Abstract

We present a novel technique to generate microbubbles photothermally by continuous-wave laser irradiation of nanoporous gold disk (NPGD) array covered microfluidic channels. When a single laser spot is focused on the NPGDs, a microbubble can be generated with controlled size by adjusting the laser power. The dynamics of both bubble growth and shrinkage are studied. Using computer-generated holography on a spatial light modulator (SLM), simultaneous generation of multiple microbubbles at arbitrary locations with independent control is demonstrated. A potential application of flow manipulation is demonstrated using a microfluidic X-shaped junction. The advantages of this technique are flexible bubble generation locations, long bubble lifetimes, no need for light-adsorbing dyes, high controllability over bubble size, and relatively lower power consumption.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation

Xiaobo Xing, Jiapeng Zheng, Chao Sun, Fengjia Li, Debin Zhu, Liang Lei, Xiang Cai, and Ting Wu
Opt. Express 21(26) 31862-31871 (2013)

Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters

Zhimin Chen, Haihua Fan, Jinxiang Li, Shaolong Tie, and Sheng Lan
Opt. Express 25(13) 15093-15107 (2017)

Experimental investigation on multiple breakdown in water induced by focused nanosecond laser

Lei Fu, Siqi Wang, Jing Xin, Shijia Wang, Cuiping Yao, Zhenxi Zhang, and Jing Wang
Opt. Express 26(22) 28560-28575 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8(10), 1676–1681 (2008).
    [Crossref] [PubMed]
  2. A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
    [Crossref] [PubMed]
  3. W. Hu, K. S. Ishii, Q. Fan, and A. T. Ohta, “Hydrogel microrobots actuated by optically generated vapour bubbles,” Lab Chip 12(19), 3821–3826 (2012).
    [Crossref] [PubMed]
  4. W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
    [Crossref]
  5. C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
    [Crossref]
  6. P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up,” Lab Chip 6(3), 437–446 (2006).
    [Crossref] [PubMed]
  7. P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004).
    [Crossref]
  8. R. Xiong, M. Bai, and J. N. Chung, “Formation of bubbles in a simple co-flowing micro-channel,” J. Micromech. Microeng. 17(5), 1002–1011 (2007).
    [Crossref]
  9. Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
    [Crossref] [PubMed]
  10. J. P. Raven and P. Marmottant, “Periodic microfluidic bubbling oscillator: Insight into the stability of two-phase microflows,” Phys. Rev. Lett. 97(15), 154501 (2006).
    [Crossref] [PubMed]
  11. J.-H. Tsai and L. Lin, “Transient Thermal Bubble Formation on Polysilicon Micro-Resisters,” J. Heat Transfer 124(2), 375 (2002).
    [Crossref]
  12. D. M. van den Broek and M. Elwenspoek, “Explosive micro-bubble actuator,” Sensor Actuat a-Phys 145–146, 387–393 (2008).
    [Crossref]
  13. P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
    [Crossref] [PubMed]
  14. T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
    [Crossref]
  15. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  16. P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, “Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging,” Lab Chip 8(3), 408–414 (2008).
    [Crossref] [PubMed]
  17. S. L. Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, “Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement,” Lab Chip 7(12), 1666–1672 (2007).
    [Crossref] [PubMed]
  18. C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4(1), 2305 (2013).
    [Crossref] [PubMed]
  19. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
    [Crossref] [PubMed]
  20. A. Q. Jian, K. Zhang, Y. Wang, S. P. Lau, Y. H. Tsang, and X. M. Zhang, “Microfluidic flow direction control using continuous-wave laser,” Sens. Actuators A Phys. 188, 329–334 (2012).
    [Crossref]
  21. Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
    [Crossref] [PubMed]
  22. C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
    [Crossref] [PubMed]
  23. Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
    [Crossref] [PubMed]
  24. Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
    [Crossref] [PubMed]
  25. E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res. 166(1), e3–e13 (2011).
    [Crossref] [PubMed]
  26. E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Photothermal bubbles as optical scattering probes for imaging living cells,” Nanomedicine (Lond.) 3(6), 797–812 (2008).
    [Crossref] [PubMed]
  27. E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 085102 (2010).
    [Crossref] [PubMed]
  28. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
    [Crossref] [PubMed]
  29. Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
    [Crossref] [PubMed]
  30. D. Hühn, A. Govorov, P. R. Gil, and W. J. Parak, “Photostimulated Au Nanoheaters in Polymer and Biological Media: Characterization of Mechanical Destruction and Boiling,” Adv. Funct. Mater. 22(2), 294–303 (2012).
    [Crossref]
  31. G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
    [Crossref]
  32. E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
    [Crossref] [PubMed]
  33. M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “EBL-Based Fabrication and Different Modeling Approaches for Nanoporous Gold Nanodisks,” ACS Photonics 4(8), 1870–1878 (2017).
    [Crossref]
  34. G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
    [Crossref] [PubMed]
  35. S. Qiu, F. Zhao, O. Zenasni, J. Li, and W.-C. Shih, “Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing,” Nanoscale Horiz 2(4), 217–224 (2017).
    [Crossref]
  36. W.-C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks,” Nano Lett. 16(7), 4641–4647 (2016).
    [Crossref] [PubMed]
  37. G. M. Santos, F. I. S. Ferrara, F. Zhao, D. F. Rodrigues, and W.-C. Shih, “Photothermal inactivation of heat-resistant bacteria on nanoporous gold disk arrays,” Opt. Mater. Express 6(4), 1217–1229 (2016).
    [Crossref]
  38. J. Li, F. Zhao, and W. C. Shih, “Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying,” Opt. Express 24(20), 23610–23617 (2016).
    [Crossref] [PubMed]
  39. R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
    [Crossref]
  40. X. Liu, L. Bao, M. Dipalo, F. De Angelis, and X. Zhang, “Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays,” Sci. Rep. 5(1), 18515 (2016).
    [Crossref] [PubMed]
  41. O. Shpak, L. Stricker, M. Versluis, and D. Lohse, “The role of gas in ultrasonically driven vapor bubble growth,” Phys. Med. Biol. 58(8), 2523–2535 (2013).
    [Crossref] [PubMed]

