Abstract

Plasmonic response of the metallic structure characterized by sub-nanometer dielectric gaps can be strongly affected by nonlocal or quantum effects. In this paper, we investigate these effects in spherical Na and Au nanomatryoshka structures with sub-nanometer core-shell separation. We use the state-of-the-art quantum hydrodynamic theory (QHT) to study both near-field and far-field optical properties of these systems: results are compared with the classical local response approximation (LRA), Thomas–Fermi hydrodynamic theory (TF–HT), and the reference time-dependent density functional theory (TD–DFT). We find that the results obtained using the QHT method are in a very good agreement with TD–DFT calculations, whereas other LRA and TF–HT significantly overestimate the field-enhancements. Thus, the QHT approach efficiently and accurately describes microscopic details of multiscale plasmonic systems whose sizes are computationally out-of-reach for a TD–DFT approach; here, we report results for Na and Au nanomatryoshka with a diameter of 60 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum effects in the plasmon response of bimetallic core-shell nanostructures

Dana-Codruta Marinica, Javier Aizpurua, and Andrei G. Borisov
Opt. Express 24(21) 23941-23956 (2016)

Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas

Mario Zapata, Ángela S. Camacho Beltrán, Andrei G. Borisov, and Javier Aizpurua
Opt. Express 23(6) 8134-8149 (2015)

Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers

Tatiana V. Teperik, Peter Nordlander, Javier Aizpurua, and Andrei G. Borisov
Opt. Express 21(22) 27306-27325 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 124, 1757–1764 (2012).
    [Crossref]
  2. R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref] [PubMed]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [Crossref]
  4. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
    [Crossref]
  5. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [Crossref] [PubMed]
  6. I. Romero, J. Aizpurua, G.W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
    [Crossref] [PubMed]
  7. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
    [Crossref]
  8. C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, and D. R. Smith, “Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers,” Appl. Phys. Lett. 104, 023109 (2014).
    [Crossref]
  9. C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
    [Crossref] [PubMed]
  10. K. J. Savage, M. M. Hawkeye, R. Esteban, and A. G. Borisov, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
    [Crossref] [PubMed]
  11. J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
    [Crossref]
  12. S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
    [Crossref]
  13. C. A. Ullrich, ed. Time-dependent density functional theory: concepts and applications, (Oxford University, 2011).
    [Crossref]
  14. A. Eguiluz, S. Ying, and J. Quinn, “Influence of the electron density profile on surface plasmons in a hydrodynamic model,” Phys. Rev. B 11(6), 2118–2121 (1975).
    [Crossref]
  15. C. Schwartz and W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982).
    [Crossref]
  16. A. Boardman, Electromagnetic surface modes hydrodynamic theory of plasmon-polaritons on plane surfaces, (Wiley, 1982).
  17. I. Tokatly and O. Pankratov, “Hydrodynamic theory of an electron gas,” Phys. Rev. B 60(23), 15550–15553 (1999).
    [Crossref]
  18. A. Domps, P. G. Reinhard, and E. Suraud, “Time-dependent Thomas–Fermi approach for electron dynamics in metal clusters,” Phys. Rev. Lett. 80(25), 5520–5523 (1988).
    [Crossref]
  19. S. Raza, G. Toscano, A-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412 (2011).
    [Crossref]
  20. G. Toscano, S. Raza, A-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
    [Crossref] [PubMed]
  21. C. Ciracì, Y. A. Urzhumov, and D. R. Smith, “Effects of classical nonlocality on the optical response of three-dimensional plasmonic nanodimers,” J. Opt. Soc. Am. B 30(10), 2731–2736 (2013).
    [Crossref]
  22. C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14(6), 1109–1116 (2013).
    [Crossref] [PubMed]
  23. W. Yan, “Hydrodynamic theory for quantum plasmonics: linear-response dynamics of the inhomogeneous electron gas,” Phys. Rev. B 91, 115416 (2015).
    [Crossref]
  24. E. Zaremba and H. C. Tso, “Thomas–Fermi–Dirac–von Weizsäcker hydrodynamics in parabolic wells,” Phys. Rev. B 49(12), 8147–8162 (1994).
    [Crossref]
  25. G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
    [Crossref] [PubMed]
  26. X. Li, H. Fang, X. Weng, L. Zhang, X. Dou, A. Yang, and X. Yuan, “Electronic spill-out induced spectral broadening in quantum hydrodynamic nanoplasmonics,” Opt. Express 23(23), 29738–29745 (2015).
    [Crossref] [PubMed]
  27. C. Ciracì and F. D. Sala, “Quantum hydrodynamic theory for plasmonics: impact of the electron density tail,” Phys. Rev. B 93(20), 205405 (2016).
    [Crossref]
  28. C. Ciracì, “Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory,” Phys. Rev. B 95(24), 245434 (2017).
    [Crossref]
  29. K. Ding and C. T. Chan, “Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method,” Phys. Rev. B 96(12), 125134 (2017).
    [Crossref]
  30. D-K. Lim, K-S Jeon, J-H Hwang, H. Kim, Y. D. Suh, and J-M Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
    [Crossref] [PubMed]
  31. L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
    [Crossref] [PubMed]
  32. H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable optical field,” Phys. Rev. B 72, 073405 (2005).
    [Crossref]
  33. Y. Hu, R. C. Flemming, and R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express 16(24), 19579–19591 (2008).
    [Crossref] [PubMed]
  34. R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “nanosphere-in-a-nanoshell: a simple nanomatryoshka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
    [Crossref]
  35. J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
    [Crossref]
  36. C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
    [Crossref] [PubMed]
  37. V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties of a nanomatryoshka,” Nano Lett. 13(12), 5873–5879 (2013).
    [Crossref] [PubMed]
  38. M. Zapata, A. S. C. Beltrań, A. G. Borisov, and J. Aizpurua, “Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryoshkas,” Opt. Express 23(6), 8134–8149 (2015).
    [Crossref] [PubMed]
  39. D-C. Marinica, J. Aizpurua, and A. G. Borisov, “Quantum effects in the plasmon response of bimetallic core-shell nanostructures,” Opt. Express 24(21), 23941–23956 (2016).
    [Crossref] [PubMed]
  40. C. Ciracì, Y. A. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric three-dimensional directional cloaks,” Opt. Express 21(8), 9397–9406 (2013).
    [Crossref] [PubMed]
  41. W. Ekardt, “Size-dependent photoabsorption and photoemission of small metal particles,” Phys. Rev. B 31(10), 6360–6370 (1985).
    [Crossref]
  42. M. Brack, “The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches,” Rev. Mod. Phys. 65(3), 677–732 (1993).
    [Crossref]
  43. S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys.: Condens. Matter 27, 183204 (2015).
  44. Comsol Multiphysics, http://www.comsol.com .
  45. G. Bertsch, “An RPA program for jellium spheres,” Comput. Phys. Commun. 60(2), 247–255 (1990).
    [Crossref]
  46. E. Prodan and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352(3), 140–146 (2002).
    [Crossref]
  47. B. K. P. Scaife, Principles of dielectrics, (Oxford Science, 1998).
  48. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
    [Crossref] [PubMed]
  49. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
    [Crossref] [PubMed]

2017 (2)

C. Ciracì, “Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory,” Phys. Rev. B 95(24), 245434 (2017).
[Crossref]

K. Ding and C. T. Chan, “Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method,” Phys. Rev. B 96(12), 125134 (2017).
[Crossref]

2016 (2)

C. Ciracì and F. D. Sala, “Quantum hydrodynamic theory for plasmonics: impact of the electron density tail,” Phys. Rev. B 93(20), 205405 (2016).
[Crossref]

D-C. Marinica, J. Aizpurua, and A. G. Borisov, “Quantum effects in the plasmon response of bimetallic core-shell nanostructures,” Opt. Express 24(21), 23941–23956 (2016).
[Crossref] [PubMed]

2015 (6)

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys.: Condens. Matter 27, 183204 (2015).

