Abstract

We report a device that acts as an active Q-switch and a quasi-phase-matching structure. It is a domain-structured LiNbO3 crystal, where the Q-switching is performed by electro-optic deflection and the wavelength conversion is produced by quasi-phase-matched optical parametric generation. By introducing this device into a diode-pumped Nd:YAG laser we obtained pulses at 1064 nm (~10 ns FWHM, 195 µJ) and 1617 nm (~3 ns, 15 µJ).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Double-prism domain PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd:YVO4 laser

J. F. Huang, W. K. Chang, H. P. Chung, S. S. Huang, J. W. Chang, and Y. H. Chen
Opt. Express 21(25) 30370-30378 (2013)

Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce
J. Opt. Soc. Am. B 12(11) 2102-2116 (1995)

High-energy quasi-phase-matched optical parametric oscillation in a 3-mm-thick periodically poled MgO:LiNbO3 device

Hideki Ishizuki, Ichiro Shoji, and Takunori Taira
Opt. Lett. 29(21) 2527-2529 (2004)

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol. 35(3), 233–235 (2003).
    [Crossref]
  2. Z. Jiao, J. Guo, G. He, G. Lu, and B. Wang, “Narrowband intracavity MgO:PPLN optical parametric oscillator near degeneracy with a volume Bragg grating,” Opt. Laser Technol. 56, 230–233 (2014).
    [Crossref]
  3. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 193–200 (2001).
    [Crossref]
  4. R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 201–207 (2001).
    [Crossref]
  5. Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17(1), 108–114 (1999).
    [Crossref]
  6. J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-Optimized Electrooptic Beam Scanners: Experiment,” IEEE Photonics Technol. Lett. 11(1), 66–68 (1999).
    [Crossref]
  7. K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, and D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38(7), 1186–1190 (1999).
    [Crossref] [PubMed]
  8. D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
    [Crossref]
  9. Y. Chiu, V. Gopalan, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, and W. P. Risk, “Integrated Optical Device with Second-Harmonic Generator, Electrooptic Lens, and Electrooptic Scanner in LiTaO3,” J. Lightwave Technol. 17(3), 462–465 (1999).
    [Crossref]
  10. Y. H. Chen, Y. C. Chang, C. H. Lin, and T. Y. Chung, “Diode-pumped, actively internal-Q-switched Nd:MgO:PPLN laser,” Opt. Express 16(3), 2048–2055 (2008).
    [Crossref] [PubMed]
  11. W. K. Chang, Y. H. Chen, H. H. Chang, J. W. Chang, C. Y. Chen, Y. Y. Lin, Y. C. Huang, and S. T. Lin, “Two-dimensional PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd:YVO4 laser,” Opt. Express 19(24), 23643–23651 (2011).
    [Crossref] [PubMed]
  12. J. F. Huang, W. K. Chang, H. P. Chung, S. S. Huang, J. W. Chang, and Y. H. Chen, “Double-prism domain PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd:YVO4 laser,” Opt. Express 21(25), 30370–30378 (2013).
    [Crossref] [PubMed]
  13. R. S. Cudney, L. A. Ríos, M. J. Orozco Arellanes, F. Alonso, and J. Fonseca, “Fabricación de niobato de litio periódicamente polarizado para óptica no-lineal,” Rev. Mex. Fis. 48(6), 548–555 (2002).
  14. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
    [Crossref]
  15. M. Jazbinsek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro and elasto-optics,” Appl. Phys. B 74(4–5), 407–414 (2002).
  16. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO, and LiTaO,” Appl. Phys. Lett. 9(1), 72–74 (1966).
    [Crossref]
  17. O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).
  18. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
    [Crossref]

2014 (1)

Z. Jiao, J. Guo, G. He, G. Lu, and B. Wang, “Narrowband intracavity MgO:PPLN optical parametric oscillator near degeneracy with a volume Bragg grating,” Opt. Laser Technol. 56, 230–233 (2014).
[Crossref]

2013 (1)

2011 (1)

2008 (1)

2003 (1)

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol. 35(3), 233–235 (2003).
[Crossref]

2002 (3)

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

R. S. Cudney, L. A. Ríos, M. J. Orozco Arellanes, F. Alonso, and J. Fonseca, “Fabricación de niobato de litio periódicamente polarizado para óptica no-lineal,” Rev. Mex. Fis. 48(6), 548–555 (2002).

M. Jazbinsek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro and elasto-optics,” Appl. Phys. B 74(4–5), 407–414 (2002).

