Abstract

An optofluidic diffusion sensor using laser-induced dielectrophoresis in a device with a sputtered a-Si:H layer is presented. Diffusion sensors enabling high-speed measurement have important potential uses as bio-sensors and for quantitative analysis of nano-sized products. The present sensor was developed for measurement in a few seconds by optic observations of the sample diffusion from transient grating formed by laser-induced dielectrophoresis. As a photoconductive layer for the proposed device, we used a sputtered a-Si:H film. The optical (refractive index and extinction coefficient), structural (Raman and IR spectroscopy), and optoelectronic properties of this film, as well as its applicability to the proposed device are characterized. Nano-sized beads were measured by the fabricated device, and its performance as a diffusion sensor was validated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis

Yen-Heng Lin, Kai-Siang Ho, Chin-Tien Yang, Jung-Hao Wang, and Chao-Sung Lai
Opt. Express 22(11) 13811-13824 (2014)

The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP)

S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss
Opt. Express 15(20) 12619-12626 (2007)

Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis

Shih-Mo Yang, Tung-Ming Yu, Hang-Ping Huang, Meng-Yen Ku, Long Hsu, and Cheng-Hsien Liu
Opt. Lett. 35(12) 1959-1961 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
    [Crossref] [PubMed]
  2. V. Filipe, A. Hawe, and W. Jiskoot, “Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates,” Pharm. Res. 27(5), 796–810 (2010).
    [Crossref] [PubMed]
  3. W. L. Hulse and R. T. Forbes, “A nanolitre method to determine the hydrodynamic radius of proteins and small molecules by Taylor dispersion analysis,” Int. J. Pharm. 411(1-2), 64–68 (2011).
    [Crossref] [PubMed]
  4. N. Kastelowitz and H. Yin, “Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes,” ChemBioChem 15(7), 923–928 (2014).
    [Crossref] [PubMed]
  5. N. N. Poulsen, M. E. Pedersen, J. Østergaard, N. J. Petersen, C. T. Nielsen, N. H. H. Heegaard, and H. Jensen, “Flow-induced dispersion analysis for probing anti-dsDNA antibody binding heterogeneity in systemic lupus erythematosus patients: toward a new approach for diagnosis and patient stratification,” Anal. Chem. 88(18), 9056–9061 (2016).
    [Crossref] [PubMed]
  6. K. Chattopadhyay, S. Saffarian, E. L. Elson, and C. Frieden, “Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 99(22), 14171–14176 (2002).
    [Crossref] [PubMed]
  7. T. Nada and M. Terazima, “A novel method for study of protein folding kinetics by monitoring diffusion coefficient in time domain,” Biophys. J. 85(3), 1876–1881 (2003).
    [Crossref] [PubMed]
  8. M. Kondoh, C. Shiraishi, P. Müller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima, “Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome,” J. Mol. Biol. 413(1), 128–137 (2011).
    [Crossref] [PubMed]
  9. R. J. Ellis and T. J. T. Pinheiro, “Medicine: danger-misfolding proteins,” Nature 416(6880), 483–484 (2002).
    [Crossref] [PubMed]
  10. K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
    [Crossref] [PubMed]
  11. N. Kanzaki, T. Q. P. Uyeda, and K. Onuma, “Intermolecular interaction of actin revealed by a dynamic light scattering technique,” J. Phys. Chem. B 110(6), 2881–2887 (2006).
    [Crossref] [PubMed]
  12. R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
    [Crossref] [PubMed]
  13. J. F. Torres, A. Komiya, D. Henry, and S. Maruyama, “Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions,” J. Chem. Phys. 139(7), 074203 (2013).
    [Crossref] [PubMed]
  14. A. Malloy and B. Carr, “Nanoparticle tracking analysis - the Halo ™ system,” Part. Part. Syst. Charact. 23(2), 197–204 (2006).
    [Crossref]
  15. T. Oka, K. Itani, Y. Taguchi, and Y. Nagasaka, “Development of interferometric excitation device for micro optical diffusion sensor using laser-induced dielectrophoresis,” J. Microelectromech. Syst. 21(2), 324–330 (2012).
    [Crossref]
  16. Y. Matoba, Y. Taguchi, and Y. Nagasaka, “Micro optical diffusion sensor using a comb-driven micro Fresnel mirror,” Opt. Express 23(1), 477–483 (2015).
    [Crossref] [PubMed]
  17. Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Decay time control of mass diffusion in a transient grating using a fringe-tunable electrothermal Fresnel mirror,” J Therm. Sci. Technol. 12(2), 17–301 (2017).
    [Crossref]
  18. Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Fringe-tunable electrothermal Fresnel mirror for use in compact and high-speed diffusion sensor,” Opt. Express 25(2), 758–767 (2017).
    [Crossref] [PubMed]
  19. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [Crossref] [PubMed]
  20. A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
    [Crossref]
  21. M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
    [Crossref] [PubMed]
  22. J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
    [Crossref] [PubMed]
  23. P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst. 17(3), 525–531 (2008).
    [Crossref]
  24. W. Wang, Y.-H. Lin, R.-S. Guan, T.-C. Wen, T.-F. Guo, and G.-B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles,” Opt. Express 17(20), 17603–17613 (2009).
    [Crossref] [PubMed]
  25. S.-M. Yang, T.-M. Yu, H.-P. Huang, M.-Y. Ku, L. Hsu, and C.-H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Opt. Lett. 35(12), 1959–1961 (2010).
    [Crossref] [PubMed]
  26. H. Y. Hsu, A. T. Ohta, P.-Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab Chip 10(2), 165–172 (2010).
    [Crossref] [PubMed]
  27. W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G.-B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics,” Sens. Actuator A 193, 103–111 (2013).
    [Crossref]
  28. H.-W. Wu, Y.-S. Huang, H.-Y. Lee, W.-H. Tsai, K.-Y. Chen, and L.-Y. Jian, “High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques,” Biomed. Microdevices 18(5), 79 (2016).
    [Crossref] [PubMed]
  29. T. D. Moustakas, D. A. Anderson, and W. Paul, “Preparation of highly photoconductive amorphous silicon by RF sputtering,” Solid State Commun. 23(3), 155–158 (1977).
    [Crossref]
  30. T. Ishidate, K. Inoue, K. Tsuji, and S. Minomura, “Raman scattering in hydrogenated amorphous silicon under high pressure,” Solid State Commun. 42(3), 197–200 (1982).
    [Crossref]
  31. H. Touir, K. Zellama, and J.-F. Morhange, “Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities,” Phys. Rev. B 59(15), 10076–10083 (1999).
    [Crossref]
  32. J. E. Gerbi, P. M. Voyles, M. M. J. Treacy, J. M. Gibson, and J. R. Abelson, “Increasing medium-range order in amorphous silicon with low-energy ion bombardment,” Appl. Phys. Lett. 82(21), 3665–3667 (2003).
    [Crossref]
  33. D. Girginoudi, C. Tsiarapas, and N. Georgoulas, “Properties of a-Si:H films deposited by RF magnetron sputtering at 95 °C,” Appl. Surf. Sci. 257(9), 3898–3903 (2011).
    [Crossref]
  34. T. Zhou, Y. Zuo, K. Qiu, J. Zheng, and Q. Wang, “Influence of hydrogen on the properties of titanium doped hydrogenated amorphous silicon prepared by sputtering,” Vacuum 125, 93–97 (2016).
    [Crossref]
  35. A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “AC electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).
  36. T. B. Jones, Electromechanics of particles (Cambridge University 1995).
  37. K. Khoshmanesh, C. Zhang, S. Nahavandi, F. J. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, “Size based separation of microparticles using a dielectrophoretic activated system,” J. Appl. Phys. 108(3), 034904 (2010).
    [Crossref]
  38. M. Niwa, Y. Ohta, and Y. Nagasaka, “Mass diffusion coefficients of cellulose acetate butyrate in methyl ethyl ketone solutions at temperatures between (293 and 323) K and mass fractions from 0.05 to 0.60 using the Soret forced Rayleigh scattering method,” J. Chem. Eng. Data 54(9), 2708–2714 (2009).
    [Crossref]
  39. D. V. Tsu, B. S. Chao, S. R. Ovshinsky, S. Guha, and J. Yang, “Effect of hydrogen dilution on the structure of amorphous silicon alloys,” Appl. Phys. Lett. 71(10), 1317–1319 (1997).
    [Crossref]
  40. R. Hölzel, N. Calander, Z. Chiragwandi, M. Willander, and F. F. Bier, “Trapping single molecules by dielectrophoresis,” Phys. Rev. Lett. 95(12), 128102 (2005).
    [Crossref] [PubMed]

