Abstract

Compared with conventional lasers, the random laser is realized through strong multiple scatterings in disordered gain system. In this paper, random lasing (RL) in one-dimensional metal surface plasmon (SP) waveguide with gold-plated self-formed silicon pyramids was investigated comprehensively. Consequently, the emission intensity of RL was enhanced dramatically and the RL threshold was reduced significantly through Au-coated Si spiky tips. Meanwhile, one-dimensional metal SP channel waveguides confined the emitting light in a certain direction with a small divergence angle. Using FDTD simulations, it was found that the enhancement effect for RL is likely attributed to the localized surface plasmon (LSP) field. In addition, the LSP field nearby the spiky tips can enhance field-molecule interaction, which was benefit for lasing in small scale. The results in this letter supplied a feasible method to realize the application of RL in subwavelength optical elements.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic channel waveguides in random arrays of metallic nanoparticles

Eduardo Pisano, Victor Coello, Cesar E. Garcia-Ortiz, Yiting Chen, Jonas Beermann, and Sergey I. Bozhevolnyi
Opt. Express 24(15) 17080-17089 (2016)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Gold nanostars for random lasing enhancement

Johannes Ziegler, Martin Djiango, Cynthia Vidal, Calin Hrelescu, and Thomas A. Klar
Opt. Express 23(12) 15152-15159 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  2. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005).
    [Crossref]
  3. D. Wiersma and A. Lagendijk, “Laser action in very white paint,” Phys. World 10(1), 33–37 (1997).
    [Crossref]
  4. O. Zaitsev and L. Deych, “Recent developments in the theory of multimode random lasers,” J. Opt. 12(2), 024001 (2010).
    [Crossref]
  5. V. S. Letokhov, “Generation of Light by a Scattering Medium with Negative Resonance Absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  6. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [Crossref]
  7. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  8. H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of Disordered Media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
    [Crossref]
  9. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref] [PubMed]
  10. M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118(3-4), 430–437 (1995).
    [Crossref]
  11. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
    [Crossref]
  12. A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
    [Crossref] [PubMed]
  13. S. García-Revilla, J. Fernández, M. Barredo-Zuriarrain, L. D. Carlos, E. Pecoraro, I. Iparraguirre, J. Azkargorta, and R. Balda, “Diffusive random laser modes under a spatiotemporal scope,” Opt. Express 23(2), 1456–1469 (2015).
    [Crossref] [PubMed]
  14. R. C. Polson, J. D. Huang, and Z. V. Vardeny, “Random lasers in π -conjugated polymer films,” Synth. Met. 119(1-3), 7–12 (2001).
    [Crossref]
  15. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
    [Crossref]
  16. S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
    [Crossref] [PubMed]
  17. H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
    [Crossref]
  18. H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
    [Crossref]
  19. Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
    [Crossref] [PubMed]
  20. D. S. Wiersma, “Optical physics: Clear directions for random lasers,” Nature 539(7629), 360–361 (2016).
    [Crossref] [PubMed]
  21. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [Crossref]
  22. S. Schönhuber, M. Brandstetter, T. Hisch, C. Deutsch, M. Krall, H. Detz, A. M. Andrews, G. Strasser, S. Rotter, and K. Unterrainer, “Random lasers for broadband directional emission,” Optica 3(10), 1035 (2016).
    [Crossref]
  23. P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
    [Crossref]
  24. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
    [Crossref] [PubMed]
  25. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
    [Crossref]
  26. X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
    [Crossref] [PubMed]
  27. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  28. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  29. F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H. G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109(46), 21690–21693 (2005).
    [Crossref] [PubMed]
  30. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
    [Crossref] [PubMed]
  31. P. Berini, Springer 131, 1 (2007).
  32. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
    [Crossref]
  33. G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
    [Crossref]
  34. J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, and T. A. Klar, “Gold nanostars for random lasing enhancement,” Opt. Express 23(12), 15152–15159 (2015).
    [Crossref] [PubMed]
  35. S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods,” ACS Nano 8(5), 4440–4449 (2014).
    [Crossref] [PubMed]
  36. E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
    [Crossref] [PubMed]