2001 (2)

J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 193–200 (2001).
[Crossref]

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 201–207 (2001).
[Crossref]

1999 (4)

1995 (1)

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO, and LiTaO,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Alonso, F.

R. S. Cudney, L. A. Ríos, M. J. Orozco Arellanes, F. Alonso, and J. Fonseca, “Fabricación de niobato de litio periódicamente polarizado para óptica no-lineal,” Rev. Mex. Fis. 48(6), 548–555 (2002).

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO, and LiTaO,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO, and LiTaO,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Bosenberg, W. R.

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO, and LiTaO,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Boyland, A. J.

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 201–207 (2001).
[Crossref]

Boyland, J.

J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 193–200 (2001).
[Crossref]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Byer, R. L.

Casson, J. L.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

Chandramani, P.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

Chang, H. H.

Chang, J. W.

Chang, W. K.

Chang, Y. C.

Chen, C. Y.

Chen, Y. H.

Chiu, Y.

Chung, H. P.

Chung, T. Y.

Cudney, R. S.

R. S. Cudney, L. A. Ríos, M. J. Orozco Arellanes, F. Alonso, and J. Fonseca, “Fabricación de niobato de litio periódicamente polarizado para óptica no-lineal,” Rev. Mex. Fis. 48(6), 548–555 (2002).

Dong, C.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol. 35(3), 233–235 (2003).
[Crossref]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO, and LiTaO,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Eason, R. W.

J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 193–200 (2001).
[Crossref]

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 201–207 (2001).
[Crossref]

Eckardt, R. C.

Fang, J. C.

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-Optimized Electrooptic Beam Scanners: Experiment,” IEEE Photonics Technol. Lett. 11(1), 66–68 (1999).
[Crossref]

Fejer, M. M.

Fonseca, J.

R. S. Cudney, L. A. Ríos, M. J. Orozco Arellanes, F. Alonso, and J. Fonseca, “Fabricación de niobato de litio periódicamente polarizado para óptica no-lineal,” Rev. Mex. Fis. 48(6), 548–555 (2002).

Gahagan, K. T.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, and D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38(7), 1186–1190 (1999).
[Crossref] [PubMed]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Gopalan, V.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-Optimized Electrooptic Beam Scanners: Experiment,” IEEE Photonics Technol. Lett. 11(1), 66–68 (1999).
[Crossref]

K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, and D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38(7), 1186–1190 (1999).
[Crossref] [PubMed]

Y. Chiu, V. Gopalan, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, and W. P. Risk, “Integrated Optical Device with Second-Harmonic Generator, Electrooptic Lens, and Electrooptic Scanner in LiTaO3,” J. Lightwave Technol. 17(3), 462–465 (1999).
[Crossref]

Guo, J.

Z. Jiao, J. Guo, G. He, G. Lu, and B. Wang, “Narrowband intracavity MgO:PPLN optical parametric oscillator near degeneracy with a volume Bragg grating,” Opt. Laser Technol. 56, 230–233 (2014).
[Crossref]

He, G.

Z. Jiao, J. Guo, G. He, G. Lu, and B. Wang, “Narrowband intracavity MgO:PPLN optical parametric oscillator near degeneracy with a volume Bragg grating,” Opt. Laser Technol. 56, 230–233 (2014).
[Crossref]

Hendricks, J. M.

J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 193–200 (2001).
[Crossref]

Huang, J. F.

Huang, S. S.

Huang, Y. C.

Jazbinsek, M.

M. Jazbinsek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro and elasto-optics,” Appl. Phys. B 74(4–5), 407–414 (2002).

Jia, Q. X.

Jiao, Z.

Z. Jiao, J. Guo, G. He, G. Lu, and B. Wang, “Narrowband intracavity MgO:PPLN optical parametric oscillator near degeneracy with a volume Bragg grating,” Opt. Laser Technol. 56, 230–233 (2014).
[Crossref]

Kawas, M. J.

Kiamilev, F.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO, and LiTaO,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Li, P.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol. 35(3), 233–235 (2003).
[Crossref]

Lin, C. H.

Lin, S. T.

Lin, Y. Y.

Lu, G.

Z. Jiao, J. Guo, G. He, G. Lu, and B. Wang, “Narrowband intracavity MgO:PPLN optical parametric oscillator near degeneracy with a volume Bragg grating,” Opt. Laser Technol. 56, 230–233 (2014).
[Crossref]

Mailis, S.