W. Yan, “Hydrodynamic theory for quantum plasmonics: linear-response dynamics of the inhomogeneous electron gas,” Phys. Rev. B 91, 115416 (2015).
[Crossref]

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

X. Li, H. Fang, X. Weng, L. Zhang, X. Dou, A. Yang, and X. Yuan, “Electronic spill-out induced spectral broadening in quantum hydrodynamic nanoplasmonics,” Opt. Express 23(23), 29738–29745 (2015).
[Crossref] [PubMed]

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

M. Zapata, A. S. C. Beltrań, A. G. Borisov, and J. Aizpurua, “Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryoshkas,” Opt. Express 23(6), 8134–8149 (2015).
[Crossref] [PubMed]

2014 (2)

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, and D. R. Smith, “Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers,” Appl. Phys. Lett. 104, 023109 (2014).
[Crossref]

2013 (7)

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref]

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

C. Ciracì, Y. A. Urzhumov, and D. R. Smith, “Effects of classical nonlocality on the optical response of three-dimensional plasmonic nanodimers,” J. Opt. Soc. Am. B 30(10), 2731–2736 (2013).
[Crossref]

C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14(6), 1109–1116 (2013).
[Crossref] [PubMed]

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties of a nanomatryoshka,” Nano Lett. 13(12), 5873–5879 (2013).
[Crossref] [PubMed]

C. Ciracì, Y. A. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric three-dimensional directional cloaks,” Opt. Express 21(8), 9397–9406 (2013).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

2012 (5)

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

G. Toscano, S. Raza, A-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, and A. G. Borisov, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 124, 1757–1764 (2012).
[Crossref]

2011 (2)

S. Raza, G. Toscano, A-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412 (2011).
[Crossref]

D-K. Lim, K-S Jeon, J-H Hwang, H. Kim, Y. D. Suh, and J-M Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

2010 (3)

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “nanosphere-in-a-nanoshell: a simple nanomatryoshka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[Crossref]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

2009 (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

2005 (1)

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable optical field,” Phys. Rev. B 72, 073405 (2005).
[Crossref]

2004 (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

2002 (1)

E. Prodan and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352(3), 140–146 (2002).
[Crossref]

1999 (1)

I. Tokatly and O. Pankratov, “Hydrodynamic theory of an electron gas,” Phys. Rev. B 60(23), 15550–15553 (1999).
[Crossref]

1994 (1)

E. Zaremba and H. C. Tso, “Thomas–Fermi–Dirac–von Weizsäcker hydrodynamics in parabolic wells,” Phys. Rev. B 49(12), 8147–8162 (1994).
[Crossref]

1993 (1)

M. Brack, “The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches,” Rev. Mod. Phys. 65(3), 677–732 (1993).
[Crossref]

1990 (1)

G. Bertsch, “An RPA program for jellium spheres,” Comput. Phys. Commun. 60(2), 247–255 (1990).
[Crossref]

1988 (1)

A. Domps, P. G. Reinhard, and E. Suraud, “Time-dependent Thomas–Fermi approach for electron dynamics in metal clusters,” Phys. Rev. Lett. 80(25), 5520–5523 (1988).
[Crossref]

1985 (2)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

W. Ekardt, “Size-dependent photoabsorption and photoemission of small metal particles,” Phys. Rev. B 31(10), 6360–6370 (1985).
[Crossref]

1982 (1)

C. Schwartz and W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982).
[Crossref]

1975 (1)

A. Eguiluz, S. Ying, and J. Quinn, “Influence of the electron density profile on surface plasmons in a hydrodynamic model,” Phys. Rev. B 11(6), 2118–2121 (1975).
[Crossref]

Aizpurua, J.

Akozbek, N.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[Crossref]

Ayala-Orozco, C.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

Bardhan, R.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “nanosphere-in-a-nanoshell: a simple nanomatryoshka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Beltran, A. S. C.

Bertsch, G.

G. Bertsch, “An RPA program for jellium spheres,” Comput. Phys. Commun. 60(2), 247–255 (1990).
[Crossref]

Bloemer, M. J.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[Crossref]

Boardman, A.