2017 (1)

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

2016 (3)

D. S. Wiersma, “Optical physics: Clear directions for random lasers,” Nature 539(7629), 360–361 (2016).
[Crossref] [PubMed]

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
[Crossref] [PubMed]

S. Schönhuber, M. Brandstetter, T. Hisch, C. Deutsch, M. Krall, H. Detz, A. M. Andrews, G. Strasser, S. Rotter, and K. Unterrainer, “Random lasers for broadband directional emission,” Optica 3(10), 1035 (2016).
[Crossref]

2015 (3)

2014 (2)

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

2013 (1)

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

2012 (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

2011 (2)

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

2010 (2)

O. Zaitsev and L. Deych, “Recent developments in the theory of multimode random lasers,” J. Opt. 12(2), 024001 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

2009 (4)

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

2008 (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

2005 (3)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005).
[Crossref]

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H. G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109(46), 21690–21693 (2005).
[Crossref] [PubMed]

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

2004 (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

2003 (1)

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[Crossref]

2001 (1)

R. C. Polson, J. D. Huang, and Z. V. Vardeny, “Random lasers in π -conjugated polymer films,” Synth. Met. 119(1-3), 7–12 (2001).
[Crossref]

2000 (1)

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of Disordered Media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

1998 (1)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[Crossref]

1997 (2)

D. Wiersma and A. Lagendijk, “Laser action in very white paint,” Phys. World 10(1), 33–37 (1997).
[Crossref]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

1996 (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

1995 (1)

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118(3-4), 430–437 (1995).
[Crossref]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

1968 (1)

V. S. Letokhov, “Generation of Light by a Scattering Medium with Negative Resonance Absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Andrews, A. M.

Ania-Castañón, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Azkargorta, J.

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Balda, R.

Balzer, F.

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H. G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109(46), 21690–21693 (2005).
[Crossref] [PubMed]

Barredo-Zuriarrain, M.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Berini, P.

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

Bongiovanni, G.

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H. G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109(46), 21690–21693 (2005).
[Crossref] [PubMed]

Brandstetter, M.

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005).
[Crossref]

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[Crossref]

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of Disordered Media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[Crossref]

Carlos, L. D.

Caulfield, H. J.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118(3-4), 430–437 (1995).
[Crossref]

Chang, R. P. H.

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of Disordered Media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[Crossref]

Charra, F.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

Chen, A.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Chen, Z.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Cordella, F.

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H. G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109(46), 21690–21693 (2005).
[Crossref] [PubMed]

Coronado, E. A.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Dai, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

de Araújo, C. B.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
[Crossref] [PubMed]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

Detz, H.

Deutsch, C.

Deych, L.

O. Zaitsev and L. Deych, “Recent developments in the theory of multimode random lasers,” J. Opt. 12(2), 024001 (2010).
[Crossref]

Dice, G. D.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Djiango, M.

Döblinger, M.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Douillard, L.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

Elezzabi, A. Y.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Fan, X.-W.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Feldmann, J.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

Fernández, J.

Fewo, S. I.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
[Crossref] [PubMed]

Fujita, K.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

García-Revilla, S.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gomes, A. S.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
[Crossref] [PubMed]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Gui, X.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Gupta, A.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hisch, T.

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[Crossref]

Hrelescu, C.

J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, and T. A. Klar, “Gold nanostars for random lasing enhancement,” Opt. Express 23(12), 15152–15159 (2015).
[Crossref] [PubMed]

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

Huang, J. D.

R. C. Polson, J. D. Huang, and Z. V. Vardeny, “Random lasers in π -conjugated polymer films,” Synth. Met. 119(1-3), 7–12 (2001).
[Crossref]

Iparraguirre, I.

Jäckel, F.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

Jerez, V.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
[Crossref] [PubMed]

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Khatua, S.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Kildishev, A. V.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Klar, T. A.

Krall, M.

