Abstract

We present a method to increase the resolution of holographically projected images by the use of a collective matrix of two phase-only spatial light modulators. As a result of fine alignment and common coherent illumination of the modulators, a synthetic aperture is formed with a doubled number of active pixels. In this paper we present theoretical analysis and numerical simulations which stand in good agreement for different distances between the apertures of modulators. We have achieved experimentally controlled field interference from both modulators on the projection screen, exhibiting increased resolution in one spatial direction and residual effects of the dead space between modulators. Then we have proved numerically possibility to extend our approach on bigger synthetic apertures consisted of more than two modulators.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Aberration-corrected holographic projection on a two-dimensionally highly tilted spatial light modulator

Joanna Starobrat, Paula Wilczynska, and Michal Makowski
Opt. Express 27(14) 19270-19281 (2019)

Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection

Hao Zhang, Jinghui Xie, Juan Liu, and Yongtian Wang
Appl. Opt. 48(30) 5834-5841 (2009)

References

  • View by:
  • |
  • |
  • |

  1. I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
    [Crossref]
  2. M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21, 29205–29216 (2013).
    [Crossref]
  3. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).
  4. K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
    [Crossref] [PubMed]
  5. P. N. Gundu, E. Hack, and P. Rastogi, “High efficient superresolution combination filter with twin lcd spatial light modulators,” Opt. Express 13, 2835–2842 (2005).
    [Crossref] [PubMed]
  6. T. Kozacki, G. Finke, P. Garbat, W. Zaperty, and M. Kujawińska, “Wide angle holographic display system with spatiotemporal multiplexing,” Opt. Express 20, 27473–27481 (2012).
    [Crossref] [PubMed]
  7. M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemelä, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22, 2324–2336 (2014).
    [Crossref] [PubMed]
  8. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386 (2008).
    [Crossref] [PubMed]
  9. H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Reports 4, 6177 (2014).
    [Crossref]
  10. H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49, 5993–5996 (2010).
    [Crossref]
  11. F. Yaras and L. Onural, “Color holographic reconstruction using multiple slms and led illumination,” Proc. SPIE 7237, 72370O (2009).
    [Crossref]
  12. S. B. Hasan and T. Kozacki, “Method for enhancing the resolution of holographic displays,” Photonics Lett. Pol. 1, 193–195 (2009).
  13. N. A. Ochoa and C. Pérez-Santos, “Super-resolution with complex masks using a phase-only lcd,” Opt. letters 38, 5389–5392 (2013).
    [Crossref]
  14. N. A. Ochoa and Y. P. de León, “Super-resolution with an slm and two intensity images,” Opt. Commun. 416, 36–40 (2018).
    [Crossref]
  15. J. Goodman, An Introduction to Fourier Optics (McGraw-Hill, 1968).
  16. F. Wyrowski and O. Bryngdahl, “Iterative fourier-transform algorithm applied to computer holography,” JOSA A 5, 1058–1065 (1988).
    [Crossref]
  17. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  18. M. Sypek, “Light propagation in the fresnel region. new numerical approach,” Opt. Commun. 116, 43–48 (1995).
    [Crossref]
  19. M. Makowski, I. Ducin, K. Kakarenko, A. Kowalczyk, M. Bieda, and J. Suszek, “Optimized computation method for real-time holographic formation of color images,” Photonics Lett. Pol. 6, 81–83 (2014).
  20. S. Osten, S. Krüger, and A. Hermerschmidt, “New hdtv (1920x1080) phase-only slm,” Proc. SPIE 6487, 64870X (2007).
    [Crossref]
  21. V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58, 545–561 (2011).
    [Crossref]
  22. V. Lopez, A. González-Vega, A. Aguilar, J. Landgrave, and J. García-Márquez, “Non-uniform spatial response of the lcos spatial light modulator,” Opt. Commun. 366, 419–424 (2016).
    [Crossref]
  23. J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an lcos spatial light modulator,” Opt. express 20, 8431–8441 (2012).
    [Crossref] [PubMed]
  24. K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).
  25. Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
    [Crossref]
  26. D. G. Grier, “A revolution in optical manipulation,” Nature. 424, 810–816 (2003).
    [Crossref] [PubMed]
  27. T. Yoon, C.-S. Kim, K. Kim, and J.-R. Choi, “Emerging applications of digital micromirror devices in biophotonic fields,” Opt. & Laser Technol. 104, 17 – 25 (2018).
    [Crossref]
  28. S. Wu, L.-H. Han, and S. Chen, “Three-dimensional selective growth of nanoparticles on a polymer microstructure,” Nanotechnology. 20, 285312 (2009).
    [Crossref] [PubMed]
  29. A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, and A. Kimel, “Ultrafast nonthermal photo-magnetic recording in a transparent medium,” Nature. 542, 71–74 (2017).
    [Crossref] [PubMed]
  30. A. M. Tareki, W. Kim, J. Guo, and R. G. Lindquist, “Longitudinal stratified liquid crystal structures to enable practical spatial light modulators in the terahertz regime,” Proc. SPIE 9940, 994013 (2016).
    [Crossref]
  31. M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309 – 314 (2015).
    [Crossref]