2017 (2)

Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Decay time control of mass diffusion in a transient grating using a fringe-tunable electrothermal Fresnel mirror,” J Therm. Sci. Technol. 12(2), 17–301 (2017).
[Crossref]

Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Fringe-tunable electrothermal Fresnel mirror for use in compact and high-speed diffusion sensor,” Opt. Express 25(2), 758–767 (2017).
[Crossref] [PubMed]

2016 (3)

H.-W. Wu, Y.-S. Huang, H.-Y. Lee, W.-H. Tsai, K.-Y. Chen, and L.-Y. Jian, “High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques,” Biomed. Microdevices 18(5), 79 (2016).
[Crossref] [PubMed]

N. N. Poulsen, M. E. Pedersen, J. Østergaard, N. J. Petersen, C. T. Nielsen, N. H. H. Heegaard, and H. Jensen, “Flow-induced dispersion analysis for probing anti-dsDNA antibody binding heterogeneity in systemic lupus erythematosus patients: toward a new approach for diagnosis and patient stratification,” Anal. Chem. 88(18), 9056–9061 (2016).
[Crossref] [PubMed]

T. Zhou, Y. Zuo, K. Qiu, J. Zheng, and Q. Wang, “Influence of hydrogen on the properties of titanium doped hydrogenated amorphous silicon prepared by sputtering,” Vacuum 125, 93–97 (2016).
[Crossref]

2015 (1)

2014 (2)

K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
[Crossref] [PubMed]

N. Kastelowitz and H. Yin, “Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes,” ChemBioChem 15(7), 923–928 (2014).
[Crossref] [PubMed]

2013 (2)

J. F. Torres, A. Komiya, D. Henry, and S. Maruyama, “Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions,” J. Chem. Phys. 139(7), 074203 (2013).
[Crossref] [PubMed]

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G.-B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics,” Sens. Actuator A 193, 103–111 (2013).
[Crossref]

2012 (1)

T. Oka, K. Itani, Y. Taguchi, and Y. Nagasaka, “Development of interferometric excitation device for micro optical diffusion sensor using laser-induced dielectrophoresis,” J. Microelectromech. Syst. 21(2), 324–330 (2012).
[Crossref]

2011 (3)

W. L. Hulse and R. T. Forbes, “A nanolitre method to determine the hydrodynamic radius of proteins and small molecules by Taylor dispersion analysis,” Int. J. Pharm. 411(1-2), 64–68 (2011).
[Crossref] [PubMed]

M. Kondoh, C. Shiraishi, P. Müller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima, “Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome,” J. Mol. Biol. 413(1), 128–137 (2011).
[Crossref] [PubMed]

D. Girginoudi, C. Tsiarapas, and N. Georgoulas, “Properties of a-Si:H films deposited by RF magnetron sputtering at 95 °C,” Appl. Surf. Sci. 257(9), 3898–3903 (2011).
[Crossref]

2010 (4)

S.-M. Yang, T.-M. Yu, H.-P. Huang, M.-Y. Ku, L. Hsu, and C.-H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Opt. Lett. 35(12), 1959–1961 (2010).
[Crossref] [PubMed]

H. Y. Hsu, A. T. Ohta, P.-Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab Chip 10(2), 165–172 (2010).
[Crossref] [PubMed]

V. Filipe, A. Hawe, and W. Jiskoot, “Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates,” Pharm. Res. 27(5), 796–810 (2010).
[Crossref] [PubMed]

K. Khoshmanesh, C. Zhang, S. Nahavandi, F. J. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, “Size based separation of microparticles using a dielectrophoretic activated system,” J. Appl. Phys. 108(3), 034904 (2010).
[Crossref]

2009 (4)

M. Niwa, Y. Ohta, and Y. Nagasaka, “Mass diffusion coefficients of cellulose acetate butyrate in methyl ethyl ketone solutions at temperatures between (293 and 323) K and mass fractions from 0.05 to 0.60 using the Soret forced Rayleigh scattering method,” J. Chem. Eng. Data 54(9), 2708–2714 (2009).
[Crossref]

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
[Crossref] [PubMed]

W. Wang, Y.-H. Lin, R.-S. Guan, T.-C. Wen, T.-F. Guo, and G.-B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles,” Opt. Express 17(20), 17603–17613 (2009).
[Crossref] [PubMed]

2008 (2)

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[Crossref] [PubMed]

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst. 17(3), 525–531 (2008).
[Crossref]

2007 (2)

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

2006 (2)

N. Kanzaki, T. Q. P. Uyeda, and K. Onuma, “Intermolecular interaction of actin revealed by a dynamic light scattering technique,” J. Phys. Chem. B 110(6), 2881–2887 (2006).
[Crossref] [PubMed]

A. Malloy and B. Carr, “Nanoparticle tracking analysis - the Halo ™ system,” Part. Part. Syst. Charact. 23(2), 197–204 (2006).
[Crossref]

2005 (2)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

R. Hölzel, N. Calander, Z. Chiragwandi, M. Willander, and F. F. Bier, “Trapping single molecules by dielectrophoresis,” Phys. Rev. Lett. 95(12), 128102 (2005).
[Crossref] [PubMed]

2003 (2)

J. E. Gerbi, P. M. Voyles, M. M. J. Treacy, J. M. Gibson, and J. R. Abelson, “Increasing medium-range order in amorphous silicon with low-energy ion bombardment,” Appl. Phys. Lett. 82(21), 3665–3667 (2003).
[Crossref]

T. Nada and M. Terazima, “A novel method for study of protein folding kinetics by monitoring diffusion coefficient in time domain,” Biophys. J. 85(3), 1876–1881 (2003).
[Crossref] [PubMed]

2002 (2)

R. J. Ellis and T. J. T. Pinheiro, “Medicine: danger-misfolding proteins,” Nature 416(6880), 483–484 (2002).
[Crossref] [PubMed]

K. Chattopadhyay, S. Saffarian, E. L. Elson, and C. Frieden, “Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 99(22), 14171–14176 (2002).
[Crossref] [PubMed]

1999 (1)

H. Touir, K. Zellama, and J.-F. Morhange, “Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities,” Phys. Rev. B 59(15), 10076–10083 (1999).
[Crossref]

1998 (1)

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “AC electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).