Lagendijk, A.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

D. Wiersma and A. Lagendijk, “Laser action in very white paint,” Phys. World 10(1), 33–37 (1997).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

Laurent, G.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, “Generation of Light by a Scattering Medium with Negative Resonance Absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Li, B.-H.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Li, J.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Li, S.

Liang, Y.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Lou, G.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Lu, Y.-M.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maia, L. J.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
[Crossref] [PubMed]

Meng, X.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Moura, A. L.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
[Crossref] [PubMed]

Mujumdar, S.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Mura, A.

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H. G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109(46), 21690–21693 (2005).
[Crossref] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118(3-4), 430–437 (1995).
[Crossref]

Noginova, N. E.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118(3-4), 430–437 (1995).
[Crossref]

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[Crossref]

Orrit, M.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Paulo, P. M.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Pecoraro, E.

Perassi, E. M.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Pincheira, P. I.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
[Crossref] [PubMed]

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

R. C. Polson, J. D. Huang, and Z. V. Vardeny, “Random lasers in π -conjugated polymer films,” Synth. Met. 119(1-3), 7–12 (2001).
[Crossref]

Quochi, F.

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H. G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109(46), 21690–21693 (2005).
[Crossref] [PubMed]

Raposo, E. P.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
[Crossref] [PubMed]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Ren, Y.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Rogach, A. L.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

Rotter, S.

Rubahn, H. G.

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H. G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109(46), 21690–21693 (2005).
[Crossref] [PubMed]

Sau, T. K.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Scheu, C.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Schönhuber, S.

Seelig, E. W.

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of Disordered Media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Shalaev, V. M.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Shan, C.-X.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Shen, D.-Z.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Strasser, G.

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Tanaka, K.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Tang, Z.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Tang, Z.-K.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Unterrainer, K.

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

R. C. Polson, J. D. Huang, and Z. V. Vardeny, “Random lasers in π -conjugated polymer films,” Synth. Met. 119(1-3), 7–12 (2001).
[Crossref]

Venkateswarlu, P.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118(3-4), 430–437 (1995).
[Crossref]

Vidal, C.

Wang, J.

Wang, L.

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wang, S.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Wang, Y.

Wiersma, D.

D. Wiersma and A. Lagendijk, “Laser action in very white paint,” Phys. World 10(1), 33–37 (1997).
[Crossref]

Wiersma, D. S.

D. S. Wiersma, “Optical physics: Clear directions for random lasers,” Nature 539(7629), 360–361 (2016).
[Crossref] [PubMed]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wisnet, A.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Wu, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[Crossref]

Wu, Y.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Xu, J. Y.

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of Disordered Media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

Xu, Z.

Yao, B.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Yuan, H.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Zaitsev, O.

O. Zaitsev and L. Deych, “Recent developments in the theory of multimode random lasers,” J. Opt. 12(2), 024001 (2010).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhai, T.

Zhang, J.-Y.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Zhang, X.

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, Z.-Z.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Zhao, D.-X.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Zhu, H.

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Ziegler, J.

Zijlstra, P.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

ACS Nano (2)

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-Threshold Laser Realized in Zinc Oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Appl. Phys. Lett. (5)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[Crossref]

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of Disordered Media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94(15), 153113 (2009).
[Crossref]

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

J. Opt. (1)

O. Zaitsev and L. Deych, “Recent developments in the theory of multimode random lasers,” J. Opt. 12(2), 024001 (2010).
[Crossref]

J. Phys. Chem. B (1)

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H. G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109(46), 21690–21693 (2005).
[Crossref] [PubMed]

J. Phys. Math. Gen. (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005).
[Crossref]

Nano Lett. (2)

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars,” Nano Lett. 11(2), 402–407 (2011).
[Crossref] [PubMed]

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Nanoscale (1)

Y. Wu, Y. Ren, A. Chen, Z. Chen, Y. Liang, J. Li, G. Lou, H. Zhu, X. Gui, S. Wang, and Z. Tang, “A one-dimensional random laser based on artificial high-index contrast scatterers,” Nanoscale 9(21), 6959–6964 (2017).
[Crossref] [PubMed]