2018 (2)

N. A. Ochoa and Y. P. de León, “Super-resolution with an slm and two intensity images,” Opt. Commun. 416, 36–40 (2018).
[Crossref]

T. Yoon, C.-S. Kim, K. Kim, and J.-R. Choi, “Emerging applications of digital micromirror devices in biophotonic fields,” Opt. & Laser Technol. 104, 17 – 25 (2018).
[Crossref]

2017 (1)

A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, and A. Kimel, “Ultrafast nonthermal photo-magnetic recording in a transparent medium,” Nature. 542, 71–74 (2017).
[Crossref] [PubMed]

2016 (4)

A. M. Tareki, W. Kim, J. Guo, and R. G. Lindquist, “Longitudinal stratified liquid crystal structures to enable practical spatial light modulators in the terahertz regime,” Proc. SPIE 9940, 994013 (2016).
[Crossref]

V. Lopez, A. González-Vega, A. Aguilar, J. Landgrave, and J. García-Márquez, “Non-uniform spatial response of the lcos spatial light modulator,” Opt. Commun. 366, 419–424 (2016).
[Crossref]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

2015 (2)

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309 – 314 (2015).
[Crossref]

2014 (3)

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Reports 4, 6177 (2014).
[Crossref]

M. Makowski, I. Ducin, K. Kakarenko, A. Kowalczyk, M. Bieda, and J. Suszek, “Optimized computation method for real-time holographic formation of color images,” Photonics Lett. Pol. 6, 81–83 (2014).

M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemelä, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22, 2324–2336 (2014).
[Crossref] [PubMed]

2013 (3)

N. A. Ochoa and C. Pérez-Santos, “Super-resolution with complex masks using a phase-only lcd,” Opt. letters 38, 5389–5392 (2013).
[Crossref]

M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21, 29205–29216 (2013).
[Crossref]

Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
[Crossref]

2012 (2)

2011 (1)

V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58, 545–561 (2011).
[Crossref]

2010 (2)

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49, 5993–5996 (2010).
[Crossref]

2009 (3)

F. Yaras and L. Onural, “Color holographic reconstruction using multiple slms and led illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

S. B. Hasan and T. Kozacki, “Method for enhancing the resolution of holographic displays,” Photonics Lett. Pol. 1, 193–195 (2009).

S. Wu, L.-H. Han, and S. Chen, “Three-dimensional selective growth of nanoparticles on a polymer microstructure,” Nanotechnology. 20, 285312 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

S. Osten, S. Krüger, and A. Hermerschmidt, “New hdtv (1920x1080) phase-only slm,” Proc. SPIE 6487, 64870X (2007).
[Crossref]

2005 (1)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature. 424, 810–816 (2003).
[Crossref] [PubMed]

1995 (1)

M. Sypek, “Light propagation in the fresnel region. new numerical approach,” Opt. Commun. 116, 43–48 (1995).
[Crossref]

1988 (1)

F. Wyrowski and O. Bryngdahl, “Iterative fourier-transform algorithm applied to computer holography,” JOSA A 5, 1058–1065 (1988).
[Crossref]

1972 (1)

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Afanasiev, D.

A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, and A. Kimel, “Ultrafast nonthermal photo-magnetic recording in a transparent medium,” Nature. 542, 71–74 (2017).
[Crossref] [PubMed]

Aguilar, A.

V. Lopez, A. González-Vega, A. Aguilar, J. Landgrave, and J. García-Márquez, “Non-uniform spatial response of the lcos spatial light modulator,” Opt. Commun. 366, 419–424 (2016).
[Crossref]

Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
[Crossref]

Alayli, Y.

Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
[Crossref]

Awazu, S.

Bernussi, A. A.

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309 – 314 (2015).
[Crossref]

Bieda, M.