A. Boardman, Electromagnetic surface modes hydrodynamic theory of plasmon-polaritons on plane surfaces, (Wiley, 1982).

Borisov, A. G.

D-C. Marinica, J. Aizpurua, and A. G. Borisov, “Quantum effects in the plasmon response of bimetallic core-shell nanostructures,” Opt. Express 24(21), 23941–23956 (2016).
[Crossref] [PubMed]

M. Zapata, A. S. C. Beltrań, A. G. Borisov, and J. Aizpurua, “Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryoshkas,” Opt. Express 23(6), 8134–8149 (2015).
[Crossref] [PubMed]

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, and A. G. Borisov, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys.: Condens. Matter 27, 183204 (2015).

Brack, M.

M. Brack, “The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches,” Rev. Mod. Phys. 65(3), 677–732 (1993).
[Crossref]

Bryant, G.W.

Burrows, A.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

Centini, M.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[Crossref]

Chan, C. T.

K. Ding and C. T. Chan, “Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method,” Phys. Rev. B 96(12), 125134 (2017).
[Crossref]

Chen, X.

C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, and D. R. Smith, “Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers,” Appl. Phys. Lett. 104, 023109 (2014).
[Crossref]

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 124, 1757–1764 (2012).
[Crossref]

Ciracì, C.

C. Ciracì, “Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory,” Phys. Rev. B 95(24), 245434 (2017).
[Crossref]

C. Ciracì and F. D. Sala, “Quantum hydrodynamic theory for plasmonics: impact of the electron density tail,” Phys. Rev. B 93(20), 205405 (2016).
[Crossref]

C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, and D. R. Smith, “Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers,” Appl. Phys. Lett. 104, 023109 (2014).
[Crossref]

C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14(6), 1109–1116 (2013).
[Crossref] [PubMed]

C. Ciracì, Y. A. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric three-dimensional directional cloaks,” Opt. Express 21(8), 9397–9406 (2013).
[Crossref] [PubMed]

C. Ciracì, Y. A. Urzhumov, and D. R. Smith, “Effects of classical nonlocality on the optical response of three-dimensional plasmonic nanodimers,” J. Opt. Soc. Am. B 30(10), 2731–2736 (2013).
[Crossref]

C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Day, J. K.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

de Ceglia, D.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[Crossref]

Ding, K.

K. Ding and C. T. Chan, “Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method,” Phys. Rev. B 96(12), 125134 (2017).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref]

Domps, A.

A. Domps, P. G. Reinhard, and E. Suraud, “Time-dependent Thomas–Fermi approach for electron dynamics in metal clusters,” Phys. Rev. Lett. 80(25), 5520–5523 (1988).
[Crossref]

Dou, X.

Drezek, R. A.

Eguiluz, A.

A. Eguiluz, S. Ying, and J. Quinn, “Influence of the electron density profile on surface plasmons in a hydrodynamic model,” Phys. Rev. B 11(6), 2118–2121 (1975).
[Crossref]

Ekardt, W.

W. Ekardt, “Size-dependent photoabsorption and photoemission of small metal particles,” Phys. Rev. B 31(10), 6360–6370 (1985).
[Crossref]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, and A. G. Borisov, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Evers, F.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Fang, H.

Fernandez-Dominguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref] [PubMed]

Fischer, S. V.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

Flemming, R. C.

García de Abajo, F. J.

García-Etxarri, A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Gu, H.

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

Halas, N. J.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “nanosphere-in-a-nanoshell: a simple nanomatryoshka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, and A. G. Borisov, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 124, 1757–1764 (2012).
[Crossref]

Hu, Y.

Hwang, J-H

D-K. Lim, K-S Jeon, J-H Hwang, H. Kim, Y. D. Suh, and J-M Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

Jauho, A-P.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

G. Toscano, S. Raza, A-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

S. Raza, G. Toscano, A-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412 (2011).
[Crossref]

Jeon, K-S

D-K. Lim, K-S Jeon, J-H Hwang, H. Kim, Y. D. Suh, and J-M Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Kadkhodazadeh, S.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

Kim, H.

