Abstract

A new method for non-mechanical laser beam splitting and steering is demonstrated. Two cascaded liquid crystal optical phased arrays (LC-OPAs) controllably modulate the amplitude and phase of an incident laser beam to realize the near-field wavefronts of multiple simultaneous beams with arbitrary directions. Diffraction between the two arrays is avoided by precise 4-f imaging from one LC-OPA to the other (array resolution 1×1920). In the method of cascaded amplitude and phase (CAP) devices, numerical simulation results show the characteristics of amplitude and phase modulation profiles, as well as the far-field intensity patterns. Both the numerical and experimental results clearly demonstrate the capabilities of fast multi-beam forming with high efficiency (>85%, 4 beams) and accuracy (deviation <90μrad).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Liquid crystal-optical phased arrays (LC-OPA)-based optical beam steering with microradian resolution enabled by double gratings

Siyi Qin, Chen Liu, Jinyao Wang, Kexin Chen, Jingquan Xu, Songnian Fu, Deming Liu, and Yanli Ran
Appl. Opt. 58(15) 4091-4098 (2019)

Optical multi-beam forming method based on a liquid crystal optical phased array

Feng Xiao and Lingjiang Kong
Appl. Opt. 56(36) 9854-9861 (2017)

2D broadband beamsteering with large-scale MEMS optical phased array

Youmin Wang, Guangya Zhou, Xiaosheng Zhang, Kyungmok Kwon, Pierre-A. Blanche, Nicholas Triesault, Kyoung-sik Yu, and Ming C. Wu
Optica 6(5) 557-562 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
    [Crossref]
  2. P. F. McManamon, “An overview of optical phased array technology and status,” Proc. SPIE 5947, 59470I (2005).
    [Crossref]
  3. S. Serati, H. Masterson, and A. Linnenberger, “Beam combining using a phased array of phased arrays (PAPA),” Aerospace Conference, Proc. IEEE 3, (2004).
    [Crossref]
  4. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
    [Crossref]
  5. Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
    [Crossref]
  6. X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
    [Crossref]
  7. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  8. D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
    [Crossref]
  9. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  10. G. C. Gilbreath, W. S. Rabinovich, and T. J. Meehan, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
    [Crossref]
  11. B. W. Yoo, M. Megens, T. Chan, T. Sun, W. Yang, C. J. Chang-Hasnain, D. A. Horsley, and M. C. Wu, “Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering,” Opt. Express 21(10), 12238–12248 (2013).
    [Crossref] [PubMed]
  12. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
    [Crossref] [PubMed]
  13. X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43(11), 2769–2774 (2004).
    [Crossref]
  14. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [Crossref] [PubMed]
  15. Y. H. Lin, M. Mahajan, D. Taber, B. Wen, and B. Winker, “Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications,” Proc. SPIE 5892, 58920C (2005).
    [Crossref]
  16. J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
    [Crossref]
  17. W. J. Miniscalco and S. A. Lane, “Optical space-time division multiple access,” J. Lightwave Technol. 30(11), 1771–1785 (2012).
    [Crossref]
  18. X. Xun, X. Chang, and R. Cohn, “System for demonstrating arbitrary multi-spot beam steering from spatial light modulators,” Opt. Express 12(2), 260–268 (2004).
    [Crossref] [PubMed]
  19. F. Xiao and L. Kong, “Optical multi-beam forming method based on a liquid crystal optical phased array,” Appl. Opt. 56(36), 9854–9861 (2017).
    [Crossref]
  20. L. Ge, M. Duelli, and R. Cohn, “Enumeration of illumination and scanning modes from real-time spatial light modulators,” Opt. Express 7(12), 403–416 (2000).
    [Crossref] [PubMed]
  21. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
    [Crossref] [PubMed]
  22. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27(4), 267–269 (2002).
    [Crossref] [PubMed]
  23. D. K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2014).

2018 (1)

X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
[Crossref]

2017 (1)

2014 (1)

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

2013 (2)

2012 (2)

J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
[Crossref]

W. J. Miniscalco and S. A. Lane, “Optical space-time division multiple access,” J. Lightwave Technol. 30(11), 1771–1785 (2012).
[Crossref]

2011 (3)

2009 (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

2007 (1)

2005 (2)

P. F. McManamon, “An overview of optical phased array technology and status,” Proc. SPIE 5947, 59470I (2005).
[Crossref]

Y. H. Lin, M. Mahajan, D. Taber, B. Wen, and B. Winker, “Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications,” Proc. SPIE 5892, 58920C (2005).
[Crossref]

2004 (2)

X. Xun, X. Chang, and R. Cohn, “System for demonstrating arbitrary multi-spot beam steering from spatial light modulators,” Opt. Express 12(2), 260–268 (2004).
[Crossref] [PubMed]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43(11), 2769–2774 (2004).
[Crossref]

2003 (1)

G. C. Gilbreath, W. S. Rabinovich, and T. J. Meehan, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

2002 (1)

2000 (1)

1996 (2)

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Anderson, J. E.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43(11), 2769–2774 (2004).
[Crossref]

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43(11), 2769–2774 (2004).
[Crossref]

Bovington, J. T.