2017 (2)

S. Qiu, F. Zhao, O. Zenasni, J. Li, and W.-C. Shih, “Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing,” Nanoscale Horiz 2(4), 217–224 (2017).
[Crossref]

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “EBL-Based Fabrication and Different Modeling Approaches for Nanoporous Gold Nanodisks,” ACS Photonics 4(8), 1870–1878 (2017).
[Crossref]

2016 (4)

X. Liu, L. Bao, M. Dipalo, F. De Angelis, and X. Zhang, “Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays,” Sci. Rep. 5(1), 18515 (2016).
[Crossref] [PubMed]

W.-C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref] [PubMed]

G. M. Santos, F. I. S. Ferrara, F. Zhao, D. F. Rodrigues, and W.-C. Shih, “Photothermal inactivation of heat-resistant bacteria on nanoporous gold disk arrays,” Opt. Mater. Express 6(4), 1217–1229 (2016).
[Crossref]

J. Li, F. Zhao, and W. C. Shih, “Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying,” Opt. Express 24(20), 23610–23617 (2016).
[Crossref] [PubMed]

2015 (1)

Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

2014 (3)

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

2013 (5)

O. Shpak, L. Stricker, M. Versluis, and D. Lohse, “The role of gas in ultrasonically driven vapor bubble growth,” Phys. Med. Biol. 58(8), 2523–2535 (2013).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4(1), 2305 (2013).
[Crossref] [PubMed]

2012 (3)

W. Hu, K. S. Ishii, Q. Fan, and A. T. Ohta, “Hydrogel microrobots actuated by optically generated vapour bubbles,” Lab Chip 12(19), 3821–3826 (2012).
[Crossref] [PubMed]

A. Q. Jian, K. Zhang, Y. Wang, S. P. Lau, Y. H. Tsang, and X. M. Zhang, “Microfluidic flow direction control using continuous-wave laser,” Sens. Actuators A Phys. 188, 329–334 (2012).
[Crossref]

