Abstract

This work demonstrates a variable optical attenuator (VOA) using dynamic scattering mode (DSM) in ion-doped liquid crystals with negative dielectric anisotropy. The mechanism of attenuation comes from optical scattering, which is generated by the electrically induced instability of undulation of LC textures. Electric fields are applied to switch the initial transparent state of the designed VOA to scattering states, varying the transmittance. The electric field also changes the size of the scattering domain from the LC texture and causes the designed device to exhibit an ultra-broadband selective operation in a visible to mid-IR spectral range. Furthermore, the VOA can selectively block one visible or mid-IR wavelength of light while letting other light pass. Such a VOA has many superior optical switching properties, such as high on/off contrast, insensitivity to polarization, and spectral selectivity; therefore, it has the potential to be used in practical optical systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband optical switch based on liquid crystal dynamic scattering

M. W. Geis, P. J. Bos, V. Liberman, and M. Rothschild
Opt. Express 24(13) 13812-13823 (2016)

Multi-stable variable optical attenuator based on a liquid crystal gel-filled photonic crystal fiber

Chun-Hong Lee, Chih-Wei Wu, Chun-Wei Chen, Hung-Chang Jau, and Tsung-Hsien Lin
Appl. Opt. 53(22) E51-E55 (2014)

Extensible chip of optofluidic variable optical attenuator

J. Wan, F. L. Xue, L. X. Wu, Y. J. Fu, J. Hu, W. Zhang, and F. R. Hu
Opt. Express 24(9) 9683-9692 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
    [Crossref]
  2. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  3. C. G. Granqvist, “Electrochromics for smart windows: Oxide-based thin films and devices,” Thin Solid Films 564, 1–38 (2014).
    [Crossref]
  4. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
    [Crossref]
  5. A. L. Dyer, C. R. G. Grenier, and J. R. Reynolds, “A poly(3,4-alkylenedioxythiophene) electrochromic variable optical attenuator with near-infrared reflectivity tuned independently of the visible region,” Adv. Funct. Mater. 17(9), 1480–1486 (2007).
    [Crossref]
  6. E. Nicolescu, C. Mao, A. Fardad, and M. Escuti, “Polarization-insensitive variable optical attenuator and wavelength blocker using liquid crystal polarization gratings,” J. Lightwave Technol. 28(21), 3121–3127 (2010).
  7. H. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
    [Crossref] [PubMed]
  8. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, “Retro-axial VOA using parabolic mirror pair,” IEEE Photonics Technol. Lett. 19(9), 692–694 (2007).
    [Crossref]
  9. C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith 7(2), 021003 (2008).
    [Crossref]
  10. H. W. Ren, S. Xu, Y. F. Liu, and S. T. Wu, “Liquid-based infrared optical switch,” Appl. Phys. Lett. 101(4), 041104 (2012).
    [Crossref]
  11. T. H. Choi, J. W. Kim, and T. H. Yoon, “Fast in-plane switching of negative liquid crystals using crossed patterned electrodes,” Jpn. J. Appl. Phys. 53(8), 081701 (2014).
    [Crossref]
  12. H. Shim, H. K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).
  13. J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
    [Crossref]
  14. G. H. Lee, K. Y. Hwang, J. E. Jang, Y. W. Jin, S. Y. Lee, and J. E. Jung, “Characteristics of color optical shutter with dye-doped polymer network liquid crystal,” Opt. Lett. 36(5), 754–756 (2011).
    [Crossref] [PubMed]
  15. F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
    [Crossref]
  16. A. Moheghi, H. Nemati, Y. Li, Q. Li, and D. K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
    [Crossref]
  17. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
    [Crossref]
  18. M. W. Geis, P. J. Bos, V. Liberman, and M. Rothschild, “Broadband optical switch based on liquid crystal dynamic scattering,” Opt. Express 24(13), 13812–13823 (2016).
    [Crossref] [PubMed]
  19. S. V. Serak, U. Hrozhyk, J. Hwang, N. V. Tabiryan, D. Steeves, and B. R. Kimball, “High contrast switching of transmission due to electrohydrodynamic effect in stacked thin systems of liquid crystals,” Appl. Opt. 55(30), 8506–8512 (2016).
    [Crossref] [PubMed]
  20. E. A. Konshina and D. P. Shcherbinin, “Study of dynamic light scattering in nematic liquid crystal and its optical, electrical and switching characteristics,” Liq. Cryst. 45(2), 292–302 (2018).
    [Crossref]
  21. S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures in nematic liquid crystal MBBA,” Jpn. J. Appl. Phys. 14(11), 1653–1658 (1975).
    [Crossref]
  22. B. Guo, Y. Wang, C. Peng, H. Zhang, G. Luo, H. Le, C. Gmachl, D. Sivco, M. Peabody, and A. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
    [Crossref] [PubMed]
  23. V. A. Serebryakov, E. V. Boiko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers. Problems and prospects,” J. Opt. Technol. 77(1), 6–17 (2010).
    [Crossref]
  24. G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
    [Crossref] [PubMed]
  25. A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500(7462), 323–326 (2013).
    [Crossref] [PubMed]

