Abstract

Distributed static and dynamic sensing is demonstrated with an ultra-short fiber Bragg grating (USFBG) array. The USFBGs serve as the sensors and reflection mirrors at the same time. Distributed static sensing is performed by demodulating the strain-induced or temperature-induced wavelength shift of each USFBG. Dynamic vibration sensing is realized based on phase variation between two adjacent USFBG reflected pulses. Static temperature and dynamic vibration are applied to the sensing ultra-short FBG array simultaneously. The experiments show that the temperature measurement from 30 °C to 80 °C is achieved successfully. And dynamic sensing of nε scale vibration and 12.5 kHz acoustic wave are demonstrated at a sampling rate of 50 kHz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale
Opt. Express 13(7) 2377-2384 (2005)

Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity

Gui Xin, Li Zhengying, Wang Fan, Wang Yiming, Wang Changjia, Zeng Siyue, and Yu Haihu
Opt. Express 25(23) 28112-28122 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Torres, I. Paya-Zaforteza, P. A. Calderon, and J. M. Adam, “Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring,” Eng. Struct. 33(2), 539–548 (2011).
    [Crossref]
  2. Z. D. Zhou, Q. Liu, Q. S. Ai, and C. Xu, “Intelligent monitoring and diagnosis for modern mechanical equipment based on the integration of embedded technology and FBGS technology,” Measurement 44(9), 1499–1511 (2011).
    [Crossref]
  3. Z. Luo, H. Wen, H. Guo, and M. Yang, “A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings,” Opt. Express 21(19), 22799–22807 (2013).
    [Crossref] [PubMed]
  4. A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42(2), 290–293 (2017).
    [Crossref] [PubMed]
  5. C. Hu, H. Wen, and W. Bai, “A Novel Interrogation System for Large Scale Sensing Network with Identical Ultra-Weak Fiber Bragg Gratings,” J. Lightwave Technol. 32(7), 1406–1411 (2014).
    [Crossref]
  6. W. Liu, Z. G. Guan, G. Liu, C. Yan, and S. He, “Optical low-coherence reflectometry for a distributed sensor array of fiber bragg gratings,” Sens. Actuators A Phys. 144(1), 64–68 (2008).
    [Crossref]
  7. L. Ma, C. Ma, Y. Wang, D. Y. Wang, and A. Wang, “High-speed distributed sensing based on ultra-weak FBGs and chromatic dispersion,” IEEE Photonics Technol. Lett. 28(12), 1344–1347 (2016).
    [Crossref]
  8. Y. M. Wang, C. C. Hu, Q. Liu, H. Y. Guo, G. L. Yin, and Z. Y. Li, “High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry,” Wuli Xuebao 20, 204209 (2016).
  9. X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
    [Crossref] [PubMed]
  10. X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, and K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Appl. Opt. 50(22), 4333–4338 (2011).
    [Crossref] [PubMed]
  11. C. Ma, T. Liu, K. Liu, J. Jiang, Z. Ding, L. Pan, and M. Tian, “Long-range distributed fiber vibration sensor using an asymmetric dual Mach–Zehnder interferometers,” J. Lightwave Technol. 34(9), 2235–2239 (2016).
    [Crossref]
  12. C. Wang, Y. Shang, X. H. Liu, C. Wang, H. H. Yu, D. S. Jiang, and G. D. Peng, “Distributed otdr-interferometric sensing network with identical ultra-weak fiber bragg gratings,” Opt. Express 23(22), 29038–29046 (2015).
    [Crossref] [PubMed]
  13. F. Zhu, Y. Zhang, L. Xia, X. Wu, and X. Zhang, “Improved Φ-otdr sensing system for high-precision dynamic strain measurement based on ultra-weak fiber bragg grating array,” J. Lightwave Technol. 33(23), 4775–4780 (2015).
    [Crossref]
  14. Y. Tong, Z. Li, J. Wang, and C. Zhang, “Improved distributed optical fiber vibration sensor based on Mach-Zehnder-OTDR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JW2A.16.
    [Crossref]
  15. Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
    [Crossref]
  16. L. Xia, R. Cheng, W. Li, and D. Liu, “Identical FBG-based quasi-distributed sensing by monitoring the microwave responses,” IEEE Photonics Technol. Lett. 27(3), 323–325 (2015).
    [Crossref]
  17. W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 323–325 (2012).
    [Crossref]
  18. R. Cheng and L. Xia, “Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection,” Opt. Lett. 41(22), 5254–5257 (2016).
    [Crossref] [PubMed]
  19. Y. Chen and D. S. Chen, “Digital demodulation technique for fiber-optic hydrophones based on 3 × 3 couplers,” Optoelectron. Lett. 6(2), 124–128 (2010).
    [Crossref]