D. Hühn, A. Govorov, P. R. Gil, and W. J. Parak, “Photostimulated Au Nanoheaters in Polymer and Biological Media: Characterization of Mechanical Destruction and Boiling,” Adv. Funct. Mater. 22(2), 294–303 (2012).
[Crossref]

2011 (3)

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res. 166(1), e3–e13 (2011).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

2010 (2)

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 085102 (2010).
[Crossref] [PubMed]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

2008 (5)

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Photothermal bubbles as optical scattering probes for imaging living cells,” Nanomedicine (Lond.) 3(6), 797–812 (2008).
[Crossref] [PubMed]

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, “Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging,” Lab Chip 8(3), 408–414 (2008).
[Crossref] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[Crossref] [PubMed]

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8(10), 1676–1681 (2008).
[Crossref] [PubMed]

2007 (3)

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

R. Xiong, M. Bai, and J. N. Chung, “Formation of bubbles in a simple co-flowing micro-channel,” J. Micromech. Microeng. 17(5), 1002–1011 (2007).
[Crossref]

S. L. Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, “Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement,” Lab Chip 7(12), 1666–1672 (2007).
[Crossref] [PubMed]

2006 (3)

J. P. Raven and P. Marmottant, “Periodic microfluidic bubbling oscillator: Insight into the stability of two-phase microflows,” Phys. Rev. Lett. 97(15), 154501 (2006).
[Crossref] [PubMed]

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up,” Lab Chip 6(3), 437–446 (2006).
[Crossref] [PubMed]

2005 (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

2004 (4)

P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004).
[Crossref]

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

2002 (1)

J.-H. Tsai and L. Lin, “Transient Thermal Bubble Formation on Polysilicon Micro-Resisters,” J. Heat Transfer 124(2), 375 (2002).
[Crossref]

Allbritton, N. L.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, “Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging,” Lab Chip 8(3), 408–414 (2008).
[Crossref] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Arnob, M. M. P.

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “EBL-Based Fabrication and Different Modeling Approaches for Nanoporous Gold Nanodisks,” ACS Photonics 4(8), 1870–1878 (2017).
[Crossref]

W.-C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref] [PubMed]

Arora, M.

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

Bae, S.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Baffou, G.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Bai, M.

R. Xiong, M. Bai, and J. N. Chung, “Formation of bubbles in a simple co-flowing micro-channel,” J. Micromech. Microeng. 17(5), 1002–1011 (2007).
[Crossref]

Bao, L.

X. Liu, L. Bao, M. Dipalo, F. De Angelis, and X. Zhang, “Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays,” Sci. Rep. 5(1), 18515 (2016).
[Crossref] [PubMed]

Cao, J.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Chen, Y.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Chiou, P.-Y.

Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Chong, T. C.

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

Chung, J. N.

R. Xiong, M. Bai, and J. N. Chung, “Formation of bubbles in a simple co-flowing micro-channel,” J. Micromech. Microeng. 17(5), 1002–1011 (2007).
[Crossref]

Clemens, D. L.

Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Cristini, V.

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Day, J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

De Angelis, F.

X. Liu, L. Bao, M. Dipalo, F. De Angelis, and X. Zhang, “Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays,” Sci. Rep. 5(1), 18515 (2016).
[Crossref] [PubMed]

Dijkink, R.

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8(10), 1676–1681 (2008).
[Crossref] [PubMed]

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

DiLuzio, W.

P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004).
[Crossref]

Dipalo, M.

X. Liu, L. Bao, M. Dipalo, F. De Angelis, and X. Zhang, “Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays,” Sci. Rep. 5(1), 18515 (2016).
[Crossref] [PubMed]

Drezek, R. A.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Photothermal bubbles as optical scattering probes for imaging living cells,” Nanomedicine (Lond.) 3(6), 797–812 (2008).
[Crossref] [PubMed]

Fan, Q.

W. Hu, K. S. Ishii, Q. Fan, and A. T. Ohta, “Hydrogel microrobots actuated by optically generated vapour bubbles,” Lab Chip 12(19), 3821–3826 (2012).
[Crossref] [PubMed]

Fang, N.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4(1), 2305 (2013).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Ferrara, F. I. S.