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

M. Makowski, I. Ducin, K. Kakarenko, A. Kowalczyk, M. Bieda, and J. Suszek, “Optimized computation method for real-time holographic formation of color images,” Photonics Lett. Pol. 6, 81–83 (2014).

Bryngdahl, O.

F. Wyrowski and O. Bryngdahl, “Iterative fourier-transform algorithm applied to computer holography,” JOSA A 5, 1058–1065 (1988).
[Crossref]

Calderón-Hermosillo, Y.

Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
[Crossref]

Chen, S.

S. Wu, L.-H. Han, and S. Chen, “Three-dimensional selective growth of nanoparticles on a polymer microstructure,” Nanotechnology. 20, 285312 (2009).
[Crossref] [PubMed]

Choi, J.-R.

T. Yoon, C.-S. Kim, K. Kim, and J.-R. Choi, “Emerging applications of digital micromirror devices in biophotonic fields,” Opt. & Laser Technol. 104, 17 – 25 (2018).
[Crossref]

de León, Y. P.

N. A. Ochoa and Y. P. de León, “Super-resolution with an slm and two intensity images,” Opt. Commun. 416, 36–40 (2018).
[Crossref]

Ducin, I.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

M. Makowski, I. Ducin, K. Kakarenko, A. Kowalczyk, M. Bieda, and J. Suszek, “Optimized computation method for real-time holographic formation of color images,” Photonics Lett. Pol. 6, 81–83 (2014).

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

Espinosa-Luna, R.

Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
[Crossref]

Falldorf, C.

Fan, Z.

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309 – 314 (2015).
[Crossref]

Finke, G.

Fleck, A.

V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58, 545–561 (2011).
[Crossref]

Garbat, P.

García-Márquez, J.

V. Lopez, A. González-Vega, A. Aguilar, J. Landgrave, and J. García-Márquez, “Non-uniform spatial response of the lcos spatial light modulator,” Opt. Commun. 366, 419–424 (2016).
[Crossref]

Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an lcos spatial light modulator,” Opt. express 20, 8431–8441 (2012).
[Crossref] [PubMed]

Gerchberg, R.

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

González-Vega, A.

V. Lopez, A. González-Vega, A. Aguilar, J. Landgrave, and J. García-Márquez, “Non-uniform spatial response of the lcos spatial light modulator,” Opt. Commun. 366, 419–424 (2016).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an lcos spatial light modulator,” Opt. express 20, 8431–8441 (2012).
[Crossref] [PubMed]

Goodman, J.

J. Goodman, An Introduction to Fourier Optics (McGraw-Hill, 1968).

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature. 424, 810–816 (2003).
[Crossref] [PubMed]

Gundu, P. N.

Guo, J.

A. M. Tareki, W. Kim, J. Guo, and R. G. Lindquist, “Longitudinal stratified liquid crystal structures to enable practical spatial light modulators in the terahertz regime,” Proc. SPIE 9940, 994013 (2016).
[Crossref]

Hack, E.

Hahn, J.

Han, L.-H.

S. Wu, L.-H. Han, and S. Chen, “Three-dimensional selective growth of nanoparticles on a polymer microstructure,” Nanotechnology. 20, 285312 (2009).
[Crossref] [PubMed]

Hasan, S. B.

S. B. Hasan and T. Kozacki, “Method for enhancing the resolution of holographic displays,” Photonics Lett. Pol. 1, 193–195 (2009).

Hennelly, B. M.

Hermerschmidt, A.

S. Osten, S. Krüger, and A. Hermerschmidt, “New hdtv (1920x1080) phase-only slm,” Proc. SPIE 6487, 64870X (2007).
[Crossref]

Holtz, M.

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309 – 314 (2015).
[Crossref]

Hoque, M. N. F.

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309 – 314 (2015).
[Crossref]

Hsieh, P.-Y.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Huang, Y.-P.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Ichihashi, Y.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Reports 4, 6177 (2014).
[Crossref]

H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49, 5993–5996 (2010).
[Crossref]

Ito, T.

Jaroszewicz, Z.

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

Kakarenko, K.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

M. Makowski, I. Ducin, K. Kakarenko, A. Kowalczyk, M. Bieda, and J. Suszek, “Optimized computation method for real-time holographic formation of color images,” Photonics Lett. Pol. 6, 81–83 (2014).

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

Karaoglan-Bebek, G.

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309 – 314 (2015).
[Crossref]

Kim, C.-S.