2017 (1)

2016 (5)

L. Ma, C. Ma, Y. Wang, D. Y. Wang, and A. Wang, “High-speed distributed sensing based on ultra-weak FBGs and chromatic dispersion,” IEEE Photonics Technol. Lett. 28(12), 1344–1347 (2016).
[Crossref]

Y. M. Wang, C. C. Hu, Q. Liu, H. Y. Guo, G. L. Yin, and Z. Y. Li, “High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry,” Wuli Xuebao 20, 204209 (2016).

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

C. Ma, T. Liu, K. Liu, J. Jiang, Z. Ding, L. Pan, and M. Tian, “Long-range distributed fiber vibration sensor using an asymmetric dual Mach–Zehnder interferometers,” J. Lightwave Technol. 34(9), 2235–2239 (2016).
[Crossref]

R. Cheng and L. Xia, “Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection,” Opt. Lett. 41(22), 5254–5257 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

2013 (1)

2012 (1)

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 323–325 (2012).
[Crossref]

2011 (3)

B. Torres, I. Paya-Zaforteza, P. A. Calderon, and J. M. Adam, “Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring,” Eng. Struct. 33(2), 539–548 (2011).
[Crossref]

Z. D. Zhou, Q. Liu, Q. S. Ai, and C. Xu, “Intelligent monitoring and diagnosis for modern mechanical equipment based on the integration of embedded technology and FBGS technology,” Measurement 44(9), 1499–1511 (2011).
[Crossref]

X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, and K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Appl. Opt. 50(22), 4333–4338 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Chen and D. S. Chen, “Digital demodulation technique for fiber-optic hydrophones based on 3 × 3 couplers,” Optoelectron. Lett. 6(2), 124–128 (2010).
[Crossref]

2008 (1)

W. Liu, Z. G. Guan, G. Liu, C. Yan, and S. He, “Optical low-coherence reflectometry for a distributed sensor array of fiber bragg gratings,” Sens. Actuators A Phys. 144(1), 64–68 (2008).
[Crossref]

2007 (1)

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Adam, J. M.

B. Torres, I. Paya-Zaforteza, P. A. Calderon, and J. M. Adam, “Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring,” Eng. Struct. 33(2), 539–548 (2011).
[Crossref]

Ai, Q. S.

Z. D. Zhou, Q. Liu, Q. S. Ai, and C. Xu, “Intelligent monitoring and diagnosis for modern mechanical equipment based on the integration of embedded technology and FBGS technology,” Measurement 44(9), 1499–1511 (2011).
[Crossref]

Bai, Q.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Bai, W.

Calderon, P. A.

B. Torres, I. Paya-Zaforteza, P. A. Calderon, and J. M. Adam, “Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring,” Eng. Struct. 33(2), 539–548 (2011).
[Crossref]

Chen, D. S.

Y. Chen and D. S. Chen, “Digital demodulation technique for fiber-optic hydrophones based on 3 × 3 couplers,” Optoelectron. Lett. 6(2), 124–128 (2010).
[Crossref]

Chen, Y.

Y. Chen and D. S. Chen, “Digital demodulation technique for fiber-optic hydrophones based on 3 × 3 couplers,” Optoelectron. Lett. 6(2), 124–128 (2010).
[Crossref]

Cheng, R.

R. Cheng and L. Xia, “Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection,” Opt. Lett. 41(22), 5254–5257 (2016).
[Crossref] [PubMed]

L. Xia, R. Cheng, W. Li, and D. Liu, “Identical FBG-based quasi-distributed sensing by monitoring the microwave responses,” IEEE Photonics Technol. Lett. 27(3), 323–325 (2015).
[Crossref]

Ding, Z.