Fisher, J. S.

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Fuerstman, M. J.

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up,” Lab Chip 6(3), 437–446 (2006).
[Crossref] [PubMed]

Gac, S. L.

S. L. Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, “Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement,” Lab Chip 7(12), 1666–1672 (2007).
[Crossref] [PubMed]

Gao, L.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

García de Abajo, F. J.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Garstecki, P.

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up,” Lab Chip 6(3), 437–446 (2006).
[Crossref] [PubMed]

P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004).
[Crossref]

Gil, P. R.

D. Hühn, A. Govorov, P. R. Gil, and W. J. Parak, “Photostimulated Au Nanoheaters in Polymer and Biological Media: Characterization of Mechanical Destruction and Boiling,” Adv. Funct. Mater. 22(2), 294–303 (2012).
[Crossref]

Gitlin, I.

P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004).
[Crossref]

Govorov, A.

D. Hühn, A. Govorov, P. R. Gil, and W. J. Parak, “Photostimulated Au Nanoheaters in Polymer and Biological Media: Characterization of Mechanical Destruction and Boiling,” Adv. Funct. Mater. 22(2), 294–303 (2012).
[Crossref]

Guo, F.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Hafner, J. H.

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 085102 (2010).
[Crossref] [PubMed]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Photothermal bubbles as optical scattering probes for imaging living cells,” Nanomedicine (Lond.) 3(6), 797–812 (2008).
[Crossref] [PubMed]

Halas, N. J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Hanna, E. Y.

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 085102 (2010).
[Crossref] [PubMed]

Hellman, A. N.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Hleb, E. Y.

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Photothermal bubbles as optical scattering probes for imaging living cells,” Nanomedicine (Lond.) 3(6), 797–812 (2008).
[Crossref] [PubMed]

Hnatovsky, C.

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

Hong, M. H.

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

Horwitz, M. A.

Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Hu, W.

W. Hu, K. S. Ishii, Q. Fan, and A. T. Ohta, “Hydrogel microrobots actuated by optically generated vapour bubbles,” Lab Chip 12(19), 3821–3826 (2012).
[Crossref] [PubMed]

Hu, Y.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Photothermal bubbles as optical scattering probes for imaging living cells,” Nanomedicine (Lond.) 3(6), 797–812 (2008).
[Crossref] [PubMed]

Huang, T. J.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4(1), 2305 (2013).
[Crossref] [PubMed]

Hühn, D.

D. Hühn, A. Govorov, P. R. Gil, and W. J. Parak, “Photostimulated Au Nanoheaters in Polymer and Biological Media: Characterization of Mechanical Destruction and Boiling,” Adv. Funct. Mater. 22(2), 294–303 (2012).
[Crossref]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Ishii, K. S.

W. Hu, K. S. Ishii, Q. Fan, and A. T. Ohta, “Hydrogel microrobots actuated by optically generated vapour bubbles,” Lab Chip 12(19), 3821–3826 (2012).
[Crossref] [PubMed]

Janve, V.

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

Jian, A.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Jian, A. Q.

A. Q. Jian, K. Zhang, Y. Wang, S. P. Lau, Y. H. Tsang, and X. M. Zhang, “Microfluidic flow direction control using continuous-wave laser,” Sens. Actuators A Phys. 188, 329–334 (2012).
[Crossref]

Koneva, I. I.

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res. 166(1), e3–e13 (2011).
[Crossref] [PubMed]

Kumacheva, E.

P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004).
[Crossref]

La Francesca, S.

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res. 166(1), e3–e13 (2011).
[Crossref] [PubMed]

Lai, H. H.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, “Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging,” Lab Chip 8(3), 408–414 (2008).
[Crossref] [PubMed]

Lal, S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Lapotko, D. O.

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res. 166(1), e3–e13 (2011).
[Crossref] [PubMed]

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 085102 (2010).
[Crossref] [PubMed]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Photothermal bubbles as optical scattering probes for imaging living cells,” Nanomedicine (Lond.) 3(6), 797–812 (2008).
[Crossref] [PubMed]

Latterini, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Lau, S. P.