T. Yoon, C.-S. Kim, K. Kim, and J.-R. Choi, “Emerging applications of digital micromirror devices in biophotonic fields,” Opt. & Laser Technol. 104, 17 – 25 (2018).
[Crossref]

Kim, H.

Kim, K.

T. Yoon, C.-S. Kim, K. Kim, and J.-R. Choi, “Emerging applications of digital micromirror devices in biophotonic fields,” Opt. & Laser Technol. 104, 17 – 25 (2018).
[Crossref]

Kim, W.

A. M. Tareki, W. Kim, J. Guo, and R. G. Lindquist, “Longitudinal stratified liquid crystal structures to enable practical spatial light modulators in the terahertz regime,” Proc. SPIE 9940, 994013 (2016).
[Crossref]

Kimel, A.

A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, and A. Kimel, “Ultrafast nonthermal photo-magnetic recording in a transparent medium,” Nature. 542, 71–74 (2017).
[Crossref] [PubMed]

Kirilyuk, A.

A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, and A. Kimel, “Ultrafast nonthermal photo-magnetic recording in a transparent medium,” Nature. 542, 71–74 (2017).
[Crossref] [PubMed]

Kolodziejczyk, A.

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

Kowalczyk, A.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

M. Makowski, I. Ducin, K. Kakarenko, A. Kowalczyk, M. Bieda, and J. Suszek, “Optimized computation method for real-time holographic formation of color images,” Photonics Lett. Pol. 6, 81–83 (2014).

Kowiel, M.

Kozacki, T.

Krüger, S.

S. Osten, S. Krüger, and A. Hermerschmidt, “New hdtv (1920x1080) phase-only slm,” Proc. SPIE 6487, 64870X (2007).
[Crossref]

Kujawinska, M.

Lakshminarayanan, V.

V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58, 545–561 (2011).
[Crossref]

Landgrave, J.

V. Lopez, A. González-Vega, A. Aguilar, J. Landgrave, and J. García-Márquez, “Non-uniform spatial response of the lcos spatial light modulator,” Opt. Commun. 366, 419–424 (2016).
[Crossref]

Lee, B.

Lim, Y.

Lindquist, R. G.

A. M. Tareki, W. Kim, J. Guo, and R. G. Lindquist, “Longitudinal stratified liquid crystal structures to enable practical spatial light modulators in the terahertz regime,” Proc. SPIE 9940, 994013 (2016).
[Crossref]

Lopez, V.

V. Lopez, A. González-Vega, A. Aguilar, J. Landgrave, and J. García-Márquez, “Non-uniform spatial response of the lcos spatial light modulator,” Opt. Commun. 366, 419–424 (2016).
[Crossref]

López, V.

Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an lcos spatial light modulator,” Opt. express 20, 8431–8441 (2012).
[Crossref] [PubMed]

Makowski, M.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

M. Makowski, I. Ducin, K. Kakarenko, A. Kowalczyk, M. Bieda, and J. Suszek, “Optimized computation method for real-time holographic formation of color images,” Photonics Lett. Pol. 6, 81–83 (2014).

M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21, 29205–29216 (2013).
[Crossref]

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

Masuda, N.

Meeser, T.

Nakayama, H.

Naughton, T.

Niemelä, M.

Noé, E.

Noé-Arias, E.

Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
[Crossref]

Ochoa, N. A.

N. A. Ochoa and Y. P. de León, “Super-resolution with an slm and two intensity images,” Opt. Commun. 416, 36–40 (2018).
[Crossref]

N. A. Ochoa and C. Pérez-Santos, “Super-resolution with complex masks using a phase-only lcd,” Opt. letters 38, 5389–5392 (2013).
[Crossref]

Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
[Crossref]

Oi, R.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Reports 4, 6177 (2014).
[Crossref]

Okui, M.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Onural, L.

F. Yaras and L. Onural, “Color holographic reconstruction using multiple slms and led illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

Osten, S.

S. Osten, S. Krüger, and A. Hermerschmidt, “New hdtv (1920x1080) phase-only slm,” Proc. SPIE 6487, 64870X (2007).
[Crossref]

Park, G.

Pérez-Santos, C.

N. A. Ochoa and C. Pérez-Santos, “Super-resolution with complex masks using a phase-only lcd,” Opt. letters 38, 5389–5392 (2013).
[Crossref]

Rastogi, P.

Sasaki, H.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Reports 4, 6177 (2014).
[Crossref]

Saxton, W.

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Senoh, T.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Reports 4, 6177 (2014).
[Crossref]

Shimobaba, T.

