t rect( t ' τ P ) exp( t ' t 2τ ) u( t ' z v g ) u * [ t ' z v g +θ( z ) ] ¯ d t ' =C θ( z ) .

Metrics