A. Q. Jian, K. Zhang, Y. Wang, S. P. Lau, Y. H. Tsang, and X. M. Zhang, “Microfluidic flow direction control using continuous-wave laser,” Sens. Actuators A Phys. 188, 329–334 (2012).
[Crossref]

Lee, A. I.

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Lee, A. P.

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Lee, B.-Y.

Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Lee, S.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Li, J.

S. Qiu, F. Zhao, O. Zenasni, J. Li, and W.-C. Shih, “Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing,” Nanoscale Horiz 2(4), 217–224 (2017).
[Crossref]

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “EBL-Based Fabrication and Different Modeling Approaches for Nanoporous Gold Nanodisks,” ACS Photonics 4(8), 1870–1878 (2017).
[Crossref]

J. Li, F. Zhao, and W. C. Shih, “Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying,” Opt. Express 24(20), 23610–23617 (2016).
[Crossref] [PubMed]

Li, S.

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Li, Z.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Lin, L.

J.-H. Tsai and L. Lin, “Transient Thermal Bubble Formation on Polysilicon Micro-Resisters,” J. Heat Transfer 124(2), 375 (2002).
[Crossref]

Liu, H.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Liu, X.

X. Liu, L. Bao, M. Dipalo, F. De Angelis, and X. Zhang, “Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays,” Sci. Rep. 5(1), 18515 (2016).
[Crossref] [PubMed]

Liu, Y.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4(1), 2305 (2013).
[Crossref] [PubMed]

Lohse, D.

O. Shpak, L. Stricker, M. Versluis, and D. Lohse, “The role of gas in ultrasonically driven vapor bubble growth,” Phys. Med. Biol. 58(8), 2523–2535 (2013).
[Crossref] [PubMed]

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

Lukianova-Hleb, E.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Lukianova-Hleb, E. Y.

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res. 166(1), e3–e13 (2011).
[Crossref] [PubMed]

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 085102 (2010).
[Crossref] [PubMed]

Lukyanchuk, B.

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

Mai, J. D.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Mao, Z.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Marmottant, P.

J. P. Raven and P. Marmottant, “Periodic microfluidic bubbling oscillator: Insight into the stability of two-phase microflows,” Phys. Rev. Lett. 97(15), 154501 (2006).
[Crossref] [PubMed]

Monneret, S.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Neumann, O.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Nordlander, P.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Oginsky, A. O.

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res. 166(1), e3–e13 (2011).
[Crossref] [PubMed]

Ohl, C. D.

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8(10), 1676–1681 (2008).
[Crossref] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[Crossref] [PubMed]

S. L. Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, “Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement,” Lab Chip 7(12), 1666–1672 (2007).
[Crossref] [PubMed]

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

Ohta, A. T.

W. Hu, K. S. Ishii, Q. Fan, and A. T. Ohta, “Hydrogel microrobots actuated by optically generated vapour bubbles,” Lab Chip 12(19), 3821–3826 (2012).
[Crossref] [PubMed]

Palmer, J. F.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Parak, W. J.

D. Hühn, A. Govorov, P. R. Gil, and W. J. Parak, “Photostimulated Au Nanoheaters in Polymer and Biological Media: Characterization of Mechanical Destruction and Boiling,” Adv. Funct. Mater. 22(2), 294–303 (2012).
[Crossref]

Phillips, K. S.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Polleux, J.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Polman, A.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Qiu, S.

S. Qiu, F. Zhao, O. Zenasni, J. Li, and W.-C. Shih, “Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing,” Nanoscale Horiz 2(4), 217–224 (2017).
[Crossref]

Quinto-Su, P. A.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, “Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging,” Lab Chip 8(3), 408–414 (2008).
[Crossref] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[Crossref] [PubMed]

Rau, K. R.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Raven, J. P.

J. P. Raven and P. Marmottant, “Periodic microfluidic bubbling oscillator: Insight into the stability of two-phase microflows,” Phys. Rev. Lett. 97(15), 154501 (2006).
[Crossref] [PubMed]

Rigneault, H.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Rodrigues, D. F.