Bowers, J. E.

Buck, J.

J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
[Crossref]

Chan, T.

Chang, X.

Chang-Hasnain, C. J.

Chen, R. T.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

Chu, D.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Cohn, R.

Coldren, L. A.

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Di Leonardo, R.

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

Doylend, J. K.

Duelli, M.

Eriksen, R. L.

Escuti, M.

J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
[Crossref]

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

Ge, L.

Gilbreath, G. C.

G. C. Gilbreath, W. S. Rabinovich, and T. J. Meehan, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Glückstad, J.

Heck, M. J. R.

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Horsley, D. A.

Hosseini, A.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Hosting, L.

J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
[Crossref]

Ianni, F.

Kim, J.

J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
[Crossref]

Kong, L.

Kwong, D.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

Lane, S. A.

Li, M.

X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
[Crossref]

Li, Y.

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Lin, Y. H.

Y. H. Lin, M. Mahajan, D. Taber, B. Wen, and B. Winker, “Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications,” Proc. SPIE 5892, 58920C (2005).
[Crossref]

Linnenberger, A.

S. Serati, H. Masterson, and A. Linnenberger, “Beam combining using a phased array of phased arrays (PAPA),” Aerospace Conference, Proc. IEEE 3, (2004).
[Crossref]

Mahajan, M.

Y. H. Lin, M. Mahajan, D. Taber, B. Wen, and B. Winker, “Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications,” Proc. SPIE 5892, 58920C (2005).
[Crossref]

Masterson, H.

J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
[Crossref]

S. Serati, H. Masterson, and A. Linnenberger, “Beam combining using a phased array of phased arrays (PAPA),” Aerospace Conference, Proc. IEEE 3, (2004).
[Crossref]

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

P. F. McManamon, “An overview of optical phased array technology and status,” Proc. SPIE 5947, 59470I (2005).
[Crossref]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Meehan, T. J.

G. C. Gilbreath, W. S. Rabinovich, and T. J. Meehan, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Megens, M.

Miniscalco, W. J.

Miranda, F.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43(11), 2769–2774 (2004).
[Crossref]

Miskiewicz, M.

J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
[Crossref]

Mogensen, P. C.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Peters, J. D.

Pouch, J.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43(11), 2769–2774 (2004).
[Crossref]

Qiu, Q.

X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
[Crossref]

Rabinovich, W. S.

G. C. Gilbreath, W. S. Rabinovich, and T. J. Meehan, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Resler, D. P.

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Ruocco, G.

Serati, R.

J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
[Crossref]

Serati, S.

J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
[Crossref]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

S. Serati, H. Masterson, and A. Linnenberger, “Beam combining using a phased array of phased arrays (PAPA),” Aerospace Conference, Proc. IEEE 3, (2004).
[Crossref]

Shang, J.

X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
[Crossref]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
[Crossref] [PubMed]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Sun, T.

Taber, D.

Y. H. Lin, M. Mahajan, D. Taber, B. Wen, and B. Winker, “Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications,” Proc. SPIE 5892, 58920C (2005).
[Crossref]

Tan, Q.

X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
[Crossref]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Wang, B.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43(11), 2769–2774 (2004).
[Crossref]

Wang, X.

X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
[Crossref]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43(11), 2769–2774 (2004).
[Crossref]

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Wen, B.

Y. H. Lin, M. Mahajan, D. Taber, B. Wen, and B. Winker, “Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications,” Proc. SPIE 5892, 58920C (2005).
[Crossref]

Winker, B.

Y. H. Lin, M. Mahajan, D. Taber, B. Wen, and B. Winker, “Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications,” Proc. SPIE 5892, 58920C (2005).
[Crossref]

Wu, L.

X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
[Crossref]

Wu, M. C.

Wu, S.

X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
[Crossref]

Wu, S. T.

Xiao, F.

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Xiong, C.

X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
[Crossref]

Xun, X.

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Yan, J.

Yang, W.

Yoo, B. W.

You, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Zhang, Y.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

Zhang, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

IEEE Trans. NanoTechnol. (1)

X. Wang, L. Wu, C. Xiong, M. Li, Q. Tan, J. Shang, S. Wu, and Q. Qiu, “Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array,” IEEE Trans. NanoTechnol. 17(1), 26–28 (2018).
[Crossref]

J. Lightwave Technol. (1)

Light Sci. Appl. (1)

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Eng. (2)

G. C. Gilbreath, W. S. Rabinovich, and T. J. Meehan, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43(11), 2769–2774 (2004).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Proc. IEEE (2)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Proc. SPIE (3)

P. F. McManamon, “An overview of optical phased array technology and status,” Proc. SPIE 5947, 59470I (2005).
[Crossref]

Y. H. Lin, M. Mahajan, D. Taber, B. Wen, and B. Winker, “Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications,” Proc. SPIE 5892, 58920C (2005).
[Crossref]

J. Buck, S. Serati, L. Hosting, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” Proc. SPIE 8395, 83950F (2012).
[Crossref]

Other (2)

D. K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2014).

S. Serati, H. Masterson, and A. Linnenberger, “Beam combining using a phased array of phased arrays (PAPA),” Aerospace Conference, Proc. IEEE 3, (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the CAP method to form multiple beams using two transmissive LC-OPAs and a 4-f imaging system. The 4-f imaging system consists of two identical achromatic lenses with a focal length of 300 mm.
Fig. 2
Fig. 2 Illustration of the structure of phase-only transmissive LC-OPA and the corresponding profile of phase modulation. The light is linearly polarized and incident normally on the LC-OPA, where the thickness of NLC layer is D, and the electrode period is d. The beam is deflected into the direction of θ s , wherein Δϕ is the phase shift between two adjacent electrodes.
Fig. 3
Fig. 3 Simulation results of optical intensity distributions when the system is configured to produce 3 beams at ( 0.1 , 0.15 , 0.2 ). (a) Incident laser source, a Gaussian beam with a wavelength of 632.8 nm and diameter of 10 mm. (b) Intensity distribution after amplitude-modulated by OPA-A. (c) Diffraction pattern in the far-field after CAP modulation by two LC-OPAs.
Fig. 4
Fig. 4 Simulation results of amplitude profiles, phase profiles, and normalized far-field intensity patterns when the steering angles of multiple beams are (a) ( 0.1 , 0.2 ); (b) ( 0.1 , 0.2 , 0.3 ); and (c) ( 0.1 , 0.2 , 0.3 , 0.4 ). The phase modulations are normalized to 2π. The dashed lines indicate amplitude and phase modulation have the same period.
Fig. 5
Fig. 5 Schematic diagram of the experimental setup for CAP multi-beam forming. BE, beam expander; P, polarizer; L, lens; SF, spatial filter, FL, Fourier lens, Vi, applied voltage.
Fig. 6
Fig. 6 Electrode patterns of two LC-OPAs during the calibration procedures of the CAP system. In (a) and (b) Electrode patterns of OPA-A and OPA-P are observed individually (pixel period N = 16). (c)-(f) Show results of non-overlapping and overlapping between LC-OPAs when the pixel-period N are 16 and 32.
Fig. 7
Fig. 7 Measured voltage-dependent phase retardation of the two LC-OPAs at 632.8 nm. The voltage is normalized to the Freedericksz transition voltage V th , and the phase is normalized to 2π. Insert image, schematic illustration of the custom-fabricated 1×1920 LC-OPA device, including the grating, driver ICs, I/O ports, and so on.
Fig. 8
Fig. 8 Experimental multi-beam forming beam patterns. (a) The original single-beam pattern with no voltage applied on the LC-OPAs; (b) Two-beam forming; (c) Three-beam forming and (d) Four-beam forming. (e) and (f) are the normalized intensities corresponding to the multi-beam forming cases marked in the orange boxes, respectively.
Fig. 9
Fig. 9 The relationship between the percentage of light and the number of beams. The cyan bars represent the percentage of zero-order, and the magenta bars represent the effective multiple beams. The corresponding steering angles are shown on the bars.

Tables (1)

Tables Icon

Table 1 Simulation parameters for the CAP method.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

sin θ s =Δϕ/( k 0 d),
ϕ(i)=rem[(i1) k 0 dsin θ s ,2π],
E=A(x,y)exp[ jΦ(x,y) ],
E far =δ(θ θ 1 )+δ(θ θ 2 )++δ(θ θ n ),
E far =δ( f x f x1 )+δ( f x f x2 )++δ( f x f xn ).
E near =exp(j k 0 sin θ 1 x)+exp(j k 0 sin θ 2 x)++exp(j k 0 sin θ n x),
A x (i)= 1 n n+2( ξ=1 n1 η=2 n cos( ϕ ξ (i) ϕ η (i)) ) ,  ξη,
Φ x (i)=arctan m=1 n sin ϕ m (i) m=1 n cos ϕ m (i) .
A x = 1 3 3 + 2 [ cos ( ϕ 1 ϕ 2 ) + cos ( ϕ 1 ϕ 3 ) + cos ( ϕ 2 ϕ 3 ) ] ,
Φ x = arc tan sin ϕ 1 + sin ϕ 2 + sin ϕ 3 cos ϕ 1 + cos ϕ 2 + cos ϕ 3 .

Metrics