2018 (1)

E. A. Konshina and D. P. Shcherbinin, “Study of dynamic light scattering in nematic liquid crystal and its optical, electrical and switching characteristics,” Liq. Cryst. 45(2), 292–302 (2018).
[Crossref]

2017 (1)

J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

2016 (4)

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D. K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

H. Shim, H. K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).

M. W. Geis, P. J. Bos, V. Liberman, and M. Rothschild, “Broadband optical switch based on liquid crystal dynamic scattering,” Opt. Express 24(13), 13812–13823 (2016).
[Crossref] [PubMed]

S. V. Serak, U. Hrozhyk, J. Hwang, N. V. Tabiryan, D. Steeves, and B. R. Kimball, “High contrast switching of transmission due to electrohydrodynamic effect in stacked thin systems of liquid crystals,” Appl. Opt. 55(30), 8506–8512 (2016).
[Crossref] [PubMed]

2014 (2)

T. H. Choi, J. W. Kim, and T. H. Yoon, “Fast in-plane switching of negative liquid crystals using crossed patterned electrodes,” Jpn. J. Appl. Phys. 53(8), 081701 (2014).
[Crossref]

C. G. Granqvist, “Electrochromics for smart windows: Oxide-based thin films and devices,” Thin Solid Films 564, 1–38 (2014).
[Crossref]

2013 (1)

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500(7462), 323–326 (2013).
[Crossref] [PubMed]

2012 (1)

H. W. Ren, S. Xu, Y. F. Liu, and S. T. Wu, “Liquid-based infrared optical switch,” Appl. Phys. Lett. 101(4), 041104 (2012).
[Crossref]

2011 (2)

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

G. H. Lee, K. Y. Hwang, J. E. Jang, Y. W. Jin, S. Y. Lee, and J. E. Jung, “Characteristics of color optical shutter with dye-doped polymer network liquid crystal,” Opt. Lett. 36(5), 754–756 (2011).
[Crossref] [PubMed]

2010 (4)

2008 (1)

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith 7(2), 021003 (2008).
[Crossref]

2007 (2)

A. L. Dyer, C. R. G. Grenier, and J. R. Reynolds, “A poly(3,4-alkylenedioxythiophene) electrochromic variable optical attenuator with near-infrared reflectivity tuned independently of the visible region,” Adv. Funct. Mater. 17(9), 1480–1486 (2007).
[Crossref]

Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, “Retro-axial VOA using parabolic mirror pair,” IEEE Photonics Technol. Lett. 19(9), 692–694 (2007).
[Crossref]

2006 (1)

2004 (3)

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[Crossref]

B. Guo, Y. Wang, C. Peng, H. Zhang, G. Luo, H. Le, C. Gmachl, D. Sivco, M. Peabody, and A. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
[Crossref] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

1975 (1)

S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures in nematic liquid crystal MBBA,” Jpn. J. Appl. Phys. 14(11), 1653–1658 (1975).
[Crossref]

Allabergenov, B.

H. Shim, H. K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).

Anders, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Baetens, R.

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Boiko, E. V.

Bos, P. J.

Buonsanti, R.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Cai, H.

Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, “Retro-axial VOA using parabolic mirror pair,” IEEE Photonics Technol. Lett. 19(9), 692–694 (2007).
[Crossref]

Cho, A.

Choi, B.

H. Shim, H. K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).

Choi, T. H.

T. H. Choi, J. W. Kim, and T. H. Yoon, “Fast in-plane switching of negative liquid crystals using crossed patterned electrodes,” Jpn. J. Appl. Phys. 53(8), 081701 (2014).
[Crossref]

Du, F.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[Crossref]

Dyer, A. L.