Rufo, J.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Santos, G. M.

W.-C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref] [PubMed]

G. M. Santos, F. I. S. Ferrara, F. Zhao, D. F. Rodrigues, and W.-C. Shih, “Photothermal inactivation of heat-resistant bacteria on nanoporous gold disk arrays,” Opt. Mater. Express 6(4), 1217–1229 (2016).
[Crossref]

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

Shih, W. C.

J. Li, F. Zhao, and W. C. Shih, “Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying,” Opt. Express 24(20), 23610–23617 (2016).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

Shih, W.-C.

S. Qiu, F. Zhao, O. Zenasni, J. Li, and W.-C. Shih, “Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing,” Nanoscale Horiz 2(4), 217–224 (2017).
[Crossref]

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “EBL-Based Fabrication and Different Modeling Approaches for Nanoporous Gold Nanodisks,” ACS Photonics 4(8), 1870–1878 (2017).
[Crossref]

W.-C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref] [PubMed]

G. M. Santos, F. I. S. Ferrara, F. Zhao, D. F. Rodrigues, and W.-C. Shih, “Photothermal inactivation of heat-resistant bacteria on nanoporous gold disk arrays,” Opt. Mater. Express 6(4), 1217–1229 (2016).
[Crossref]

Shpak, O.

O. Shpak, L. Stricker, M. Versluis, and D. Lohse, “The role of gas in ultrasonically driven vapor bubble growth,” Phys. Med. Biol. 58(8), 2523–2535 (2013).
[Crossref] [PubMed]

Sims, C. E.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, “Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging,” Lab Chip 8(3), 408–414 (2008).
[Crossref] [PubMed]

Song, W. D.

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

Stone, H. A.

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up,” Lab Chip 6(3), 437–446 (2006).
[Crossref] [PubMed]

P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004).
[Crossref]

Stricker, L.

O. Shpak, L. Stricker, M. Versluis, and D. Lohse, “The role of gas in ultrasonically driven vapor bubble growth,” Phys. Med. Biol. 58(8), 2523–2535 (2013).
[Crossref] [PubMed]

Tam, H. Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Tan, Y. C.

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Tarpani, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Taylor, R. S.

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

Teitell, M. A.

Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Tsai, J.-H.

J.-H. Tsai and L. Lin, “Transient Thermal Bubble Formation on Polysilicon Micro-Resisters,” J. Heat Transfer 124(2), 375 (2002).
[Crossref]

Tsang, Y. H.

A. Q. Jian, K. Zhang, Y. Wang, S. P. Lau, Y. H. Tsang, and X. M. Zhang, “Microfluidic flow direction control using continuous-wave laser,” Sens. Actuators A Phys. 188, 329–334 (2012).
[Crossref]

Urban, A. S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

van den Berg, A.

S. L. Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, “Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement,” Lab Chip 7(12), 1666–1672 (2007).
[Crossref] [PubMed]

Venugopalan, V.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, “Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging,” Lab Chip 8(3), 408–414 (2008).
[Crossref] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[Crossref] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Versluis, M.

O. Shpak, L. Stricker, M. Versluis, and D. Lohse, “The role of gas in ultrasonically driven vapor bubble growth,” Phys. Med. Biol. 58(8), 2523–2535 (2013).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Wang, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Wang, Y.

A. Q. Jian, K. Zhang, Y. Wang, S. P. Lau, Y. H. Tsang, and X. M. Zhang, “Microfluidic flow direction control using continuous-wave laser,” Sens. Actuators A Phys. 188, 329–334 (2012).
[Crossref]

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Wei, K.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Wen, X.

Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Whitesides, G. M.

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up,” Lab Chip 6(3), 437–446 (2006).
[Crossref] [PubMed]

P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004).
[Crossref]

Wu, T.-H.

Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Wu, Y.-C.

Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Xie, Y.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Xiong, R.