1997 (1)

D. V. Tsu, B. S. Chao, S. R. Ovshinsky, S. Guha, and J. Yang, “Effect of hydrogen dilution on the structure of amorphous silicon alloys,” Appl. Phys. Lett. 71(10), 1317–1319 (1997).
[Crossref]

1982 (1)

T. Ishidate, K. Inoue, K. Tsuji, and S. Minomura, “Raman scattering in hydrogenated amorphous silicon under high pressure,” Solid State Commun. 42(3), 197–200 (1982).
[Crossref]

1977 (1)

T. D. Moustakas, D. A. Anderson, and W. Paul, “Preparation of highly photoconductive amorphous silicon by RF sputtering,” Solid State Commun. 23(3), 155–158 (1977).
[Crossref]

Abelson, J. R.

J. E. Gerbi, P. M. Voyles, M. M. J. Treacy, J. M. Gibson, and J. R. Abelson, “Increasing medium-range order in amorphous silicon with low-energy ion bombardment,” Appl. Phys. Lett. 82(21), 3665–3667 (2003).
[Crossref]

Ahmad, M.

M. Kondoh, C. Shiraishi, P. Müller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima, “Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome,” J. Mol. Biol. 413(1), 128–137 (2011).
[Crossref] [PubMed]

Anderson, D. A.

T. D. Moustakas, D. A. Anderson, and W. Paul, “Preparation of highly photoconductive amorphous silicon by RF sputtering,” Solid State Commun. 23(3), 155–158 (1977).
[Crossref]

Baalousha, M. A.

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
[Crossref] [PubMed]

Baratchi, S.

K. Khoshmanesh, C. Zhang, S. Nahavandi, F. J. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, “Size based separation of microparticles using a dielectrophoretic activated system,” J. Appl. Phys. 108(3), 034904 (2010).
[Crossref]

Bhardwaj, U.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Bier, F. F.

R. Hölzel, N. Calander, Z. Chiragwandi, M. Willander, and F. F. Bier, “Trapping single molecules by dielectrophoresis,” Phys. Rev. Lett. 95(12), 128102 (2005).
[Crossref] [PubMed]

Brandt, M. S.

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

Calander, N.

R. Hölzel, N. Calander, Z. Chiragwandi, M. Willander, and F. F. Bier, “Trapping single molecules by dielectrophoresis,” Phys. Rev. Lett. 95(12), 128102 (2005).
[Crossref] [PubMed]

Carpenter, J. F.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Carr, B.

A. Malloy and B. Carr, “Nanoparticle tracking analysis - the Halo ™ system,” Part. Part. Syst. Charact. 23(2), 197–204 (2006).
[Crossref]

Castellanos, A.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “AC electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).

Chao, B. S.

D. V. Tsu, B. S. Chao, S. R. Ovshinsky, S. Guha, and J. Yang, “Effect of hydrogen dilution on the structure of amorphous silicon alloys,” Appl. Phys. Lett. 71(10), 1317–1319 (1997).
[Crossref]

Chattopadhyay, K.

K. Chattopadhyay, S. Saffarian, E. L. Elson, and C. Frieden, “Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 99(22), 14171–14176 (2002).
[Crossref] [PubMed]

Chen, K.-Y.

H.-W. Wu, Y.-S. Huang, H.-Y. Lee, W.-H. Tsai, K.-Y. Chen, and L.-Y. Jian, “High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques,” Biomed. Microdevices 18(5), 79 (2016).
[Crossref] [PubMed]

Cherney, B.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Chiou, P.-Y.

H. Y. Hsu, A. T. Ohta, P.-Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab Chip 10(2), 165–172 (2010).
[Crossref] [PubMed]

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst. 17(3), 525–531 (2008).
[Crossref]

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Chiragwandi, Z.

R. Hölzel, N. Calander, Z. Chiragwandi, M. Willander, and F. F. Bier, “Trapping single molecules by dielectrophoresis,” Phys. Rev. Lett. 95(12), 128102 (2005).
[Crossref] [PubMed]

Churchill, M. J.

K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
[Crossref] [PubMed]

Clouse, K. A.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Crommelin, D. J. A.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Domingos, R. F.

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
[Crossref] [PubMed]

Dong, Z.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G.-B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics,” Sens. Actuator A 193, 103–111 (2013).
[Crossref]

Ellis, R. J.

R. J. Ellis and T. J. T. Pinheiro, “Medicine: danger-misfolding proteins,” Nature 416(6880), 483–484 (2002).
[Crossref] [PubMed]

Elson, E. L.

K. Chattopadhyay, S. Saffarian, E. L. Elson, and C. Frieden, “Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 99(22), 14171–14176 (2002).
[Crossref] [PubMed]

Fan, Y.-X.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Filipe, V.

V. Filipe, A. Hawe, and W. Jiskoot, “Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates,” Pharm. Res. 27(5), 796–810 (2010).
[Crossref] [PubMed]

Forbes, R. T.

W. L. Hulse and R. T. Forbes, “A nanolitre method to determine the hydrodynamic radius of proteins and small molecules by Taylor dispersion analysis,” Int. J. Pharm. 411(1-2), 64–68 (2011).
[Crossref] [PubMed]

Frieden, C.

K. Chattopadhyay, S. Saffarian, E. L. Elson, and C. Frieden, “Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 99(22), 14171–14176 (2002).
[Crossref] [PubMed]

Georgoulas, N.

D. Girginoudi, C. Tsiarapas, and N. Georgoulas, “Properties of a-Si:H films deposited by RF magnetron sputtering at 95 °C,” Appl. Surf. Sci. 257(9), 3898–3903 (2011).
[Crossref]

Gerbi, J. E.

J. E. Gerbi, P. M. Voyles, M. M. J. Treacy, J. M. Gibson, and J. R. Abelson, “Increasing medium-range order in amorphous silicon with low-energy ion bombardment,” Appl. Phys. Lett. 82(21), 3665–3667 (2003).
[Crossref]

Getzoff, E. D.

M. Kondoh, C. Shiraishi, P. Müller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima, “Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome,” J. Mol. Biol. 413(1), 128–137 (2011).
[Crossref] [PubMed]

Gibson, J. M.

J. E. Gerbi, P. M. Voyles, M. M. J. Treacy, J. M. Gibson, and J. R. Abelson, “Increasing medium-range order in amorphous silicon with low-energy ion bombardment,” Appl. Phys. Lett. 82(21), 3665–3667 (2003).
[Crossref]

Girginoudi, D.