Nat. Photonics (3)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Nature (5)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

D. S. Wiersma, “Optical physics: Clear directions for random lasers,” Nature 539(7629), 360–361 (2016).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Opt. Commun. (1)

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118(3-4), 430–437 (1995).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Phys. World (1)

D. Wiersma and A. Lagendijk, “Laser action in very white paint,” Phys. World 10(1), 33–37 (1997).
[Crossref]

Sci. Rep. (1)

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. de Araújo, “Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. Rep. 6(1), 27987 (2016).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of Light by a Scattering Medium with Negative Resonance Absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Synth. Met. (1)

R. C. Polson, J. D. Huang, and Z. V. Vardeny, “Random lasers in π -conjugated polymer films,” Synth. Met. 119(1-3), 7–12 (2001).
[Crossref]

Waves Random Media (1)

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[Crossref]

Other (1)

P. Berini, Springer 131, 1 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Surface morphology of an etched channel waveguide with randomly distributed Si pyramids in it. (b) Enlarged single Si pyramid, which has eight smooth top surfaces. (c) Cross-section SEM image of the facet of channel waveguide. The waveguide exhibits a ladder-like shape with top (bottom) width of 25 μm (5 μm) and height of 15 μm. (d) Experimental setup for RL measurement. The pulsed pumping light (532 nm) was generated from frequency-doubled Nd:YAG laser (repetition 5 Hz, pulse duration 17 ns) and focused on the waveguide by a cylindrical lens. The emission light was collected through an objective lens and a focus lens and then was analyzed by Princeton spectrometer. (e) Emission spectra of composite active media (R6G/SU-8) spin-coated on bare Si plate. (f) Lasing spectra of gain medium (R6G/SU-8) from pure silicon channel waveguide. (g) Emission intensity and FWMH of peaks versus the excitation density. The threshold of RL that extracted from the L-L curve is about 390 kW cm−2.
Fig. 2
Fig. 2 Comparison of emission characteristics from different waveguide structures. (a) Emission spectra of R6G/SU-8 film on bare Si waveguide under different pumping intensity. (b) Lasing spectra of gain media on silver-plated channel waveguide. (c) Lasing emission spectra of gain media on gold-plated waveguide. Insets of Fig. 2(a)-(c) display the SEM images of the cross-section for above three structures. (d)-(f) The intensity of emission peak as a function of pumping intensity for bare Si waveguide, silver-plated and gold-plated structure respectively. The typical kink point can be seen from three light-out versus light-in (L-L) curves corresponding to (a)-(c). Note, the lasing threshold of RL is reduced to 400 kW cm-2 through gold surface plasmon waveguides. For all measured samples, the thickness of gain media is kept unified for above three types of structures.
Fig. 3
Fig. 3 Characteristics of near-/far-field and divergence angle of RL. (a) CCD images of near-field patterns (NFP) for emissions from the end facet of bare Si waveguide with different excitation intensity. (b) Far-field patterns of emission from the bare Si channel structure above threshold. (c) The photograph of NFP from gold-plated channel waveguide under a series of pumping powers. (d) Far-field patterns of RL above threshold from the channel waveguide with gold film. (e) The dependence of emission intensity on output angle along x-axis. Inset, the coordinate for divergence spectra measurement. (f) The emission intensity versus detection angle along y-axis.
Fig. 4
Fig. 4 Simulation Results of optical field via FDTD. (a) Schematic diagram of bare silicon channel waveguide with composite R6G gain media. The disordered silicon pyramids are also shown. (b) The optical field distribution along the longitudinal direction (z-axis). Here, the boundary between the gain media and air was indicated. (c) The simulated result of optical field at cross-section of the waveguide. (d) The enlarged image of field intensity distribution nearby an individual pyramid. (e) Diagram of metal SP waveguide for FDTD simulation. (f) The optical field distribution of metal SP waveguide along the z-axis. (g) Calculated result about the optical field at cross-section of metal SP waveguide. (h) Results of field intensity distribution nearby single spiky tip with Au coating.

Metrics