D-K. Lim, K-S Jeon, J-H Hwang, H. Kim, Y. D. Suh, and J-M Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Knight, M. W.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

Koh, A. L.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref]

Kostesha, N.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

Kulkarni, V.

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties of a nanomatryoshka,” Nano Lett. 13(12), 5873–5879 (2013).
[Crossref] [PubMed]

Kwiatkowski, A.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Levit, S. D.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “nanosphere-in-a-nanoshell: a simple nanomatryoshka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

Li, X.

Li, Y.

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

Lim, D-K.

D-K. Lim, K-S Jeon, J-H Hwang, H. Kim, Y. D. Suh, and J-M Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Lin, L.

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

Liu, J. G.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

Liu, X.

C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, and D. R. Smith, “Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers,” Appl. Phys. Lett. 104, 023109 (2014).
[Crossref]

Liu, Z.

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

Ma, R-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref] [PubMed]

Marinica, D-C.

McGuire, F.

C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, and D. R. Smith, “Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers,” Appl. Phys. Lett. 104, 023109 (2014).
[Crossref]

Mirin, N. A.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “nanosphere-in-a-nanoshell: a simple nanomatryoshka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

Mock, J. J.

C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, and D. R. Smith, “Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers,” Appl. Phys. Lett. 104, 023109 (2014).
[Crossref]

C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 124, 1757–1764 (2012).
[Crossref]

Mortensen, N. A.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys.: Condens. Matter 27, 183204 (2015).

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

G. Toscano, S. Raza, A-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

S. Raza, G. Toscano, A-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412 (2011).
[Crossref]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Mukherjee, S.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “nanosphere-in-a-nanoshell: a simple nanomatryoshka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

Nam, J-M

D-K. Lim, K-S Jeon, J-H Hwang, H. Kim, Y. D. Suh, and J-M Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Nordlander, P.

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties of a nanomatryoshka,” Nano Lett. 13(12), 5873–5879 (2013).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “nanosphere-in-a-nanoshell: a simple nanomatryoshka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

E. Prodan and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352(3), 140–146 (2002).
[Crossref]

Oh, S.-H.

C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, and D. R. Smith, “Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers,” Appl. Phys. Lett. 104, 023109 (2014).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Pankratov, O.

I. Tokatly and O. Pankratov, “Hydrodynamic theory of an electron gas,” Phys. Rev. B 60(23), 15550–15553 (1999).
[Crossref]

Pendry, J. B.

C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14(6), 1109–1116 (2013).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref] [PubMed]

Prodan, E.

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties of a nanomatryoshka,” Nano Lett. 13(12), 5873–5879 (2013).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

E. Prodan and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352(3), 140–146 (2002).
[Crossref]

Qian, J.

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

Quinn, J.

A. Eguiluz, S. Ying, and J. Quinn, “Influence of the electron density profile on surface plasmons in a hydrodynamic model,” Phys. Rev. B 11(6), 2118–2121 (1975).
[Crossref]

Raza, S.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys.: Condens. Matter 27, 183204 (2015).

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

G. Toscano, S. Raza, A-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

S. Raza, G. Toscano, A-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412 (2011).
[Crossref]

Reinhard, P. G.

A. Domps, P. G. Reinhard, and E. Suraud, “Time-dependent Thomas–Fermi approach for electron dynamics in metal clusters,” Phys. Rev. Lett. 80(25), 5520–5523 (1988).
[Crossref]

Rockstuhl, C.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Romero, I.

Roppo, V.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[Crossref]

Sala, F. D.

C. Ciracì and F. D. Sala, “Quantum hydrodynamic theory for plasmonics: impact of the electron density tail,” Phys. Rev. B 93(20), 205405 (2016).
[Crossref]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, and A. G. Borisov, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Scaife, B. K. P.

B. K. P. Scaife, Principles of dielectrics, (Oxford Science, 1998).

Scalora, M.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[Crossref]

Schaich, W. L.