D. Girginoudi, C. Tsiarapas, and N. Georgoulas, “Properties of a-Si:H films deposited by RF magnetron sputtering at 95 °C,” Appl. Surf. Sci. 257(9), 3898–3903 (2011).
[Crossref]

Green, N. G.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “AC electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).

Guan, R.-S.

Guha, S.

D. V. Tsu, B. S. Chao, S. R. Ovshinsky, S. Guha, and J. Yang, “Effect of hydrogen dilution on the structure of amorphous silicon alloys,” Appl. Phys. Lett. 71(10), 1317–1319 (1997).
[Crossref]

Guo, T.-F.

Han, T. H.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Hawe, A.

V. Filipe, A. Hawe, and W. Jiskoot, “Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates,” Pharm. Res. 27(5), 796–810 (2010).
[Crossref] [PubMed]

Heegaard, N. H. H.

N. N. Poulsen, M. E. Pedersen, J. Østergaard, N. J. Petersen, C. T. Nielsen, N. H. H. Heegaard, and H. Jensen, “Flow-induced dispersion analysis for probing anti-dsDNA antibody binding heterogeneity in systemic lupus erythematosus patients: toward a new approach for diagnosis and patient stratification,” Anal. Chem. 88(18), 9056–9061 (2016).
[Crossref] [PubMed]

Henry, D.

J. F. Torres, A. Komiya, D. Henry, and S. Maruyama, “Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions,” J. Chem. Phys. 139(7), 074203 (2013).
[Crossref] [PubMed]

Hitomi, K.

M. Kondoh, C. Shiraishi, P. Müller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima, “Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome,” J. Mol. Biol. 413(1), 128–137 (2011).
[Crossref] [PubMed]

Hoeb, M.

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

Hölzel, R.

R. Hölzel, N. Calander, Z. Chiragwandi, M. Willander, and F. F. Bier, “Trapping single molecules by dielectrophoresis,” Phys. Rev. Lett. 95(12), 128102 (2005).
[Crossref] [PubMed]

Hsu, H. Y.

H. Y. Hsu, A. T. Ohta, P.-Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab Chip 10(2), 165–172 (2010).
[Crossref] [PubMed]

Hsu, H.-Y.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[Crossref] [PubMed]

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst. 17(3), 525–531 (2008).
[Crossref]

Hsu, L.

Huang, H.-P.

Huang, Y.-S.

H.-W. Wu, Y.-S. Huang, H.-Y. Lee, W.-H. Tsai, K.-Y. Chen, and L.-Y. Jian, “High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques,” Biomed. Microdevices 18(5), 79 (2016).
[Crossref] [PubMed]

Hulse, W. L.

W. L. Hulse and R. T. Forbes, “A nanolitre method to determine the hydrodynamic radius of proteins and small molecules by Taylor dispersion analysis,” Int. J. Pharm. 411(1-2), 64–68 (2011).
[Crossref] [PubMed]

Inoue, K.

T. Ishidate, K. Inoue, K. Tsuji, and S. Minomura, “Raman scattering in hydrogenated amorphous silicon under high pressure,” Solid State Commun. 42(3), 197–200 (1982).
[Crossref]

Ishidate, T.

T. Ishidate, K. Inoue, K. Tsuji, and S. Minomura, “Raman scattering in hydrogenated amorphous silicon under high pressure,” Solid State Commun. 42(3), 197–200 (1982).
[Crossref]

Itani, K.

T. Oka, K. Itani, Y. Taguchi, and Y. Nagasaka, “Development of interferometric excitation device for micro optical diffusion sensor using laser-induced dielectrophoresis,” J. Microelectromech. Syst. 21(2), 324–330 (2012).
[Crossref]

Jamshidi, A.

H. Y. Hsu, A. T. Ohta, P.-Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab Chip 10(2), 165–172 (2010).
[Crossref] [PubMed]

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst. 17(3), 525–531 (2008).
[Crossref]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[Crossref] [PubMed]

Jensen, H.

N. N. Poulsen, M. E. Pedersen, J. Østergaard, N. J. Petersen, C. T. Nielsen, N. H. H. Heegaard, and H. Jensen, “Flow-induced dispersion analysis for probing anti-dsDNA antibody binding heterogeneity in systemic lupus erythematosus patients: toward a new approach for diagnosis and patient stratification,” Anal. Chem. 88(18), 9056–9061 (2016).
[Crossref] [PubMed]

Jian, L.-Y.

H.-W. Wu, Y.-S. Huang, H.-Y. Lee, W.-H. Tsai, K.-Y. Chen, and L.-Y. Jian, “High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques,” Biomed. Microdevices 18(5), 79 (2016).
[Crossref] [PubMed]

Jiskoot, W.

V. Filipe, A. Hawe, and W. Jiskoot, “Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates,” Pharm. Res. 27(5), 796–810 (2010).
[Crossref] [PubMed]

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Ju-Nam, Y.

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
[Crossref] [PubMed]

Kalantar-zadeh, K.

K. Khoshmanesh, C. Zhang, S. Nahavandi, F. J. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, “Size based separation of microparticles using a dielectrophoretic activated system,” J. Appl. Phys. 108(3), 034904 (2010).
[Crossref]

Kanzaki, N.

N. Kanzaki, T. Q. P. Uyeda, and K. Onuma, “Intermolecular interaction of actin revealed by a dynamic light scattering technique,” J. Phys. Chem. B 110(6), 2881–2887 (2006).
[Crossref] [PubMed]

Kastelowitz, N.

N. Kastelowitz and H. Yin, “Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes,” ChemBioChem 15(7), 923–928 (2014).
[Crossref] [PubMed]

Khoshmanesh, K.

K. Khoshmanesh, C. Zhang, S. Nahavandi, F. J. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, “Size based separation of microparticles using a dielectrophoretic activated system,” J. Appl. Phys. 108(3), 034904 (2010).
[Crossref]

Kirshner, S.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Kiuchi, Y.

Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Decay time control of mass diffusion in a transient grating using a fringe-tunable electrothermal Fresnel mirror,” J Therm. Sci. Technol. 12(2), 17–301 (2017).
[Crossref]

Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Fringe-tunable electrothermal Fresnel mirror for use in compact and high-speed diffusion sensor,” Opt. Express 25(2), 758–767 (2017).
[Crossref] [PubMed]

Klein, S.

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

Komiya, A.

J. F. Torres, A. Komiya, D. Henry, and S. Maruyama, “Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions,” J. Chem. Phys. 139(7), 074203 (2013).
[Crossref] [PubMed]

Kondoh, M.

M. Kondoh, C. Shiraishi, P. Müller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima, “Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome,” J. Mol. Biol. 413(1), 128–137 (2011).
[Crossref] [PubMed]

Kozlowski, S.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Ku, M.-Y.

Lead, J. R.

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
[Crossref] [PubMed]

Lee, G.-B.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G.-B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics,” Sens. Actuator A 193, 103–111 (2013).
[Crossref]

W. Wang, Y.-H. Lin, R.-S. Guan, T.-C. Wen, T.-F. Guo, and G.-B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles,” Opt. Express 17(20), 17603–17613 (2009).
[Crossref] [PubMed]

Lee, H.-Y.