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49, 5993–5996 (2010).
[Crossref]

Siemion, A.

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

Stupakiewicz, A.

A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, and A. Kimel, “Ultrafast nonthermal photo-magnetic recording in a transparent medium,” Nature. 542, 71–74 (2017).
[Crossref] [PubMed]

Suszek, J.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

M. Makowski, I. Ducin, K. Kakarenko, A. Kowalczyk, M. Bieda, and J. Suszek, “Optimized computation method for real-time holographic formation of color images,” Photonics Lett. Pol. 6, 81–83 (2014).

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

Sypek, M.

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

M. Sypek, “Light propagation in the fresnel region. new numerical approach,” Opt. Commun. 116, 43–48 (1995).
[Crossref]

Szerenos, K.

A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, and A. Kimel, “Ultrafast nonthermal photo-magnetic recording in a transparent medium,” Nature. 542, 71–74 (2017).
[Crossref] [PubMed]

Takada, N.

Tareki, A. M.

A. M. Tareki, W. Kim, J. Guo, and R. G. Lindquist, “Longitudinal stratified liquid crystal structures to enable practical spatial light modulators in the terahertz regime,” Proc. SPIE 9940, 994013 (2016).
[Crossref]

Wakunami, K.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Reports 4, 6177 (2014).
[Crossref]

Wojnowski, D.

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

Wu, S.

S. Wu, L.-H. Han, and S. Chen, “Three-dimensional selective growth of nanoparticles on a polymer microstructure,” Nanotechnology. 20, 285312 (2009).
[Crossref] [PubMed]

Wyrowski, F.

F. Wyrowski and O. Bryngdahl, “Iterative fourier-transform algorithm applied to computer holography,” JOSA A 5, 1058–1065 (1988).
[Crossref]

Yamamoto, K.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Reports 4, 6177 (2014).
[Crossref]

Yaras, F.

F. Yaras and L. Onural, “Color holographic reconstruction using multiple slms and led illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

Yoon, T.

T. Yoon, C.-S. Kim, K. Kim, and J.-R. Choi, “Emerging applications of digital micromirror devices in biophotonic fields,” Opt. & Laser Technol. 104, 17 – 25 (2018).
[Crossref]

Zaperty, W.

Zaremba, M.

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

Appl. Opt. (1)

J. Mod. Opt. (1)

V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58, 545–561 (2011).
[Crossref]

JOSA A (1)

F. Wyrowski and O. Bryngdahl, “Iterative fourier-transform algorithm applied to computer holography,” JOSA A 5, 1058–1065 (1988).
[Crossref]

Nanotechnology. (1)

S. Wu, L.-H. Han, and S. Chen, “Three-dimensional selective growth of nanoparticles on a polymer microstructure,” Nanotechnology. 20, 285312 (2009).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Nature. (2)

A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, and A. Kimel, “Ultrafast nonthermal photo-magnetic recording in a transparent medium,” Nature. 542, 71–74 (2017).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature. 424, 810–816 (2003).
[Crossref] [PubMed]

Opt. & Laser Technol. (1)

T. Yoon, C.-S. Kim, K. Kim, and J.-R. Choi, “Emerging applications of digital micromirror devices in biophotonic fields,” Opt. & Laser Technol. 104, 17 – 25 (2018).
[Crossref]

Opt. Commun. (5)

V. Lopez, A. González-Vega, A. Aguilar, J. Landgrave, and J. García-Márquez, “Non-uniform spatial response of the lcos spatial light modulator,” Opt. Commun. 366, 419–424 (2016).
[Crossref]

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309 – 314 (2015).
[Crossref]

I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, J. Suszek, M. Bieda, A. Kolodziejczyk, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

M. Sypek, “Light propagation in the fresnel region. new numerical approach,” Opt. Commun. 116, 43–48 (1995).
[Crossref]

N. A. Ochoa and Y. P. de León, “Super-resolution with an slm and two intensity images,” Opt. Commun. 416, 36–40 (2018).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (1)

Y. Calderón-Hermosillo, J. García-Márquez, R. Espinosa-Luna, N. A. Ochoa, V. López, A. Aguilar, E. Noé-Arias, and Y. Alayli, “Flicker in a twisted nematic spatial light modulator,” Opt. Lasers Eng. 51, 741–748 (2013).
[Crossref]

Opt. letters (1)

N. A. Ochoa and C. Pérez-Santos, “Super-resolution with complex masks using a phase-only lcd,” Opt. letters 38, 5389–5392 (2013).
[Crossref]

Optik (1)

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Photonics Lett. Pol. (4)

M. Makowski, I. Ducin, K. Kakarenko, A. Kowalczyk, M. Bieda, and J. Suszek, “Optimized computation method for real-time holographic formation of color images,” Photonics Lett. Pol. 6, 81–83 (2014).

