Abstract

Fano resonance is realized in the multilayer structure consisting of two planar waveguides (PWGs) and few layer graphene, and the coupling mechanism between the two PWG modes with graphene is analyzed in detail. It is revealed that the Fano resonance originates from the different quality factors due to the different intrinsic losses of the graphene in the two waveguides, and the electric field distributions in the multilayer structure confirms our results. Fano resonance in our proposed structures can be applied in the ultrasensitive biosensor, and a significantly improved figure of merit (FOM) of 9340 RIU−1 has been obtained by optimizing the structure parameters, which has a 2~3 orders of magnitude enhancement compared to the traditional surface plasmon polaritons (SPR) sensor. Especially, it is found that both transverse magnetic (TM)-polarization and transverse electric (TE)-polarization can support the Fano resonance, and hence it can work as ultrasensitive biosensor for both polarizations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes

Leiming Wu, Jun Guo, Hailin Xu, Xiaoyu Dai, and Yuanjiang Xiang
Photon. Res. 4(6) 262-266 (2016)

Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength

Jun Guo, Leyong Jiang, Xiaoyu Dai, and Yuanjiang Xiang
Opt. Express 24(5) 4740-4748 (2016)

Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration

Jicheng Wang, Ci Song, Jing Hang, Zheng-Da Hu, and Feng Zhang
Opt. Express 25(20) 23880-23892 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bioanal. Chem. 387(4), 1449–1458 (2007).
    [Crossref]
  2. C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80(1), 407–410 (2009).
    [Crossref]
  3. J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sensor Actuat. Biol. Chem. 111, 416–422 (2005).
  4. J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Labelfree detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
    [Crossref]
  5. J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
    [Crossref]
  6. A. Rasooly, “Surface plasmon resonance analysis of staphylococcal enterotoxin B in food,” J. Food Prot. 64(1), 37–43 (2001).
    [Crossref]
  7. L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensor Actuat. Biol. Chem. 249, 542–548 (2017).
  8. L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
    [Crossref]
  9. R. Horváth, H. Pedersen, N. Skivesen, D. Selmeczi, and N. Larsen, “Optical waveguide sensor for on-line monitoring of bacteria,” Opt. Lett. 28(14), 1233–1235 (2003).
    [Crossref]
  10. S. Taya, M. Shabat, and H. Khalil, “Enhancement of sensitivity in optical waveguide sensors using left-handed materials,” Optik (Stuttg.) 120(10), 504–508 (2009).
    [Crossref]
  11. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).
  12. Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly Sensitive Terahertz Gas Sensor Based on Surface Plasmon Resonance With Graphene,” IEEE. Photon. J. 10, 6800507 (2018).
  13. K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, “Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles,” J. Appl. Phys. 121(2), 023102 (2017).
    [Crossref]
  14. S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
    [Crossref]
  15. J. Guo, L. Jiang, X. Dai, and Y. Xiang, “Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength,” Opt. Express 24(5), 4740–4748 (2016).
    [Crossref]
  16. J. Wang, C. Song, J. Hang, Z. Hu, and F. Zhang, “Tunable Fano resonance based on grating coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
    [Crossref]
  17. S. Hayashi, D. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
    [Crossref]
  18. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  19. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  20. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  21. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
    [Crossref]
  22. Y. Zhan, D. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
    [Crossref]
  23. H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic Fano spectral response from graphene metasurfaces in the MIR region,” Opt. Mater. Express 8(4), 1058 (2018).
    [Crossref]
  24. G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q Plasmonic Fano Resonance for Multiband Surface-Enhanced Infrared Absorption of Molecular Vibrational Sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
    [Crossref]
  25. Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
    [Crossref]
  26. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref]
  27. Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, “All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles,” Org. Electron. 39, 71–76 (2016).
    [Crossref]
  28. M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, “Progress in Research on Graphene-based Composite Supercapacitor Materials,” J. Mater. Eng. 44, 101–111 (2016).
  29. Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
    [Crossref]
  30. C. Argyropoulos, “Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene,” Opt. Express 23(18), 23787–23797 (2015).
    [Crossref]
  31. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
    [Crossref]
  32. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
    [Crossref]
  33. P. Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref]
  34. T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48(6), 334 (2016).
    [Crossref]
  35. L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor,” IEEE Photonics J. 8(2), 4801409 (2016).
    [Crossref]
  36. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
    [Crossref]
  37. B. Ruan, J. Guo, L. Wu, J. Zhu, Q. You, X. Dai, and Y. Xiang, “Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure,” Sensors (Basel) 17(8), 1924 (2017).
    [Crossref]
  38. T. Okamoto, M. Yamamoto, and I. Yamaguchi, “Optical waveguide absorption sensor using a single coupling prism,” J. Opt. Soc. Am. A 17(10), 1880–1886 (2000).
    [Crossref]

2018 (3)

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly Sensitive Terahertz Gas Sensor Based on Surface Plasmon Resonance With Graphene,” IEEE. Photon. J. 10, 6800507 (2018).