H.-W. Wu, Y.-S. Huang, H.-Y. Lee, W.-H. Tsai, K.-Y. Chen, and L.-Y. Jian, “High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques,” Biomed. Microdevices 18(5), 79 (2016).
[Crossref] [PubMed]

Leppard, G. G.

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
[Crossref] [PubMed]

Li, W. J.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G.-B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics,” Sens. Actuator A 193, 103–111 (2013).
[Crossref]

Liang, W.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G.-B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics,” Sens. Actuator A 193, 103–111 (2013).
[Crossref]

Liao, J. C.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Lin, Y.-H.

Liu, C.-H.

Liu, L.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G.-B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics,” Sens. Actuator A 193, 103–111 (2013).
[Crossref]

Liu, N.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G.-B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics,” Sens. Actuator A 193, 103–111 (2013).
[Crossref]

Mai, J. D.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G.-B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics,” Sens. Actuator A 193, 103–111 (2013).
[Crossref]

Malloy, A.

A. Malloy and B. Carr, “Nanoparticle tracking analysis - the Halo ™ system,” Part. Part. Syst. Charact. 23(2), 197–204 (2006).
[Crossref]

Maruyama, S.

J. F. Torres, A. Komiya, D. Henry, and S. Maruyama, “Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions,” J. Chem. Phys. 139(7), 074203 (2013).
[Crossref] [PubMed]

Matoba, Y.

McCabe, E. R. B.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Meshul, C. K.

K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
[Crossref] [PubMed]

Middaugh, C. R.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Minomura, S.

T. Ishidate, K. Inoue, K. Tsuji, and S. Minomura, “Raman scattering in hydrogenated amorphous silicon under high pressure,” Solid State Commun. 42(3), 197–200 (1982).
[Crossref]

Mitchell, A.

K. Khoshmanesh, C. Zhang, S. Nahavandi, F. J. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, “Size based separation of microparticles using a dielectrophoretic activated system,” J. Appl. Phys. 108(3), 034904 (2010).
[Crossref]

Moore, C.

K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
[Crossref] [PubMed]

Morgan, H.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “AC electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).

Morhange, J.-F.

H. Touir, K. Zellama, and J.-F. Morhange, “Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities,” Phys. Rev. B 59(15), 10076–10083 (1999).
[Crossref]

Moustakas, T. D.

T. D. Moustakas, D. A. Anderson, and W. Paul, “Preparation of highly photoconductive amorphous silicon by RF sputtering,” Solid State Commun. 23(3), 155–158 (1977).
[Crossref]

Müller, P.

M. Kondoh, C. Shiraishi, P. Müller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima, “Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome,” J. Mol. Biol. 413(1), 128–137 (2011).
[Crossref] [PubMed]

Nada, T.

T. Nada and M. Terazima, “A novel method for study of protein folding kinetics by monitoring diffusion coefficient in time domain,” Biophys. J. 85(3), 1876–1881 (2003).
[Crossref] [PubMed]

Nagasaka, Y.

Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Decay time control of mass diffusion in a transient grating using a fringe-tunable electrothermal Fresnel mirror,” J Therm. Sci. Technol. 12(2), 17–301 (2017).
[Crossref]

Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Fringe-tunable electrothermal Fresnel mirror for use in compact and high-speed diffusion sensor,” Opt. Express 25(2), 758–767 (2017).
[Crossref] [PubMed]

Y. Matoba, Y. Taguchi, and Y. Nagasaka, “Micro optical diffusion sensor using a comb-driven micro Fresnel mirror,” Opt. Express 23(1), 477–483 (2015).
[Crossref] [PubMed]

T. Oka, K. Itani, Y. Taguchi, and Y. Nagasaka, “Development of interferometric excitation device for micro optical diffusion sensor using laser-induced dielectrophoresis,” J. Microelectromech. Syst. 21(2), 324–330 (2012).
[Crossref]

M. Niwa, Y. Ohta, and Y. Nagasaka, “Mass diffusion coefficients of cellulose acetate butyrate in methyl ethyl ketone solutions at temperatures between (293 and 323) K and mass fractions from 0.05 to 0.60 using the Soret forced Rayleigh scattering method,” J. Chem. Eng. Data 54(9), 2708–2714 (2009).
[Crossref]

Nahavandi, S.

K. Khoshmanesh, C. Zhang, S. Nahavandi, F. J. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, “Size based separation of microparticles using a dielectrophoretic activated system,” J. Appl. Phys. 108(3), 034904 (2010).
[Crossref]

Neale, S. L.

H. Y. Hsu, A. T. Ohta, P.-Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab Chip 10(2), 165–172 (2010).
[Crossref] [PubMed]

Nielsen, C. T.

N. N. Poulsen, M. E. Pedersen, J. Østergaard, N. J. Petersen, C. T. Nielsen, N. H. H. Heegaard, and H. Jensen, “Flow-induced dispersion analysis for probing anti-dsDNA antibody binding heterogeneity in systemic lupus erythematosus patients: toward a new approach for diagnosis and patient stratification,” Anal. Chem. 88(18), 9056–9061 (2016).
[Crossref] [PubMed]

Niwa, M.

M. Niwa, Y. Ohta, and Y. Nagasaka, “Mass diffusion coefficients of cellulose acetate butyrate in methyl ethyl ketone solutions at temperatures between (293 and 323) K and mass fractions from 0.05 to 0.60 using the Soret forced Rayleigh scattering method,” J. Chem. Eng. Data 54(9), 2708–2714 (2009).
[Crossref]

Ohta, A. T.

H. Y. Hsu, A. T. Ohta, P.-Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab Chip 10(2), 165–172 (2010).
[Crossref] [PubMed]

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst. 17(3), 525–531 (2008).
[Crossref]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[Crossref] [PubMed]

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Ohta, Y.

M. Niwa, Y. Ohta, and Y. Nagasaka, “Mass diffusion coefficients of cellulose acetate butyrate in methyl ethyl ketone solutions at temperatures between (293 and 323) K and mass fractions from 0.05 to 0.60 using the Soret forced Rayleigh scattering method,” J. Chem. Eng. Data 54(9), 2708–2714 (2009).
[Crossref]

Oka, T.

T. Oka, K. Itani, Y. Taguchi, and Y. Nagasaka, “Development of interferometric excitation device for micro optical diffusion sensor using laser-induced dielectrophoresis,” J. Microelectromech. Syst. 21(2), 324–330 (2012).
[Crossref]

Onuma, K.

N. Kanzaki, T. Q. P. Uyeda, and K. Onuma, “Intermolecular interaction of actin revealed by a dynamic light scattering technique,” J. Phys. Chem. B 110(6), 2881–2887 (2006).
[Crossref] [PubMed]

Osterberg, V. R.

K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
[Crossref] [PubMed]

Østergaard, J.

N. N. Poulsen, M. E. Pedersen, J. Østergaard, N. J. Petersen, C. T. Nielsen, N. H. H. Heegaard, and H. Jensen, “Flow-induced dispersion analysis for probing anti-dsDNA antibody binding heterogeneity in systemic lupus erythematosus patients: toward a new approach for diagnosis and patient stratification,” Anal. Chem. 88(18), 9056–9061 (2016).
[Crossref] [PubMed]

Ovshinsky, S. R.