C. Schwartz and W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982).
[Crossref]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Scholl, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref]

Schwartz, C.

C. Schwartz and W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982).
[Crossref]

Smith, D. R.

C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, and D. R. Smith, “Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers,” Appl. Phys. Lett. 104, 023109 (2014).
[Crossref]

C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14(6), 1109–1116 (2013).
[Crossref] [PubMed]

C. Ciracì, Y. A. Urzhumov, and D. R. Smith, “Effects of classical nonlocality on the optical response of three-dimensional plasmonic nanodimers,” J. Opt. Soc. Am. B 30(10), 2731–2736 (2013).
[Crossref]

C. Ciracì, Y. A. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric three-dimensional directional cloaks,” Opt. Express 21(8), 9397–9406 (2013).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 124, 1757–1764 (2012).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Stenger, N.

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

Straubel, J.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Suh, Y. D.

D-K. Lim, K-S Jeon, J-H Hwang, H. Kim, Y. D. Suh, and J-M Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Sun, Q.

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

Suraud, E.

A. Domps, P. G. Reinhard, and E. Suraud, “Time-dependent Thomas–Fermi approach for electron dynamics in metal clusters,” Phys. Rev. Lett. 80(25), 5520–5523 (1988).
[Crossref]

Teperik, T. V.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

Tokatly, I.

I. Tokatly and O. Pankratov, “Hydrodynamic theory of an electron gas,” Phys. Rev. B 60(23), 15550–15553 (1999).
[Crossref]

Toscano, G.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

G. Toscano, S. Raza, A-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

S. Raza, G. Toscano, A-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412 (2011).
[Crossref]

Tsai, Y.-J.

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 124, 1757–1764 (2012).
[Crossref]

Tso, H. C.

E. Zaremba and H. C. Tso, “Thomas–Fermi–Dirac–von Weizsäcker hydrodynamics in parabolic wells,” Phys. Rev. B 49(12), 8147–8162 (1994).
[Crossref]

Urzhumov, Y. A.

Vincenti, M. A.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[Crossref]

Wang, S.

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

Wang, W.

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

Wang, Y.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

Weng, X.

Wubs, M.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys.: Condens. Matter 27, 183204 (2015).

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

G. Toscano, S. Raza, A-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

S. Raza, G. Toscano, A-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412 (2011).
[Crossref]

Xiong, M.

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

Xu, H.

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable optical field,” Phys. Rev. B 72, 073405 (2005).
[Crossref]

Xu, J.

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

Yan, W.

W. Yan, “Hydrodynamic theory for quantum plasmonics: linear-response dynamics of the inhomogeneous electron gas,” Phys. Rev. B 91, 115416 (2015).
[Crossref]

Yang, A.

Ye, J.

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

Ying, S.

A. Eguiluz, S. Ying, and J. Quinn, “Influence of the electron density profile on surface plasmons in a hydrodynamic model,” Phys. Rev. B 11(6), 2118–2121 (1975).
[Crossref]

Yuan, X.

Zapata, M.

M. Zapata, A. S. C. Beltrań, A. G. Borisov, and J. Aizpurua, “Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryoshkas,” Opt. Express 23(6), 8134–8149 (2015).
[Crossref] [PubMed]

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

Zaremba, E.

E. Zaremba and H. C. Tso, “Thomas–Fermi–Dirac–von Weizsäcker hydrodynamics in parabolic wells,” Phys. Rev. B 49(12), 8147–8162 (1994).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zhang, L.

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, and D. R. Smith, “Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers,” Appl. Phys. Lett. 104, 023109 (2014).
[Crossref]

Chem. Phys. Chem. (1)

C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14(6), 1109–1116 (2013).
[Crossref] [PubMed]

Chem. Phys. Lett. (2)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

E. Prodan and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352(3), 140–146 (2002).
[Crossref]

Comput. Phys. Commun. (1)

G. Bertsch, “An RPA program for jellium spheres,” Comput. Phys. Commun. 60(2), 247–255 (1990).
[Crossref]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “nanosphere-in-a-nanoshell: a simple nanomatryoshka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116(18), 10349–10355 (2012).
[Crossref]

J. Phys.: Condens. Matter (1)

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys.: Condens. Matter 27, 183204 (2015).