Dong, B.

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 323–325 (2012).
[Crossref]

Gong, J.

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 323–325 (2012).
[Crossref]

Guan, Z. G.

W. Liu, Z. G. Guan, G. Liu, C. Yan, and S. He, “Optical low-coherence reflectometry for a distributed sensor array of fiber bragg gratings,” Sens. Actuators A Phys. 144(1), 64–68 (2008).
[Crossref]

Guo, H.

Guo, H. Y.

Y. M. Wang, C. C. Hu, Q. Liu, H. Y. Guo, G. L. Yin, and Z. Y. Li, “High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry,” Wuli Xuebao 20, 204209 (2016).

He, S.

W. Liu, Z. G. Guan, G. Liu, C. Yan, and S. He, “Optical low-coherence reflectometry for a distributed sensor array of fiber bragg gratings,” Sens. Actuators A Phys. 144(1), 64–68 (2008).
[Crossref]

Hong, X.

Hu, C.

Hu, C. C.

Y. M. Wang, C. C. Hu, Q. Liu, H. Y. Guo, G. L. Yin, and Z. Y. Li, “High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry,” Wuli Xuebao 20, 204209 (2016).

Jiang, D. S.

Jiang, J.

Jin, B.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Li, W.

L. Xia, R. Cheng, W. Li, and D. Liu, “Identical FBG-based quasi-distributed sensing by monitoring the microwave responses,” IEEE Photonics Technol. Lett. 27(3), 323–325 (2015).
[Crossref]

Li, Z. Y.

Y. M. Wang, C. C. Hu, Q. Liu, H. Y. Guo, G. L. Yin, and Z. Y. Li, “High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry,” Wuli Xuebao 20, 204209 (2016).

Liu, D.

L. Xia, R. Cheng, W. Li, and D. Liu, “Identical FBG-based quasi-distributed sensing by monitoring the microwave responses,” IEEE Photonics Technol. Lett. 27(3), 323–325 (2015).
[Crossref]

Liu, F.

Liu, G.

W. Liu, Z. G. Guan, G. Liu, C. Yan, and S. He, “Optical low-coherence reflectometry for a distributed sensor array of fiber bragg gratings,” Sens. Actuators A Phys. 144(1), 64–68 (2008).
[Crossref]

Liu, K.

Liu, Q.

Y. M. Wang, C. C. Hu, Q. Liu, H. Y. Guo, G. L. Yin, and Z. Y. Li, “High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry,” Wuli Xuebao 20, 204209 (2016).

Z. D. Zhou, Q. Liu, Q. S. Ai, and C. Xu, “Intelligent monitoring and diagnosis for modern mechanical equipment based on the integration of embedded technology and FBGS technology,” Measurement 44(9), 1499–1511 (2011).
[Crossref]

Liu, T.

Liu, W.

W. Liu, Z. G. Guan, G. Liu, C. Yan, and S. He, “Optical low-coherence reflectometry for a distributed sensor array of fiber bragg gratings,” Sens. Actuators A Phys. 144(1), 64–68 (2008).
[Crossref]

Liu, X.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Liu, X. H.

Luo, Z.

Ma, C.

L. Ma, C. Ma, Y. Wang, D. Y. Wang, and A. Wang, “High-speed distributed sensing based on ultra-weak FBGs and chromatic dispersion,” IEEE Photonics Technol. Lett. 28(12), 1344–1347 (2016).
[Crossref]

C. Ma, T. Liu, K. Liu, J. Jiang, Z. Ding, L. Pan, and M. Tian, “Long-range distributed fiber vibration sensor using an asymmetric dual Mach–Zehnder interferometers,” J. Lightwave Technol. 34(9), 2235–2239 (2016).
[Crossref]

Ma, L.

L. Ma, C. Ma, Y. Wang, D. Y. Wang, and A. Wang, “High-speed distributed sensing based on ultra-weak FBGs and chromatic dispersion,” IEEE Photonics Technol. Lett. 28(12), 1344–1347 (2016).
[Crossref]

Masoudi, A.

Newson, T. P.

Pan, L.