D. V. Tsu, B. S. Chao, S. R. Ovshinsky, S. Guha, and J. Yang, “Effect of hydrogen dilution on the structure of amorphous silicon alloys,” Appl. Phys. Lett. 71(10), 1317–1319 (1997).
[Crossref]

Paul, W.

T. D. Moustakas, D. A. Anderson, and W. Paul, “Preparation of highly photoconductive amorphous silicon by RF sputtering,” Solid State Commun. 23(3), 155–158 (1977).
[Crossref]

Pedersen, M. E.

N. N. Poulsen, M. E. Pedersen, J. Østergaard, N. J. Petersen, C. T. Nielsen, N. H. H. Heegaard, and H. Jensen, “Flow-induced dispersion analysis for probing anti-dsDNA antibody binding heterogeneity in systemic lupus erythematosus patients: toward a new approach for diagnosis and patient stratification,” Anal. Chem. 88(18), 9056–9061 (2016).
[Crossref] [PubMed]

Petersen, N. J.

N. N. Poulsen, M. E. Pedersen, J. Østergaard, N. J. Petersen, C. T. Nielsen, N. H. H. Heegaard, and H. Jensen, “Flow-induced dispersion analysis for probing anti-dsDNA antibody binding heterogeneity in systemic lupus erythematosus patients: toward a new approach for diagnosis and patient stratification,” Anal. Chem. 88(18), 9056–9061 (2016).
[Crossref] [PubMed]

Pinheiro, T. J. T.

R. J. Ellis and T. J. T. Pinheiro, “Medicine: danger-misfolding proteins,” Nature 416(6880), 483–484 (2002).
[Crossref] [PubMed]

Pollock, E.

K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
[Crossref] [PubMed]

Poulsen, N. N.

N. N. Poulsen, M. E. Pedersen, J. Østergaard, N. J. Petersen, C. T. Nielsen, N. H. H. Heegaard, and H. Jensen, “Flow-induced dispersion analysis for probing anti-dsDNA antibody binding heterogeneity in systemic lupus erythematosus patients: toward a new approach for diagnosis and patient stratification,” Anal. Chem. 88(18), 9056–9061 (2016).
[Crossref] [PubMed]

Qiu, K.

T. Zhou, Y. Zuo, K. Qiu, J. Zheng, and Q. Wang, “Influence of hydrogen on the properties of titanium doped hydrogenated amorphous silicon prepared by sputtering,” Vacuum 125, 93–97 (2016).
[Crossref]

Rädler, J. O.

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

Ramos, A.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “AC electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).

Randolph, T. W.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Reid, M. M.

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
[Crossref] [PubMed]

Rosenberg, A.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Saffarian, S.

K. Chattopadhyay, S. Saffarian, E. L. Elson, and C. Frieden, “Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 99(22), 14171–14176 (2002).
[Crossref] [PubMed]

Shiraishi, C.

M. Kondoh, C. Shiraishi, P. Müller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima, “Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome,” J. Mol. Biol. 413(1), 128–137 (2011).
[Crossref] [PubMed]

Spinelli, K. J.

K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
[Crossref] [PubMed]

Stutzmann, M.

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

Sun, R.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Swann, P. G.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Taguchi, Y.

Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Decay time control of mass diffusion in a transient grating using a fringe-tunable electrothermal Fresnel mirror,” J Therm. Sci. Technol. 12(2), 17–301 (2017).
[Crossref]

Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Fringe-tunable electrothermal Fresnel mirror for use in compact and high-speed diffusion sensor,” Opt. Express 25(2), 758–767 (2017).
[Crossref] [PubMed]

Y. Matoba, Y. Taguchi, and Y. Nagasaka, “Micro optical diffusion sensor using a comb-driven micro Fresnel mirror,” Opt. Express 23(1), 477–483 (2015).
[Crossref] [PubMed]

T. Oka, K. Itani, Y. Taguchi, and Y. Nagasaka, “Development of interferometric excitation device for micro optical diffusion sensor using laser-induced dielectrophoresis,” J. Microelectromech. Syst. 21(2), 324–330 (2012).
[Crossref]

Taylor, J. K.

K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
[Crossref] [PubMed]

Terazima, M.

M. Kondoh, C. Shiraishi, P. Müller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima, “Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome,” J. Mol. Biol. 413(1), 128–137 (2011).
[Crossref] [PubMed]

T. Nada and M. Terazima, “A novel method for study of protein folding kinetics by monitoring diffusion coefficient in time domain,” Biophys. J. 85(3), 1876–1881 (2003).
[Crossref] [PubMed]

Torres, J. F.

J. F. Torres, A. Komiya, D. Henry, and S. Maruyama, “Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions,” J. Chem. Phys. 139(7), 074203 (2013).
[Crossref] [PubMed]

Touir, H.

H. Touir, K. Zellama, and J.-F. Morhange, “Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities,” Phys. Rev. B 59(15), 10076–10083 (1999).
[Crossref]

Tovar-Lopez, F. J.

K. Khoshmanesh, C. Zhang, S. Nahavandi, F. J. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, “Size based separation of microparticles using a dielectrophoretic activated system,” J. Appl. Phys. 108(3), 034904 (2010).
[Crossref]

Treacy, M. M. J.

J. E. Gerbi, P. M. Voyles, M. M. J. Treacy, J. M. Gibson, and J. R. Abelson, “Increasing medium-range order in amorphous silicon with low-energy ion bombardment,” Appl. Phys. Lett. 82(21), 3665–3667 (2003).
[Crossref]

Tsai, W.-H.

H.-W. Wu, Y.-S. Huang, H.-Y. Lee, W.-H. Tsai, K.-Y. Chen, and L.-Y. Jian, “High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques,” Biomed. Microdevices 18(5), 79 (2016).
[Crossref] [PubMed]

Tsiarapas, C.

D. Girginoudi, C. Tsiarapas, and N. Georgoulas, “Properties of a-Si:H films deposited by RF magnetron sputtering at 95 °C,” Appl. Surf. Sci. 257(9), 3898–3903 (2011).
[Crossref]

Tsu, D. V.

D. V. Tsu, B. S. Chao, S. R. Ovshinsky, S. Guha, and J. Yang, “Effect of hydrogen dilution on the structure of amorphous silicon alloys,” Appl. Phys. Lett. 71(10), 1317–1319 (1997).
[Crossref]

Tsuji, K.

T. Ishidate, K. Inoue, K. Tsuji, and S. Minomura, “Raman scattering in hydrogenated amorphous silicon under high pressure,” Solid State Commun. 42(3), 197–200 (1982).
[Crossref]

Tufenkji, N.

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
[Crossref] [PubMed]

Unni, V. K.

K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
[Crossref] [PubMed]

Uyeda, T. Q. P.

N. Kanzaki, T. Q. P. Uyeda, and K. Onuma, “Intermolecular interaction of actin revealed by a dynamic light scattering technique,” J. Phys. Chem. B 110(6), 2881–2887 (2006).
[Crossref] [PubMed]

Valley, J. K.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[Crossref] [PubMed]

Verthelyi, D.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Voyles, P. M.