Nano Lett. (6)

L. Lin, M. Zapata, M. Xiong, Z. Liu, S. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua, and J. Ye, “Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer,” Nano Lett. 15(10), 6419–6428 (2015).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties of a nanomatryoshka,” Nano Lett. 13(12), 5873–5879 (2013).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 124, 1757–1764 (2012).
[Crossref]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref]

Nanophotonics (1)

S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics 2(2), 131–138 (2013).
[Crossref]

Nat. Commun. (1)

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D-K. Lim, K-S Jeon, J-H Hwang, H. Kim, Y. D. Suh, and J-M Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Nature (2)

K. J. Savage, M. M. Hawkeye, R. Esteban, and A. G. Borisov, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (7)

I. Romero, J. Aizpurua, G.W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[Crossref] [PubMed]

X. Li, H. Fang, X. Weng, L. Zhang, X. Dou, A. Yang, and X. Yuan, “Electronic spill-out induced spectral broadening in quantum hydrodynamic nanoplasmonics,” Opt. Express 23(23), 29738–29745 (2015).
[Crossref] [PubMed]

G. Toscano, S. Raza, A-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

M. Zapata, A. S. C. Beltrań, A. G. Borisov, and J. Aizpurua, “Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryoshkas,” Opt. Express 23(6), 8134–8149 (2015).
[Crossref] [PubMed]

D-C. Marinica, J. Aizpurua, and A. G. Borisov, “Quantum effects in the plasmon response of bimetallic core-shell nanostructures,” Opt. Express 24(21), 23941–23956 (2016).
[Crossref] [PubMed]

C. Ciracì, Y. A. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric three-dimensional directional cloaks,” Opt. Express 21(8), 9397–9406 (2013).
[Crossref] [PubMed]

Y. Hu, R. C. Flemming, and R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express 16(24), 19579–19591 (2008).
[Crossref] [PubMed]

Phys. Rev. A (1)

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[Crossref]

Phys. Rev. B (11)

S. Raza, G. Toscano, A-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412 (2011).
[Crossref]

I. Tokatly and O. Pankratov, “Hydrodynamic theory of an electron gas,” Phys. Rev. B 60(23), 15550–15553 (1999).
[Crossref]

A. Eguiluz, S. Ying, and J. Quinn, “Influence of the electron density profile on surface plasmons in a hydrodynamic model,” Phys. Rev. B 11(6), 2118–2121 (1975).
[Crossref]

C. Schwartz and W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982).
[Crossref]

W. Ekardt, “Size-dependent photoabsorption and photoemission of small metal particles,” Phys. Rev. B 31(10), 6360–6370 (1985).
[Crossref]

W. Yan, “Hydrodynamic theory for quantum plasmonics: linear-response dynamics of the inhomogeneous electron gas,” Phys. Rev. B 91, 115416 (2015).
[Crossref]

E. Zaremba and H. C. Tso, “Thomas–Fermi–Dirac–von Weizsäcker hydrodynamics in parabolic wells,” Phys. Rev. B 49(12), 8147–8162 (1994).
[Crossref]

C. Ciracì and F. D. Sala, “Quantum hydrodynamic theory for plasmonics: impact of the electron density tail,” Phys. Rev. B 93(20), 205405 (2016).
[Crossref]

C. Ciracì, “Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory,” Phys. Rev. B 95(24), 245434 (2017).
[Crossref]

K. Ding and C. T. Chan, “Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method,” Phys. Rev. B 96(12), 125134 (2017).
[Crossref]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable optical field,” Phys. Rev. B 72, 073405 (2005).
[Crossref]

Phys. Rev. Lett. (2)

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110(26), 263901 (2013).
[Crossref] [PubMed]