Paya-Zaforteza, I.

B. Torres, I. Paya-Zaforteza, P. A. Calderon, and J. M. Adam, “Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring,” Eng. Struct. 33(2), 539–548 (2011).
[Crossref]

Peng, G. D.

Shang, Y.

Shen, F.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Shillig, T. J.

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 323–325 (2012).
[Crossref]

Song, L.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Tian, M.

Torres, B.

B. Torres, I. Paya-Zaforteza, P. A. Calderon, and J. M. Adam, “Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring,” Eng. Struct. 33(2), 539–548 (2011).
[Crossref]

Wang, A.

L. Ma, C. Ma, Y. Wang, D. Y. Wang, and A. Wang, “High-speed distributed sensing based on ultra-weak FBGs and chromatic dispersion,” IEEE Photonics Technol. Lett. 28(12), 1344–1347 (2016).
[Crossref]

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 323–325 (2012).
[Crossref]

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Wang, C.

Wang, D.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Wang, D. Y.

L. Ma, C. Ma, Y. Wang, D. Y. Wang, and A. Wang, “High-speed distributed sensing based on ultra-weak FBGs and chromatic dispersion,” IEEE Photonics Technol. Lett. 28(12), 1344–1347 (2016).
[Crossref]

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 323–325 (2012).
[Crossref]

Wang, W.

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 323–325 (2012).
[Crossref]

Wang, X.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Wang, Y.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

L. Ma, C. Ma, Y. Wang, D. Y. Wang, and A. Wang, “High-speed distributed sensing based on ultra-weak FBGs and chromatic dispersion,” IEEE Photonics Technol. Lett. 28(12), 1344–1347 (2016).
[Crossref]

Wang, Y. M.

Y. M. Wang, C. C. Hu, Q. Liu, H. Y. Guo, G. L. Yin, and Z. Y. Li, “High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry,” Wuli Xuebao 20, 204209 (2016).

Wang, Z.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Wen, H.

Wu, J.

Wu, X.

Xia, L.

Xu, C.

Z. D. Zhou, Q. Liu, Q. S. Ai, and C. Xu, “Intelligent monitoring and diagnosis for modern mechanical equipment based on the integration of embedded technology and FBGS technology,” Measurement 44(9), 1499–1511 (2011).
[Crossref]

Xu, K.

Yan, C.

W. Liu, Z. G. Guan, G. Liu, C. Yan, and S. He, “Optical low-coherence reflectometry for a distributed sensor array of fiber bragg gratings,” Sens. Actuators A Phys. 144(1), 64–68 (2008).
[Crossref]

Yang, M.

Yin, G. L.

Y. M. Wang, C. C. Hu, Q. Liu, H. Y. Guo, G. L. Yin, and Z. Y. Li, “High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry,” Wuli Xuebao 20, 204209 (2016).

Yu, H. H.

Zhang, X.

Zhang, Y.

Zhou, Z. D.

Z. D. Zhou, Q. Liu, Q. S. Ai, and C. Xu, “Intelligent monitoring and diagnosis for modern mechanical equipment based on the integration of embedded technology and FBGS technology,” Measurement 44(9), 1499–1511 (2011).
[Crossref]

Zhu, F.

Zuo, C.

Appl. Opt. (1)

Eng. Struct. (1)

B. Torres, I. Paya-Zaforteza, P. A. Calderon, and J. M. Adam, “Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring,” Eng. Struct. 33(2), 539–548 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Ma, C. Ma, Y. Wang, D. Y. Wang, and A. Wang, “High-speed distributed sensing based on ultra-weak FBGs and chromatic dispersion,” IEEE Photonics Technol. Lett. 28(12), 1344–1347 (2016).
[Crossref]

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

L. Xia, R. Cheng, W. Li, and D. Liu, “Identical FBG-based quasi-distributed sensing by monitoring the microwave responses,” IEEE Photonics Technol. Lett. 27(3), 323–325 (2015).
[Crossref]

J. Lightwave Technol. (4)

Measurement (1)

Z. D. Zhou, Q. Liu, Q. S. Ai, and C. Xu, “Intelligent monitoring and diagnosis for modern mechanical equipment based on the integration of embedded technology and FBGS technology,” Measurement 44(9), 1499–1511 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optoelectron. Lett. (1)