J. E. Gerbi, P. M. Voyles, M. M. J. Treacy, J. M. Gibson, and J. R. Abelson, “Increasing medium-range order in amorphous silicon with low-energy ion bombardment,” Appl. Phys. Lett. 82(21), 3665–3667 (2003).
[Crossref]

Wang, Q.

T. Zhou, Y. Zuo, K. Qiu, J. Zheng, and Q. Wang, “Influence of hydrogen on the properties of titanium doped hydrogenated amorphous silicon prepared by sputtering,” Vacuum 125, 93–97 (2016).
[Crossref]

Wang, W.

Wen, T.-C.

Wilkinson, K. J.

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
[Crossref] [PubMed]

Willander, M.

R. Hölzel, N. Calander, Z. Chiragwandi, M. Willander, and F. F. Bier, “Trapping single molecules by dielectrophoresis,” Phys. Rev. Lett. 95(12), 128102 (2005).
[Crossref] [PubMed]

Winter, G.

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

Wu, H.-W.

H.-W. Wu, Y.-S. Huang, H.-Y. Lee, W.-H. Tsai, K.-Y. Chen, and L.-Y. Jian, “High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques,” Biomed. Microdevices 18(5), 79 (2016).
[Crossref] [PubMed]

Wu, M. C.

H. Y. Hsu, A. T. Ohta, P.-Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab Chip 10(2), 165–172 (2010).
[Crossref] [PubMed]

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst. 17(3), 525–531 (2008).
[Crossref]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[Crossref] [PubMed]

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Yang, J.

D. V. Tsu, B. S. Chao, S. R. Ovshinsky, S. Guha, and J. Yang, “Effect of hydrogen dilution on the structure of amorphous silicon alloys,” Appl. Phys. Lett. 71(10), 1317–1319 (1997).
[Crossref]

Yang, S.-M.

Yin, H.

N. Kastelowitz and H. Yin, “Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes,” ChemBioChem 15(7), 923–928 (2014).
[Crossref] [PubMed]

Yu, F.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Yu, T.-M.

Zellama, K.

H. Touir, K. Zellama, and J.-F. Morhange, “Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities,” Phys. Rev. B 59(15), 10076–10083 (1999).
[Crossref]

Zhang, C.

K. Khoshmanesh, C. Zhang, S. Nahavandi, F. J. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, “Size based separation of microparticles using a dielectrophoretic activated system,” J. Appl. Phys. 108(3), 034904 (2010).
[Crossref]

Zheng, J.

T. Zhou, Y. Zuo, K. Qiu, J. Zheng, and Q. Wang, “Influence of hydrogen on the properties of titanium doped hydrogenated amorphous silicon prepared by sputtering,” Vacuum 125, 93–97 (2016).
[Crossref]

Zhou, T.

T. Zhou, Y. Zuo, K. Qiu, J. Zheng, and Q. Wang, “Influence of hydrogen on the properties of titanium doped hydrogenated amorphous silicon prepared by sputtering,” Vacuum 125, 93–97 (2016).
[Crossref]

Zuo, Y.

T. Zhou, Y. Zuo, K. Qiu, J. Zheng, and Q. Wang, “Influence of hydrogen on the properties of titanium doped hydrogenated amorphous silicon prepared by sputtering,” Vacuum 125, 93–97 (2016).
[Crossref]

Anal. Chem. (1)

N. N. Poulsen, M. E. Pedersen, J. Østergaard, N. J. Petersen, C. T. Nielsen, N. H. H. Heegaard, and H. Jensen, “Flow-induced dispersion analysis for probing anti-dsDNA antibody binding heterogeneity in systemic lupus erythematosus patients: toward a new approach for diagnosis and patient stratification,” Anal. Chem. 88(18), 9056–9061 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

J. E. Gerbi, P. M. Voyles, M. M. J. Treacy, J. M. Gibson, and J. R. Abelson, “Increasing medium-range order in amorphous silicon with low-energy ion bombardment,” Appl. Phys. Lett. 82(21), 3665–3667 (2003).
[Crossref]

D. V. Tsu, B. S. Chao, S. R. Ovshinsky, S. Guha, and J. Yang, “Effect of hydrogen dilution on the structure of amorphous silicon alloys,” Appl. Phys. Lett. 71(10), 1317–1319 (1997).
[Crossref]

Appl. Surf. Sci. (1)

D. Girginoudi, C. Tsiarapas, and N. Georgoulas, “Properties of a-Si:H films deposited by RF magnetron sputtering at 95 °C,” Appl. Surf. Sci. 257(9), 3898–3903 (2011).
[Crossref]

Biomed. Microdevices (1)

H.-W. Wu, Y.-S. Huang, H.-Y. Lee, W.-H. Tsai, K.-Y. Chen, and L.-Y. Jian, “High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques,” Biomed. Microdevices 18(5), 79 (2016).
[Crossref] [PubMed]

Biophys. J. (2)

T. Nada and M. Terazima, “A novel method for study of protein folding kinetics by monitoring diffusion coefficient in time domain,” Biophys. J. 85(3), 1876–1881 (2003).
[Crossref] [PubMed]

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

ChemBioChem (1)

N. Kastelowitz and H. Yin, “Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes,” ChemBioChem 15(7), 923–928 (2014).
[Crossref] [PubMed]

Environ. Sci. Technol. (1)

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environ. Sci. Technol. 43(19), 7277–7284 (2009).
[Crossref] [PubMed]

Int. J. Pharm. (1)

W. L. Hulse and R. T. Forbes, “A nanolitre method to determine the hydrodynamic radius of proteins and small molecules by Taylor dispersion analysis,” Int. J. Pharm. 411(1-2), 64–68 (2011).
[Crossref] [PubMed]

J Therm. Sci. Technol. (1)

Y. Kiuchi, Y. Taguchi, and Y. Nagasaka, “Decay time control of mass diffusion in a transient grating using a fringe-tunable electrothermal Fresnel mirror,” J Therm. Sci. Technol. 12(2), 17–301 (2017).
[Crossref]

J. Appl. Phys. (1)

K. Khoshmanesh, C. Zhang, S. Nahavandi, F. J. Tovar-Lopez, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, “Size based separation of microparticles using a dielectrophoretic activated system,” J. Appl. Phys. 108(3), 034904 (2010).
[Crossref]

J. Chem. Eng. Data (1)

M. Niwa, Y. Ohta, and Y. Nagasaka, “Mass diffusion coefficients of cellulose acetate butyrate in methyl ethyl ketone solutions at temperatures between (293 and 323) K and mass fractions from 0.05 to 0.60 using the Soret forced Rayleigh scattering method,” J. Chem. Eng. Data 54(9), 2708–2714 (2009).
[Crossref]

J. Chem. Phys. (1)

J. F. Torres, A. Komiya, D. Henry, and S. Maruyama, “Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions,” J. Chem. Phys. 139(7), 074203 (2013).
[Crossref] [PubMed]

J. Microelectromech. Syst. (4)

T. Oka, K. Itani, Y. Taguchi, and Y. Nagasaka, “Development of interferometric excitation device for micro optical diffusion sensor using laser-induced dielectrophoresis,” J. Microelectromech. Syst. 21(2), 324–330 (2012).
[Crossref]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[Crossref] [PubMed]