A. L. Dyer, C. R. G. Grenier, and J. R. Reynolds, “A poly(3,4-alkylenedioxythiophene) electrochromic variable optical attenuator with near-infrared reflectivity tuned independently of the visible region,” Adv. Funct. Mater. 17(9), 1480–1486 (2007).
[Crossref]

Escuti, M.

Fan, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Fardad, A.

Ford, J. E.

Garbovskiy, Y.

H. Shim, H. K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).

Garcia, G.

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500(7462), 323–326 (2013).
[Crossref] [PubMed]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Gauza, S.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[Crossref]

Gazquez, J.

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500(7462), 323–326 (2013).
[Crossref] [PubMed]

Geis, M. W.

Glushchenko, A.

H. Shim, H. K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).

Gmachl, C.

Granqvist, C. G.

C. G. Granqvist, “Electrochromics for smart windows: Oxide-based thin films and devices,” Thin Solid Films 564, 1–38 (2014).
[Crossref]

Grenier, C. R. G.

A. L. Dyer, C. R. G. Grenier, and J. R. Reynolds, “A poly(3,4-alkylenedioxythiophene) electrochromic variable optical attenuator with near-infrared reflectivity tuned independently of the visible region,” Adv. Funct. Mater. 17(9), 1480–1486 (2007).
[Crossref]

Guo, B.

Gustavsen, A.

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Hirakawa, K.

S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures in nematic liquid crystal MBBA,” Jpn. J. Appl. Phys. 14(11), 1653–1658 (1975).
[Crossref]

Hrozhyk, U.

Hwang, J.

Hwang, K. Y.

Jang, J. E.

Jelle, B. P.

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Jin, Y. W.

Jung, J. E.

Kai, S.

S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures in nematic liquid crystal MBBA,” Jpn. J. Appl. Phys. 14(11), 1653–1658 (1975).
[Crossref]

Kim, J. W.

T. H. Choi, J. W. Kim, and T. H. Yoon, “Fast in-plane switching of negative liquid crystals using crossed patterned electrodes,” Jpn. J. Appl. Phys. 53(8), 081701 (2014).
[Crossref]

Kimball, B. R.

Konshina, E. A.

E. A. Konshina and D. P. Shcherbinin, “Study of dynamic light scattering in nematic liquid crystal and its optical, electrical and switching characteristics,” Liq. Cryst. 45(2), 292–302 (2018).
[Crossref]

Le, H.

Lee, C.

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith 7(2), 021003 (2008).
[Crossref]

Lee, G. H.

Lee, S. Y.

Li, Q.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D. K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Li, Y.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D. K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Liberman, V.

Lin, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Liu, Q.

Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, “Retro-axial VOA using parabolic mirror pair,” IEEE Photonics Technol. Lett. 19(9), 692–694 (2007).
[Crossref]

Liu, Y. F.

H. W. Ren, S. Xu, Y. F. Liu, and S. T. Wu, “Liquid-based infrared optical switch,” Appl. Phys. Lett. 101(4), 041104 (2012).
[Crossref]

Llordes, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Llordés, A.

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500(7462), 323–326 (2013).
[Crossref] [PubMed]

Lu, C.

Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, “Retro-axial VOA using parabolic mirror pair,” IEEE Photonics Technol. Lett. 19(9), 692–694 (2007).
[Crossref]

Lu, Y. Q.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[Crossref]

Luo, G.

Lyu, H. K.

H. Shim, H. K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).

Ma, D.

J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Mao, C.

Mendelsberg, R. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Milliron, D. J.

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500(7462), 323–326 (2013).
[Crossref] [PubMed]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Moheghi, A.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D. K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Munday, J. N.

J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Murray, J.

J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Nemati, H.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D. K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Nicolescu, E.

Peabody, M.

Peng, C.

Petrishchev, N. N.

Ren, H.

H. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
[Crossref] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Ren, H. W.

H. W. Ren, S. Xu, Y. F. Liu, and S. T. Wu, “Liquid-based infrared optical switch,” Appl. Phys. Lett. 101(4), 041104 (2012).
[Crossref]

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[Crossref]

Reynolds, J. R.

A. L. Dyer, C. R. G. Grenier, and J. R. Reynolds, “A poly(3,4-alkylenedioxythiophene) electrochromic variable optical attenuator with near-infrared reflectivity tuned independently of the visible region,” Adv. Funct. Mater. 17(9), 1480–1486 (2007).
[Crossref]

Richardson, T. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Rothschild, M.

Runnerstrom, E. L.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Serak, S. V.