H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic Fano spectral response from graphene metasurfaces in the MIR region,” Opt. Mater. Express 8(4), 1058 (2018).
[Crossref]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

2017 (7)

B. Ruan, J. Guo, L. Wu, J. Zhu, Q. You, X. Dai, and Y. Xiang, “Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure,” Sensors (Basel) 17(8), 1924 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q Plasmonic Fano Resonance for Multiband Surface-Enhanced Infrared Absorption of Molecular Vibrational Sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, “Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles,” J. Appl. Phys. 121(2), 023102 (2017).
[Crossref]

J. Wang, C. Song, J. Hang, Z. Hu, and F. Zhang, “Tunable Fano resonance based on grating coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensor Actuat. Biol. Chem. 249, 542–548 (2017).

2016 (7)

L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

J. Guo, L. Jiang, X. Dai, and Y. Xiang, “Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength,” Opt. Express 24(5), 4740–4748 (2016).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, “All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles,” Org. Electron. 39, 71–76 (2016).
[Crossref]

M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, “Progress in Research on Graphene-based Composite Supercapacitor Materials,” J. Mater. Eng. 44, 101–111 (2016).

T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48(6), 334 (2016).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor,” IEEE Photonics J. 8(2), 4801409 (2016).
[Crossref]

2015 (4)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

C. Argyropoulos, “Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene,” Opt. Express 23(18), 23787–23797 (2015).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

S. Hayashi, D. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
[Crossref]

2014 (1)

Y. Zhan, D. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref]

2012 (1)

2011 (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

P. Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

2010 (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

2009 (3)

S. Taya, M. Shabat, and H. Khalil, “Enhancement of sensitivity in optical waveguide sensors using left-handed materials,” Optik (Stuttg.) 120(10), 504–508 (2009).
[Crossref]

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80(1), 407–410 (2009).
[Crossref]

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Labelfree detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[Crossref]

2008 (1)

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref]

2007 (1)

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bioanal. Chem. 387(4), 1449–1458 (2007).
[Crossref]

2005 (1)

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sensor Actuat. Biol. Chem. 111, 416–422 (2005).

2003 (1)

2002 (1)

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref]

2001 (1)

A. Rasooly, “Surface plasmon resonance analysis of staphylococcal enterotoxin B in food,” J. Food Prot. 64(1), 37–43 (2001).
[Crossref]

2000 (1)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Al-Naib, I.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Alu, A.

P. Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

Argyropoulos, C.

Bernhardt, R.

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sensor Actuat. Biol. Chem. 111, 416–422 (2005).

Bi, L.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80(1), 407–410 (2009).
[Crossref]

Calle, A.

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bioanal. Chem. 387(4), 1449–1458 (2007).
[Crossref]

Cao, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Chen, P. Y.

P. Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

Chen, S.

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref]

Chen, Y.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80(1), 407–410 (2009).
[Crossref]

Chin, X. Y.

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q Plasmonic Fano Resonance for Multiband Surface-Enhanced Infrared Absorption of Molecular Vibrational Sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

Chu, B.

Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, “All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles,” Org. Electron. 39, 71–76 (2016).
[Crossref]

Chung, J. W.

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sensor Actuat. Biol. Chem. 111, 416–422 (2005).

Cong, L.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Dai, H.

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref]

Dai, X.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly Sensitive Terahertz Gas Sensor Based on Surface Plasmon Resonance With Graphene,” IEEE. Photon. J. 10, 6800507 (2018).

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensor Actuat. Biol. Chem. 249, 542–548 (2017).

B. Ruan, J. Guo, L. Wu, J. Zhu, Q. You, X. Dai, and Y. Xiang, “Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure,” Sensors (Basel) 17(8), 1924 (2017).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor,” IEEE Photonics J. 8(2), 4801409 (2016).
[Crossref]

J. Guo, L. Jiang, X. Dai, and Y. Xiang, “Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength,” Opt. Express 24(5), 4740–4748 (2016).
[Crossref]

L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Dayal, G.

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q Plasmonic Fano Resonance for Multiband Surface-Enhanced Infrared Absorption of Molecular Vibrational Sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

Dostalek, J.

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref]

Fan, D.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensor Actuat. Biol. Chem. 249, 542–548 (2017).

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor,” IEEE Photonics J. 8(2), 4801409 (2016).
[Crossref]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Gan, N.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80(1), 407–410 (2009).
[Crossref]

Gan, X.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

Gao, Y.

Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, “All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles,” Org. Electron. 39, 71–76 (2016).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Guo, J.

B. Ruan, J. Guo, L. Wu, J. Zhu, Q. You, X. Dai, and Y. Xiang, “Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure,” Sensors (Basel) 17(8), 1924 (2017).
[Crossref]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensor Actuat. Biol. Chem. 249, 542–548 (2017).