A. Domps, P. G. Reinhard, and E. Suraud, “Time-dependent Thomas–Fermi approach for electron dynamics in metal clusters,” Phys. Rev. Lett. 80(25), 5520–5523 (1988).
[Crossref]

Rev. Mod. Phys. (2)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

M. Brack, “The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches,” Rev. Mod. Phys. 65(3), 677–732 (1993).
[Crossref]

Science (1)

C. Ciracì, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[Crossref] [PubMed]

Other (4)

A. Boardman, Electromagnetic surface modes hydrodynamic theory of plasmon-polaritons on plane surfaces, (Wiley, 1982).

C. A. Ullrich, ed. Time-dependent density functional theory: concepts and applications, (Oxford University, 2011).
[Crossref]

Comsol Multiphysics, http://www.comsol.com .

B. K. P. Scaife, Principles of dielectrics, (Oxford Science, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Geometry of the nanomatryoshka structure made up of a solid metallic core encapsulated by a concentric metallic shell. R1 represents the radius of the core while R2 and R3 are the internal and external radii of the shell.
Fig. 2
Fig. 2 Absorption efficiency calculated within LRA (a,b), TF–HT (c,d) and QHT (e,f) methods for Au (left panels) and Na (right panels) NMs with dimensions SF×(8.5, 9.5, 15.9)Å. SF indicates the scaling factor which varies from 1 to 5. A zoom-in on the lower energy mode is shown in the insets.
Fig. 3
Fig. 3 (a,b) Ground-state density, (c,d) absorption efficiency, and (e,f) induced polarization density obtained as nind = ∇ · P/e for SF=4 (left panels) and SF=1 (right panels) for LRA, TF–HF, QHT and (TD–)DFT calculations.
Fig. 4
Fig. 4 Distribution of the normalized electric field for Na NMs at HEM (upper panel) and LEM (lower panel) NMs with SF=5 calculated using LRA, TF–HT and QHT methods. The fields are plotted at the resonances and the corresponding energies in eV are mentioned on the maps.
Fig. 5
Fig. 5 Electric field enhancement profile inside the gap for Au (upper panel) and Na (lower panel) for SF=5 at the corresponding resonance frequency by using LRA, TF–HT and QHT methods.
Fig. 6
Fig. 6 Average electric field enhancement inside the gap as a function of scaling factor (SF) for Au and Na NMs at HEM (upper panel) and LEM (lower panel) computed using LRA, TF–HT and QHT methods.
Fig. 7
Fig. 7 Absorption spectra calculated within (a) LRA (b) TF–HT and (c) QHT methods for Au (left panel) and Na (right panel) NMs with dimensions (R1, R1 + g, R3) where R1 = 17 nm, R3 = 30 nm and the gap g varies from 4 to 0.1 nm. A zoom-in on the lower energy mode is shown in the inset.
Fig. 8
Fig. 8 Average electric field measured inside the core-shell gap at HEM (upper panel) and LEM (lower panel) for Au (right) and Na (left) NMs with D=60 nm. The insets show a zoom-in of the average fields, normalized by the field predicted by the LRA, for the gap sizes from 0.1 to 0.5 nm

Tables (1)

Tables Icon

Table 1 Number of electrons in the core (Nc), in the shell (Ns), their sum (Nt = Nc + Ns), the core radius (R′1) and the external radius (R′3) for the filled-shell Na nanomatryoshka systems considered for DFT calculations.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε ω p 2 ω ( ω + i γ ) ,
× × E ω 2 c 2 E = ω 2 μ 0 P ,
n 0 e m ( δ G δ n ) 1 + e m σ ( kxc ) ( ω 2 + i ω γ ) = n 0 e 2 m E ,
G [ n ] = T TF [ n ] + T vW [ n ] + E xc
2 ( G [ n ] n ) n = n 0 + e 2 ε 0 ( n 0 n + ) = 0 ,
n guess ( r ) = ( 1 1 + exp [ κ ( r R 1 ) ] + 1 1 + exp [ κ ( r R 2 ) ] ) ( 1 1 + exp [ κ ( r R 3 ) ] ) ,

Metrics