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst. 17(3), 525–531 (2008).
[Crossref]

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

J. Mol. Biol. (1)

M. Kondoh, C. Shiraishi, P. Müller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima, “Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome,” J. Mol. Biol. 413(1), 128–137 (2011).
[Crossref] [PubMed]

J. Neurosci. (1)

K. J. Spinelli, J. K. Taylor, V. R. Osterberg, M. J. Churchill, E. Pollock, C. Moore, C. K. Meshul, and V. K. Unni, “Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease,” J. Neurosci. 34(6), 2037–2050 (2014).
[Crossref] [PubMed]

J. Pharm. Sci. (1)

J. F. Carpenter, T. W. Randolph, W. Jiskoot, D. J. A. Crommelin, C. R. Middaugh, G. Winter, Y.-X. Fan, S. Kirshner, D. Verthelyi, S. Kozlowski, K. A. Clouse, P. G. Swann, A. Rosenberg, and B. Cherney, “Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality,” J. Pharm. Sci. 98(4), 1201–1205 (2009).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

N. Kanzaki, T. Q. P. Uyeda, and K. Onuma, “Intermolecular interaction of actin revealed by a dynamic light scattering technique,” J. Phys. Chem. B 110(6), 2881–2887 (2006).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “AC electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).

Lab Chip (1)

H. Y. Hsu, A. T. Ohta, P.-Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab Chip 10(2), 165–172 (2010).
[Crossref] [PubMed]

Nature (2)

R. J. Ellis and T. J. T. Pinheiro, “Medicine: danger-misfolding proteins,” Nature 416(6880), 483–484 (2002).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Part. Part. Syst. Charact. (1)

A. Malloy and B. Carr, “Nanoparticle tracking analysis - the Halo ™ system,” Part. Part. Syst. Charact. 23(2), 197–204 (2006).
[Crossref]

Pharm. Res. (1)

V. Filipe, A. Hawe, and W. Jiskoot, “Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates,” Pharm. Res. 27(5), 796–810 (2010).
[Crossref] [PubMed]

Phys. Rev. B (1)

H. Touir, K. Zellama, and J.-F. Morhange, “Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities,” Phys. Rev. B 59(15), 10076–10083 (1999).
[Crossref]

Phys. Rev. Lett. (1)

R. Hölzel, N. Calander, Z. Chiragwandi, M. Willander, and F. F. Bier, “Trapping single molecules by dielectrophoresis,” Phys. Rev. Lett. 95(12), 128102 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Chattopadhyay, S. Saffarian, E. L. Elson, and C. Frieden, “Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 99(22), 14171–14176 (2002).
[Crossref] [PubMed]

Sens. Actuator A (1)

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G.-B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics,” Sens. Actuator A 193, 103–111 (2013).
[Crossref]

Solid State Commun. (2)

T. D. Moustakas, D. A. Anderson, and W. Paul, “Preparation of highly photoconductive amorphous silicon by RF sputtering,” Solid State Commun. 23(3), 155–158 (1977).
[Crossref]

T. Ishidate, K. Inoue, K. Tsuji, and S. Minomura, “Raman scattering in hydrogenated amorphous silicon under high pressure,” Solid State Commun. 42(3), 197–200 (1982).
[Crossref]

Vacuum (1)

T. Zhou, Y. Zuo, K. Qiu, J. Zheng, and Q. Wang, “Influence of hydrogen on the properties of titanium doped hydrogenated amorphous silicon prepared by sputtering,” Vacuum 125, 93–97 (2016).
[Crossref]

Other (1)

T. B. Jones, Electromechanics of particles (Cambridge University 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagrams of the device structure and measurement principle. (a) Enlarged view in the microchannel, (b-1) the formation of the lattice-shaped concentration distribution, and (b-2) the subsequent observation of the diffusion phenomena by the transient grating technique.
Fig. 2
Fig. 2 Raman spectra vs. substrate temperature during the deposition process. Films on synthetic quartz substrate. Intensity is normalized at the TO band.
Fig. 3
Fig. 3 Optical constants of deposited thin films measured by ellipsometry. (a) Refractive index, (b) extinction coefficient, and (c) absorption coefficient.
Fig. 4
Fig. 4 IR absorption spectra reflecting the bonding configuration by FT-IR.
Fig. 5
Fig. 5 Measurement results of (a) IV curve using a-Si:H deposited at 200 °C, and (b) measured electrical conductivity at 5 V and the illumination of the excitation laser of each deposited film. These measurements were performed at room temperature.
Fig. 6
Fig. 6 Simulation model for the estimation of the electric field distribution, and the dielectrophoresis force acting on ϕ200 nm polystyrene beads.
Fig. 7
Fig. 7 Simulation results of the x-directional gradient of the electric field strength at the vicinity (0 < z < 5 µm) of the photoconductive layer in a device with 100-nm a-Si:H in a solution with conductivities of (a) 1 × 10−2 S/m and (b) 1 × 10−1 S/m. The white arrows in the microchannel represent the direction of the gradient of the electric field strength.
Fig. 8
Fig. 8 Estimated maximum values of x-directional dielectrophoresis forces ( = 2πεm Re[K*(ω)]·∂E2/∂x) for ϕ200-nm polystyrene beads in devices using a photoconductive layer with different thicknesses in solutions with several medium conductivities. The calculated values of the real part of the Clausius–Mossotti function in each solution are shown in the legend. F0 represents the threshold value to overcome the Brownian motion and friction.
Fig. 9
Fig. 9 Fabrication process of the diffusion sensing device.
Fig. 10
Fig. 10 (a) Schematic diagram of the experimental system, and (b) timing chart of the diffusion sensing procedure (BF, bandpass filter; DM, dichroic mirror; DPO, digital phosphor oscilloscope; FG, function generator; FI, Faraday isolator; KE, knife edge; L, lens; M, mirror; NPBS, non-polarized beam splitter).
Fig. 11
Fig. 11 Detected single-shot decay signals of the first-order diffracted light using ϕ203 nm beads sample in (a) non-buffered sample (6 × 10−3 S/m, 1-s induction), and (b) buffered sample (3 × 10−2 S/m, 10-s induction). Insets are the logarithmic plot of the same signal in the short time range. Deviation between the detected signal and the fitting curve is shown in the lower part.

Tables (3)

Tables Icon

Table 1 Sputtering conditions of the a-Si:H thin film for the evaluation

Tables Icon

Table 2 Experimental conditions

Tables Icon

Table 3 Measured value and estimated value

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F DEP =2π ε m a 3 Re[ K * ( ω ) ] E 2 ,
K * ( ω )= ε p * ε m * ε p * +2 ε m * , ε p * = ε p i σ p ω , ε m * = ε m i σ m ω , σ p = σ p,bulk + 2 K s a ,
C( x,t )=ΔCexp( t τ D )cos( 2πx Λ )+ C 0 .
I 1 ( t )exp( 2t τ D ).
D= 1 τ D ( Λ 2π ) 2 .
I e ( x )=( I e,max I e,min ) cos 2 ( πx Λ )+ I e,min ,
F 0 = 2 DΔt k B T,

Metrics