Abstract

Metamaterials based on arrays of aligned plasmonic nanowires have recently attracted significant attention due to their unique optical properties that combine tunable strong anisotropy and nonlocality. These optical responses provide a platform for implementation of novel sensing, imaging, and quantum optics applications. Basic building blocks, used for construction of those peculiar composites, are plasmonic metals, such as gold and silver, which have moderate negative values of permittivities at the optical spectral range. Scaling the plasmonic behavior to lower frequencies remains a longstanding challenge also owing to the emergence of strong spatial dispersion in homogenized artificial composites. At lower THz and GHz frequencies, the electromagnetic response of noble metals approaches that of perfect electric conductors, preventing straightforward scaling of visible-frequency plasmonics to the frequency domains that are important for a vast range of applications, including wireless communications, microwave technologies and many others. Here we demonstrate that both extreme anisotropy (so-called hyperbolicity) and nonlocality of artificial composites can be achieved and designed in arrays of corrugated perfectly conducting wires at relatively low GHz frequencies. The key concept is based on hybridization of spoof plasmon polariton modes that in turn emulate surface polariton waves in systems with corrugated interfaces. The method makes it possible to map the recent developments in the field of plasmonics and metamaterials to the domain of THz and RF photonics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High refractive index metamaterials using corrugated metallic slots

In-Sung Lee, Ik-Bu Sohn, Chul Kang, Chul-Sik Kee, Jin-Kyu Yang, and Joong Wook Lee
Opt. Express 25(6) 6365-6371 (2017)

Homogenization of nonlocal wire metamaterial via a renormalization approach

A. I. Căbuz, A. Nicolet, F. Zolla, D. Felbacq, and G. Bouchitté
J. Opt. Soc. Am. B 28(5) 1275-1282 (2011)

Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials

Lei Sun, Jie Gao, and Xiaodong Yang
Opt. Express 21(18) 21542-21555 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
    [Crossref]
  2. E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
    [Crossref] [PubMed]
  3. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  4. V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive nonresonant detection of acoustic waves (ultrasound) with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
    [Crossref] [PubMed]
  5. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial,” Nat. Nanotechnol. 6, 107 (2011).
    [Crossref] [PubMed]
  6. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [Crossref] [PubMed]
  7. A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91(6), 063830 (2015).
    [Crossref]
  8. P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
    [Crossref]
  9. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  10. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B Condens. Matter 50(23), 16835–16844 (1994).
    [Crossref] [PubMed]
  11. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67(11), 113103 (2003).
    [Crossref]
  12. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  13. A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
    [Crossref]
  14. A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
    [Crossref]
  15. B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
    [Crossref]
  16. S. Maier, Plasmonics: Fundamentals and applications (Springer, New York, 2007).
  17. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multi-layers,” Phys. Rev. B 75(24), 241402 (2007).
    [Crossref]
  18. J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films and in metallic solutions,” Roy. Proc. A 205, 237 (1906).
  19. M. A. Noginov and V. A. Podolskiy, eds., Tutorials in Metamaterials (CRC, Boca Raton, 2012).
  20. M. A. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19(16), 14860–14870 (2011).
    [Crossref] [PubMed]
  21. COMSOL AB, www.comsol.com

2017 (1)

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

2015 (1)

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91(6), 063830 (2015).
[Crossref]

2014 (1)

B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
[Crossref]

2013 (2)

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[Crossref] [PubMed]

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive nonresonant detection of acoustic waves (ultrasound) with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

2011 (2)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial,” Nat. Nanotechnol. 6, 107 (2011).
[Crossref] [PubMed]

M. A. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19(16), 14860–14870 (2011).
[Crossref] [PubMed]

2010 (1)

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

2009 (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

2008 (2)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

2007 (1)

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multi-layers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

2006 (1)

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (1)

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67(11), 113103 (2003).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

1994 (1)

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B Condens. Matter 50(23), 16835–16844 (1994).
[Crossref] [PubMed]

Alomainy, A.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

Andrews, S. R.

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Avrutsky, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multi-layers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Barnakov, Y. A.

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Belov, P. A.

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91(6), 063830 (2015).
[Crossref]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67(11), 113103 (2003).
[Crossref]

Blanchard, R.

Bogdanov, A. A.

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91(6), 063830 (2015).
[Crossref]

Capasso, F.

Dickson, W.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive nonresonant detection of acoustic waves (ultrasound) with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Durach, M.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Elser, J.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multi-layers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Fernandez-Dominguez, A. I.

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

Garcia-Vidal, F. J.

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Ginzburg, P.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91(6), 063830 (2015).
[Crossref]

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial,” Nat. Nanotechnol. 6, 107 (2011).
[Crossref] [PubMed]

Hao, Y.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial,” Nat. Nanotechnol. 6, 107 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Hirvonen, L. M.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kats, M. A.

Krasavin, A. V.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

Kuzmiak, V.

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B Condens. Matter 50(23), 16835–16844 (1994).
[Crossref] [PubMed]

Levitt, J.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

Li, H.

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Maier, S. A.

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

Maradudin, A. A.

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B Condens. Matter 50(23), 16835–16844 (1994).
[Crossref] [PubMed]

Marques, R.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67(11), 113103 (2003).
[Crossref]

Martin-Moreno, L.