R. Xiong, M. Bai, and J. N. Chung, “Formation of bubbles in a simple co-flowing micro-channel,” J. Micromech. Microeng. 17(5), 1002–1011 (2007).
[Crossref]

Yang, S.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Yoon, H. H.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, “Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging,” Lab Chip 8(3), 408–414 (2008).
[Crossref] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Zenasni, O.

S. Qiu, F. Zhao, O. Zenasni, J. Li, and W.-C. Shih, “Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing,” Nanoscale Horiz 2(4), 217–224 (2017).
[Crossref]

W.-C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref] [PubMed]

Zeng, J.

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

Zhang, K.

A. Q. Jian, K. Zhang, Y. Wang, S. P. Lau, Y. H. Tsang, and X. M. Zhang, “Microfluidic flow direction control using continuous-wave laser,” Sens. Actuators A Phys. 188, 329–334 (2012).
[Crossref]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, X.

X. Liu, L. Bao, M. Dipalo, F. De Angelis, and X. Zhang, “Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays,” Sci. Rep. 5(1), 18515 (2016).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, X. M.

A. Q. Jian, K. Zhang, Y. Wang, S. P. Lau, Y. H. Tsang, and X. M. Zhang, “Microfluidic flow direction control using continuous-wave laser,” Sens. Actuators A Phys. 188, 329–334 (2012).
[Crossref]

Zhao, C.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4(1), 2305 (2013).
[Crossref] [PubMed]

Zhao, F.

S. Qiu, F. Zhao, O. Zenasni, J. Li, and W.-C. Shih, “Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing,” Nanoscale Horiz 2(4), 217–224 (2017).
[Crossref]

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “EBL-Based Fabrication and Different Modeling Approaches for Nanoporous Gold Nanodisks,” ACS Photonics 4(8), 1870–1878 (2017).
[Crossref]

W.-C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref] [PubMed]

G. M. Santos, F. I. S. Ferrara, F. Zhao, D. F. Rodrigues, and W.-C. Shih, “Photothermal inactivation of heat-resistant bacteria on nanoporous gold disk arrays,” Opt. Mater. Express 6(4), 1217–1229 (2016).
[Crossref]

J. Li, F. Zhao, and W. C. Shih, “Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying,” Opt. Express 24(20), 23610–23617 (2016).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

Zhao, Y.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4(1), 2305 (2013).
[Crossref] [PubMed]

Zhen, Y. R.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Zheng, Y.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Zhu, C.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Zhu, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Zwaan, E.

S. L. Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, “Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement,” Lab Chip 7(12), 1666–1672 (2007).
[Crossref] [PubMed]

ACS Nano (2)

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

ACS Photonics (1)

M. M. P. Arnob, F. Zhao, J. Li, and W.-C. Shih, “EBL-Based Fabrication and Different Modeling Approaches for Nanoporous Gold Nanodisks,” ACS Photonics 4(8), 1870–1878 (2017).
[Crossref]

Adv. Funct. Mater. (1)

D. Hühn, A. Govorov, P. R. Gil, and W. J. Parak, “Photostimulated Au Nanoheaters in Polymer and Biological Media: Characterization of Mechanical Destruction and Boiling,” Adv. Funct. Mater. 22(2), 294–303 (2012).
[Crossref]

Anal. Chem. (1)

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys. Lett. (3)

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004).
[Crossref]

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

J. Appl. Phys. (2)

W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95(6), 2952–2956 (2004).
[Crossref]

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

J. Heat Transfer (1)

J.-H. Tsai and L. Lin, “Transient Thermal Bubble Formation on Polysilicon Micro-Resisters,” J. Heat Transfer 124(2), 375 (2002).
[Crossref]

J. Micromech. Microeng. (1)

R. Xiong, M. Bai, and J. N. Chung, “Formation of bubbles in a simple co-flowing micro-channel,” J. Micromech. Microeng. 17(5), 1002–1011 (2007).
[Crossref]

J. Phys. Chem. C (1)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

J. Surg. Res. (1)

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res. 166(1), e3–e13 (2011).
[Crossref] [PubMed]

Lab Chip (10)

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8(10), 1676–1681 (2008).
[Crossref] [PubMed]