J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 193–200 (2001).
[Crossref]

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 201–207 (2001).
[Crossref]

Mitchell, T. E.

Muhammad, F.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

Myers, L. E.

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO, and LiTaO,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Orozco Arellanes, M. J.

R. S. Cudney, L. A. Ríos, M. J. Orozco Arellanes, F. Alonso, and J. Fonseca, “Fabricación de niobato de litio periódicamente polarizado para óptica no-lineal,” Rev. Mex. Fis. 48(6), 548–555 (2002).

Pierce, J. W.

Ríos, L. A.

R. S. Cudney, L. A. Ríos, M. J. Orozco Arellanes, F. Alonso, and J. Fonseca, “Fabricación de niobato de litio periódicamente polarizado para óptica no-lineal,” Rev. Mex. Fis. 48(6), 548–555 (2002).

Risk, W. P.

Robinson, J. M.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, and D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38(7), 1186–1190 (1999).
[Crossref] [PubMed]

Sander, R.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

Schlesinger, T. E.

Scrymgeour, D. A.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

Sharan, A.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

Smith, P. G. R.

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 201–207 (2001).
[Crossref]

J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 193–200 (2001).
[Crossref]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO, and LiTaO,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Stancil, D. D.

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Wang, B.

Z. Jiao, J. Guo, G. He, G. Lu, and B. Wang, “Narrowband intracavity MgO:PPLN optical parametric oscillator near degeneracy with a volume Bragg grating,” Opt. Laser Technol. 56, 230–233 (2014).
[Crossref]

Wang, Q.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol. 35(3), 233–235 (2003).
[Crossref]

Xu, X.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol. 35(3), 233–235 (2003).
[Crossref]

Zgonik, M.

M. Jazbinsek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro and elasto-optics,” Appl. Phys. B 74(4–5), 407–414 (2002).

Zhang, S.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol. 35(3), 233–235 (2003).
[Crossref]

Zhang, X.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol. 35(3), 233–235 (2003).
[Crossref]

Zou, J.

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-Optimized Electrooptic Beam Scanners: Experiment,” IEEE Photonics Technol. Lett. 11(1), 66–68 (1999).
[Crossref]

Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17(1), 108–114 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Jazbinsek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro and elasto-optics,” Appl. Phys. B 74(4–5), 407–414 (2002).

Appl. Phys. Lett. (3)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO, and LiTaO,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002).
[Crossref]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-Optimized Electrooptic Beam Scanners: Experiment,” IEEE Photonics Technol. Lett. 11(1), 66–68 (1999).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 193–200 (2001).
[Crossref]

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1–3), 201–207 (2001).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (2)

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol. 35(3), 233–235 (2003).
[Crossref]

Z. Jiao, J. Guo, G. He, G. Lu, and B. Wang, “Narrowband intracavity MgO:PPLN optical parametric oscillator near degeneracy with a volume Bragg grating,” Opt. Laser Technol. 56, 230–233 (2014).
[Crossref]

Rev. Mex. Fis. (1)

R. S. Cudney, L. A. Ríos, M. J. Orozco Arellanes, F. Alonso, and J. Fonseca, “Fabricación de niobato de litio periódicamente polarizado para óptica no-lineal,” Rev. Mex. Fis. 48(6), 548–555 (2002).

Other (1)

O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 QPPLN. The single-domain triangles act as voltage-controlled deflectors and the triangles with periodic domain structures act as wavelength converters. The yellow region is the electrode on the top “c” face; a similar electrode exists on the bottom (not shown).
Fig. 2
Fig. 2 Experimental set-up. The signal and idler wavelengths are at T=60°C.
Fig. 3
Fig. 3 Infrared spectrum obtained with Q-switching at x1.93. a) Spectrum of laser and OPG signals at T=25 C ; b) OPG signal at T=25 C and T=60 C .
Fig. 4
Fig. 4 Pulse shape of the 1064 nm signal at different values of x.
Fig. 5
Fig. 5 Synchronization of 1064 nm pump depletion and the onset of OPG. a) x=2.34 and b) x=2.60. The scales of the intensities are not the same for the two wavelengths; t=0 corresponds to the peak of the pump beam. T=60 C .
Fig. 6
Fig. 6 Pulsewidth and energy vs.x. a) FWHM pulsewidth; b) Output energy per pulse. Data taken at a repetition rate of 40 Hz. T=60°C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n e =± 1 2 n e 3 r 33 | E |,
θ ext = 1 4 n e 3 r 33 V d L W ,

Metrics