S. B. Hasan and T. Kozacki, “Method for enhancing the resolution of holographic displays,” Photonics Lett. Pol. 1, 193–195 (2009).

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

K. Kakarenko, M. Zaremba, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, Utilization of the phase flicker of a lcos spatial light modulator for improved diffractive efficiency,” Photonics Lett. Pol. 2, 128–130(2010).

Proc. SPIE (3)

A. M. Tareki, W. Kim, J. Guo, and R. G. Lindquist, “Longitudinal stratified liquid crystal structures to enable practical spatial light modulators in the terahertz regime,” Proc. SPIE 9940, 994013 (2016).
[Crossref]

F. Yaras and L. Onural, “Color holographic reconstruction using multiple slms and led illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

S. Osten, S. Krüger, and A. Hermerschmidt, “New hdtv (1920x1080) phase-only slm,” Proc. SPIE 6487, 64870X (2007).
[Crossref]

Sci. Reports (1)

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Reports 4, 6177 (2014).
[Crossref]

Other (1)

J. Goodman, An Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Preparation of the synthetic aperture holograms. From the left: amplitude mask with positions of two SLMs, quadratic phase mask of a focusing lens, phase-only Fourier hologram, resulting field. The “x” symbol denotes complex multiplication of light fields.
Fig. 2
Fig. 2 Location and dimensions of active areas of light modulators.
Fig. 3
Fig. 3 Point Spread Function spots obtained for different values of Δ: a) theoretical cross-sections b) numerical simulations.
Fig. 4
Fig. 4 Modulation Transfer Functions for single SLM and SA-SLM with different gap width Δ.
Fig. 5
Fig. 5 Numerical projection of the USAF - 1951 test pattern in a case of Δ = 0.7A. The densest resolved groups are marked in white for x direction and in blue for y direction.
Fig. 6
Fig. 6 a) Modulators forming the synthetic aperture in the optical setup. Interferometric measurements b) without and c) with flatness correcting function.
Fig. 7
Fig. 7 Scheme of the optical setup.
Fig. 8
Fig. 8 Experimental results for singular SLMs and a coherent matrix of two SLMs: a) PSF cross-sections; b) PSF spots.
Fig. 9
Fig. 9 Experimental verification of isoplanarity: five PSF spots recorded in different locations at the image plane.
Fig. 10
Fig. 10 Cross-sections of experimentally obtained PSFs in different locations at the image plane.
Fig. 11
Fig. 11 Experimental projection of the USAF - 1951 test pattern. The densest resolved groups are marked in white for vertical direction and in blue for horizontal direction direction.
Fig. 12
Fig. 12 a) Matrix of four SLM modulators. b) The result of USAF-1951 test patern numerical reconstruction with the use of collective matrix of 4 SLM modulators.
Fig. 13
Fig. 13 Numerical projection of the Mandrill test pattern with 1-pixel black lines obtained from: a) single SLM; b) two SLMs and c) four SLMs.

Tables (3)

Tables Icon

Table 1 Resolution in the numerical projection of the USAF 1951 test pattern, recognized by four obervers. G-E denotes the number of the densest resolved group and element in vertical and horizontal directions.

Tables Icon

Table 2 Resolution in the experimental projection of the USAF 1951 test pattern.

Tables Icon

Table 3 Resolution in the numerical projection of the USAF 1951 test pattern on a collective matrix of 4 SLMs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( x , y ) = [ r e c t ( x A / 2 Δ / 2 A ) + r e c t ( x + A / 2 + Δ / 2 A ) ] r e c t ( y B ) .
( f x , f y ) = A B s i n c ( f x A ) s i n c ( f y B ) [ e i 2 π f x ( A + Δ 2 ) + e + i 2 π f x ( A + Δ 2 ) ] ,
f x = x λ z , f y = y λ z .
I ( f x , f y ) = 4 A 2 B 2 s i n c 2 ( f x A ) s i n c 2 ( f y B ) c o s 2 [ π f x ( A + Δ ) ] .
I ( f x ) = 4 A 2 B 2 s i n c 2 ( f x A ) c o s 2 [ π f x ( A + Δ ) ] .

Metrics