W. Hu, K. S. Ishii, Q. Fan, and A. T. Ohta, “Hydrogel microrobots actuated by optically generated vapour bubbles,” Lab Chip 12(19), 3821–3826 (2012).
[Crossref] [PubMed]

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up,” Lab Chip 6(3), 437–446 (2006).
[Crossref] [PubMed]

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, “Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging,” Lab Chip 8(3), 408–414 (2008).
[Crossref] [PubMed]

S. L. Gac, E. Zwaan, A. van den Berg, and C. D. Ohl, “Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement,” Lab Chip 7(12), 1666–1672 (2007).
[Crossref] [PubMed]

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Nano Lett. (2)

W.-C. Shih, G. M. Santos, F. Zhao, O. Zenasni, and M. M. P. Arnob, “Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks,” Nano Lett. 16(7), 4641–4647 (2016).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Photothermal bubbles as optical scattering probes for imaging living cells,” Nanomedicine (Lond.) 3(6), 797–812 (2008).
[Crossref] [PubMed]

Nanoscale (1)

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

Nanoscale Horiz (1)

S. Qiu, F. Zhao, O. Zenasni, J. Li, and W.-C. Shih, “Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing,” Nanoscale Horiz 2(4), 217–224 (2017).
[Crossref]

Nanotechnology (1)

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 085102 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4(1), 2305 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P.-Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Med. Biol. (1)

O. Shpak, L. Stricker, M. Versluis, and D. Lohse, “The role of gas in ultrasonically driven vapor bubble growth,” Phys. Med. Biol. 58(8), 2523–2535 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. P. Raven and P. Marmottant, “Periodic microfluidic bubbling oscillator: Insight into the stability of two-phase microflows,” Phys. Rev. Lett. 97(15), 154501 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

X. Liu, L. Bao, M. Dipalo, F. De Angelis, and X. Zhang, “Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays,” Sci. Rep. 5(1), 18515 (2016).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

A. Q. Jian, K. Zhang, Y. Wang, S. P. Lau, Y. H. Tsang, and X. M. Zhang, “Microfluidic flow direction control using continuous-wave laser,” Sens. Actuators A Phys. 188, 329–334 (2012).
[Crossref]

Other (1)

D. M. van den Broek and M. Elwenspoek, “Explosive micro-bubble actuator,” Sensor Actuat a-Phys 145–146, 387–393 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the experimental platform. (b) Schematic illustration of bubble generation around NPGD nanoparticles embedded in a microfluidic channel. (c) A scanning electron microscope (SEM) image of a substrate patterned with a monolithic uniform array of nanoporous gold particles. (d) An optical image showing a single microbubble.
Fig. 2
Fig. 2 (a) Consecutive images of bubble under 16 mW laser power. (b) Bubble growth curve under different illumination laser powers: 16 mW, 12 mW, 8 mW in normal DI water and 8 mW in degassed water. (c) Bubble shrinkage curve under different illumination laser powers: 16 mW, 12 mW, 8 mW in normal DI water and 8 mW in degassed water. Inset: Enlarged view of the shrinkage curve indicated by the dotted area in (c).
Fig. 3
Fig. 3 Parallel microbubble generation with illumination patterns. (a) Four microbubbles with 60 µm center-to-center distance. (b) Eight microbubbles, with 30 µm center-to-center distance for adjacent microbubbles. (a-b) share the scale bar. (c-h) The generation and removal of four microbubbles. (c-d) depict the generation of bubbles at t = 1s and 9s. (e-h) depict the removal of bubbles one by one at t = 17 s, 24 s, 30 s, and 36 s. (c-h) share the scale bar.
Fig. 4
Fig. 4 Timed sequences of photothermal microbubbles generated inside the X-shaped channels for the individual as well as simultaneous controls of inlets and outlets. The flow direction is depicted by arrows, and blockage is depicted by Xs. (a) Flow mixing by blocking one outlet. (b) Selection between two outlets for one incoming flow. (c) Temporary mixing chamber by blocking all inlets and outlets. The images share the scale bar.

Tables (1)

Tables Icon

Table 1 Summary of bubble generation techniques

Metrics