Serebryakov, V. A.

Shcherbinin, D. P.

E. A. Konshina and D. P. Shcherbinin, “Study of dynamic light scattering in nematic liquid crystal and its optical, electrical and switching characteristics,” Liq. Cryst. 45(2), 292–302 (2018).
[Crossref]

Shim, H.

H. Shim, H. K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).

Sivco, D.

Solgaard, O.

Steeves, D.

Tabiryan, N. V.

Wang, Y.

Wu, M. C.

Wu, S. T.

H. W. Ren, S. Xu, Y. F. Liu, and S. T. Wu, “Liquid-based infrared optical switch,” Appl. Phys. Lett. 101(4), 041104 (2012).
[Crossref]

H. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
[Crossref] [PubMed]

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Xu, S.

H. W. Ren, S. Xu, Y. F. Liu, and S. T. Wu, “Liquid-based infrared optical switch,” Appl. Phys. Lett. 101(4), 041104 (2012).
[Crossref]

Yamaguchi, K.

S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures in nematic liquid crystal MBBA,” Jpn. J. Appl. Phys. 14(11), 1653–1658 (1975).
[Crossref]

Yan, A. V.

Yang, D. K.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D. K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Yeh, J. A.

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith 7(2), 021003 (2008).
[Crossref]

Yoon, T. H.

T. H. Choi, J. W. Kim, and T. H. Yoon, “Fast in-plane switching of negative liquid crystals using crossed patterned electrodes,” Jpn. J. Appl. Phys. 53(8), 081701 (2014).
[Crossref]

Yu, A. B.

Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, “Retro-axial VOA using parabolic mirror pair,” IEEE Photonics Technol. Lett. 19(9), 692–694 (2007).
[Crossref]

Zhang, H.

Zhang, X. M.

Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, “Retro-axial VOA using parabolic mirror pair,” IEEE Photonics Technol. Lett. 19(9), 692–694 (2007).
[Crossref]

ACS Photonics (1)

J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Adv. Funct. Mater. (1)

A. L. Dyer, C. R. G. Grenier, and J. R. Reynolds, “A poly(3,4-alkylenedioxythiophene) electrochromic variable optical attenuator with near-infrared reflectivity tuned independently of the visible region,” Adv. Funct. Mater. 17(9), 1480–1486 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. W. Ren, S. Xu, Y. F. Liu, and S. T. Wu, “Liquid-based infrared optical switch,” Appl. Phys. Lett. 101(4), 041104 (2012).
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, “Retro-axial VOA using parabolic mirror pair,” IEEE Photonics Technol. Lett. 19(9), 692–694 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Micro/Nanolith (1)

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith 7(2), 021003 (2008).
[Crossref]

J. Opt. Technol. (1)

Jpn. J. Appl. Phys. (3)

S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures in nematic liquid crystal MBBA,” Jpn. J. Appl. Phys. 14(11), 1653–1658 (1975).
[Crossref]

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[Crossref]

T. H. Choi, J. W. Kim, and T. H. Yoon, “Fast in-plane switching of negative liquid crystals using crossed patterned electrodes,” Jpn. J. Appl. Phys. 53(8), 081701 (2014).
[Crossref]

Liq. Cryst. (2)

H. Shim, H. K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).

E. A. Konshina and D. P. Shcherbinin, “Study of dynamic light scattering in nematic liquid crystal and its optical, electrical and switching characteristics,” Liq. Cryst. 45(2), 292–302 (2018).
[Crossref]

Nano Lett. (1)

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Nature (1)

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500(7462), 323–326 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D. K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Thin Solid Films (1)

C. G. Granqvist, “Electrochromics for smart windows: Oxide-based thin films and devices,” Thin Solid Films 564, 1–38 (2014).
[Crossref]

Other (1)

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Operation of proposed VOA based on DSM cell under the influence of an electric field.
Fig. 2
Fig. 2 Electric field-dependent transmittance of designed device (a) at λ = 632.8 nm and 3 μm, and (b) at λ = 3 μm with different direction of polarization. (c) Micro-graphs and (d) photographs of designed device at different fields.
Fig. 3
Fig. 3 Transmission spectra of proposed device at several bias fields in (a) visible/NIR regions and (b) mid-IR regions.
Fig. 4
Fig. 4 Spectral selectivity between visible and mid-IR regions in bias fields (a) between 0 and 1.15 V/μm and (b) between 1.54 and 3.08 V/μm.

Metrics