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Maslovski, S. I.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67(11), 113103 (2003).
[Crossref]

McPhillips, J.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive nonresonant detection of acoustic waves (ultrasound) with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Murphy, A.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive nonresonant detection of acoustic waves (ultrasound) with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Narimanov, E. E.

Nasir, M. E.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

Nefedov, I. S.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67(11), 113103 (2003).
[Crossref]

Noginov, M. A.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Pincemin, F.

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B Condens. Matter 50(23), 16835–16844 (1994).
[Crossref] [PubMed]

Podolskiy, V. A.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
[Crossref]

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive nonresonant detection of acoustic waves (ultrasound) with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial,” Nat. Nanotechnol. 6, 107 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multi-layers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial,” Nat. Nanotechnol. 6, 107 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R. J.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive nonresonant detection of acoustic waves (ultrasound) with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Richards, D.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

Roth, D. J.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

Rusina, A.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Salakhutdinov, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multi-layers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Segovia, P.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

Shalin, A. S.

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91(6), 063830 (2015).
[Crossref]

Silveirinha, M.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67(11), 113103 (2003).
[Crossref]

Simovski, C. R.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67(11), 113103 (2003).
[Crossref]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Stockman, M. I.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Sudhakaran, S.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

Suhling, K.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

Sukhov, S. V.

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91(6), 063830 (2015).
[Crossref]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Tretyakov, S. A.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67(11), 113103 (2003).
[Crossref]

Tumkur, T. U.

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Wells, B.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
[Crossref]

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial,” Nat. Nanotechnol. 6, 107 (2011).
[Crossref] [PubMed]

Woolf, D.

Wurtz, G. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial,” Nat. Nanotechnol. 6, 107 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Yakovlev, V. V.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive nonresonant detection of acoustic waves (ultrasound) with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Yu, N.

Zayats, A. V.

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
[Crossref]

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive nonresonant detection of acoustic waves (ultrasound) with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial,” Nat. Nanotechnol. 6, 107 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zhang, X.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Zhao, Y.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

Adv. Mater. (1)

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive nonresonant detection of acoustic waves (ultrasound) with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

Light Sci. Appl. (1)

P. Ginzburg, D. J. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light Sci. Appl. 6(6), e16273 (2017).
[Crossref]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial,” Nat. Nanotechnol. 6, 107 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. A (1)

A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov, and P. Ginzburg, “Optical pulling forces in hyperbolic metamaterials,” Phys. Rev. A 91(6), 063830 (2015).
[Crossref]

Phys. Rev. B (3)

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67(11), 113103 (2003).
[Crossref]

B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
[Crossref]

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multi-layers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Phys. Rev. B Condens. Matter (1)

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B Condens. Matter 50(23), 16835–16844 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Science (2)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Other (4)

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films and in metallic solutions,” Roy. Proc. A 205, 237 (1906).

M. A. Noginov and V. A. Podolskiy, eds., Tutorials in Metamaterials (CRC, Boca Raton, 2012).

S. Maier, Plasmonics: Fundamentals and applications (Springer, New York, 2007).

COMSOL AB, www.comsol.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the plasmonic nanowire composite; a=100nm,r=20nm, ϵ d =1; vacuum wavelength λ 0 =1.5μm; (b) effective medium parameters, according to the Maxwell-Garnett approximation; (c) effective modal index of the transverse (orange, k z c/ω1) and strongly dispersive longitudinal (red, blue) modes propagating parallel to the wires; panel (d) illustrates dispersion of the TM (red, blue lines) and TE (orange) modes propagating obliquely [ k x =0.3ω/c] to the wires; panels (e,f,g) illustrate the distribution of electric field in the unit cell of the TE, TM, and longitudinal modes, respectively; in the limit k x 0 propagation of transverse mode converges to predictions of Maxwell-Garnett effective medium theory [15]
Fig. 2
Fig. 2 (a) Schematic geometry of a corrugated wire, (b) dispersion relationship of the spoof-plasmon mode supported by the wire
Fig. 3
Fig. 3 (a) Schematic geometry of corrugated-wire metamaterial; (b) dispersion of the transverse (blue line) and longitudinal (red line) modes; panels (c,d,e) illustrate the field profiles in TE- polarized, TM-polarized, and longitudinal wave in the composite; compare to Fig. 1
Fig. 4
Fig. 4 Panels (a,b,c) illustrate effective medium parameters of the spoof-wire composite; panel (d) shows dispersion of the TM (solid lines) and TE (dashed line) polarized modes propagating obliquely ( k x =πa/20.03 m m 1 ) to the wires; lines represent analytical Eqs. (3), symbols correspond to FEM solutions of Maxwell equations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϵ = ϵ mg ;  ϵ z ( k z )=ξ[ k z 2 ( k z l ) 2 ] c 2 ω 2
ϵ mg = ϵ d ( 1+p ) ϵ m +( 1p ) ϵ d ( 1+p ) ϵ d +( 1p ) ϵ m ;  ϵ z mg =p ϵ m +( 1p ) ϵ d
  k x 2 + k z 2 = ϵ ω 2 c 2
k x 2 ϵ z ( k z ) + k z 2 ϵ = ω 2 c 2

Metrics