Y. Chen and D. S. Chen, “Digital demodulation technique for fiber-optic hydrophones based on 3 × 3 couplers,” Optoelectron. Lett. 6(2), 124–128 (2010).
[Crossref]

Sens. Actuators A Phys. (1)

W. Liu, Z. G. Guan, G. Liu, C. Yan, and S. He, “Optical low-coherence reflectometry for a distributed sensor array of fiber bragg gratings,” Sens. Actuators A Phys. 144(1), 64–68 (2008).
[Crossref]

Sensors (Basel) (1)

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Wuli Xuebao (1)

Y. M. Wang, C. C. Hu, Q. Liu, H. Y. Guo, G. L. Yin, and Z. Y. Li, “High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry,” Wuli Xuebao 20, 204209 (2016).

Other (1)

Y. Tong, Z. Li, J. Wang, and C. Zhang, “Improved distributed optical fiber vibration sensor based on Mach-Zehnder-OTDR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JW2A.16.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the distributed optical static and dynamic sensing system. (a) The static and dynamic experimental setup. (b) The static resolution measurement experimental setup.
Fig. 2
Fig. 2 The reflected intensity changes of USFBG#1 and results of phase demodulation at three different sections. (a) Disturbance 1 only, (b) Disturbance 2 only, (c) simultaneous Disturbance 1 & 2.
Fig. 3
Fig. 3 The results of static and dynamic measurement. when the temperature at USFBG #250 is increased from 30 °C to 80 °C with a step of 3 °C. (a) The reflected optical pulses at λ1 and λ2 detected by PD1. (b) The interferential optical pulses at λ1 and λ2 detected by PD2. (c) The optical pulse intensity of λ1 and λ2 from the reflection of USFBG #250 (d) The linearity of the measurement curves. (e) Dynamic signal of 1kHz recovered from λ1 and λ2 when the temperature at USFBG #250 is 30 °C. (f) The final phase demodulation results when the temperatures at USFBG #250 are 30 °C and 54 °C.
Fig. 4
Fig. 4 (a) The frequency spectrum of PZT1 measurement at 30 °C and 54 °C, (b) the amplitude fluctuation of PZT1 measurement with the temperature step of 1 °C.
Fig. 5
Fig. 5 The strain experiment with the step of 294.5 nε.
Fig. 6
Fig. 6 The diagram of measurement and calibration for evaluating the deviation of vibration amplitude measurement.
Fig. 7
Fig. 7 (a) Comparison between the variation sensing results of our static-dynamic system and a standard MZI. (b) The demodulated results of 200 dynamic strain measurements in same environment. An interval of 10 minutes is set between each result.
Fig. 8
Fig. 8 The highest detectable frequency of the system for the driving frequency of 12.5 kHz.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R( λ )exp( 4ln2 ( λ λ 0 B ) 2 ),
P λ 1 ( λ 0 )exp( 4ln2 ( λ 1 λ 0 B ) 2 ),
P λ 2 ( λ 0 )exp( 4ln2 ( λ 2 λ 0 B ) 2 ).
P( λ 0 )= log 10 [ S loss P λ 2 ( λ 0 ) ] log 10 [ S loss P λ 1 ( λ 0 ) ]α+β λ 0 .
I i = I A + I B +2 I A I B cos[ φ( t )( i1 ) 2 3 π ],i=1,2,3.
I i(AC) =2 I A I B cos[ φ( t )( i1 ) 2 3 π ],i=1,2,3,
N=6 3 ( I A I B ) 2 φ ˙ ( t ).
D= i=1 3 4 ( I A I B ) 2 cos 2 [ φ( t )( i1 ) 2 3 π ]=6 ( I A I B ) 2 .
φ( t )=Dcos ω s t+ϕ( t ),
I AC =2 I A I B { [ J 0 ( D )+2 k=1 J 2k ( D )cos2k ω s t ]cosϕ( t ) [ 2 k=1 ( 1 ) k1 J 2k1 ( D )cos( 2k1 ) ω s t ]sinϕ( t ) }.

Metrics