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor,” IEEE Photonics J. 8(2), 4801409 (2016).
[Crossref]

J. Guo, L. Jiang, X. Dai, and Y. Xiang, “Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength,” Opt. Express 24(5), 4740–4748 (2016).
[Crossref]

L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Hang, J.

Hayashi, S.

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

S. Hayashi, D. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
[Crossref]

Ho, C. P.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, “Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles,” J. Appl. Phys. 121(2), 023102 (2017).
[Crossref]

Homola, J.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Labelfree detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[Crossref]

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).

Horváth, R.

Hu, C.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80(1), 407–410 (2009).
[Crossref]

Hu, Z.

Jha, R.

T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48(6), 334 (2016).
[Crossref]

Jia, B.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

Jiang, L.

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor,” IEEE Photonics J. 8(2), 4801409 (2016).
[Crossref]

J. Guo, L. Jiang, X. Dai, and Y. Xiang, “Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength,” Opt. Express 24(5), 4740–4748 (2016).
[Crossref]

Jiang, S.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Labelfree detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[Crossref]

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref]

Jin, F.

Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, “All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles,” Org. Electron. 39, 71–76 (2016).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Khalil, H.

S. Taya, M. Shabat, and H. Khalil, “Enhancement of sensitivity in optical waveguide sensors using left-handed materials,” Optik (Stuttg.) 120(10), 504–508 (2009).
[Crossref]

Kim, S. D.

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sensor Actuat. Biol. Chem. 111, 416–422 (2005).

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Ladd, J.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Labelfree detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[Crossref]

Larsen, N.

Lechuga, L. M.

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bioanal. Chem. 387(4), 1449–1458 (2007).
[Crossref]

Lee, C.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, “Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles,” J. Appl. Phys. 121(2), 023102 (2017).
[Crossref]

Lei, D.

Y. Zhan, D. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref]

Li, S.

M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, “Progress in Research on Graphene-based Composite Supercapacitor Materials,” J. Mater. Eng. 44, 101–111 (2016).

Li, W.

Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, “All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles,” Org. Electron. 39, 71–76 (2016).
[Crossref]

Li, X.

M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, “Progress in Research on Graphene-based Composite Supercapacitor Materials,” J. Mater. Eng. 44, 101–111 (2016).

Y. Zhan, D. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Ling, Z.

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor,” IEEE Photonics J. 8(2), 4801409 (2016).
[Crossref]

Liu, J.

M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, “Progress in Research on Graphene-based Composite Supercapacitor Materials,” J. Mater. Eng. 44, 101–111 (2016).

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Liu, R.

M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, “Progress in Research on Graphene-based Composite Supercapacitor Materials,” J. Mater. Eng. 44, 101–111 (2016).

Liu, X.

Liu, Z.

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref]

Lu, H.

Lu, S.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensor Actuat. Biol. Chem. 249, 542–548 (2017).

Luo, Y.

Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, “All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles,” Org. Electron. 39, 71–76 (2016).
[Crossref]

Ma, Y.

M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, “Progress in Research on Graphene-based Composite Supercapacitor Materials,” J. Mater. Eng. 44, 101–111 (2016).

Maier, S. A.

Y. Zhan, D. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref]

Manclús, J. J.

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bioanal. Chem. 387(4), 1449–1458 (2007).
[Crossref]

Manjappa, M.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, “Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles,” J. Appl. Phys. 121(2), 023102 (2017).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Mao, D.

Mauriz, E.

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bioanal. Chem. 387(4), 1449–1458 (2007).
[Crossref]

Mei, T.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Montoya, A.

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bioanal. Chem. 387(4), 1449–1458 (2007).
[Crossref]

Nesterenko, D.

S. Hayashi, D. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
[Crossref]

Nesterenko, D. V.

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

Okamoto, T.

Pedersen, H.

Piliarik, M.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Labelfree detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[Crossref]

Pitchappa, P.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, “Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles,” J. Appl. Phys. 121(2), 023102 (2017).
[Crossref]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Purkayastha, A.

T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48(6), 334 (2016).
[Crossref]

Pyun, J. C.

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sensor Actuat. Biol. Chem. 111, 416–422 (2005).

Rasooly, A.

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref]

A. Rasooly, “Surface plasmon resonance analysis of staphylococcal enterotoxin B in food,” J. Food Prot. 64(1), 37–43 (2001).
[Crossref]

Robinson, J. T.

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref]

Ruan, B.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly Sensitive Terahertz Gas Sensor Based on Surface Plasmon Resonance With Graphene,” IEEE. Photon. J. 10, 6800507 (2018).

B. Ruan, J. Guo, L. Wu, J. Zhu, Q. You, X. Dai, and Y. Xiang, “Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure,” Sensors (Basel) 17(8), 1924 (2017).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Sekkat, Z.

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

S. Hayashi, D. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
[Crossref]

Selmeczi, D.

Shabat, M.

S. Taya, M. Shabat, and H. Khalil, “Enhancement of sensitivity in optical waveguide sensors using left-handed materials,” Optik (Stuttg.) 120(10), 504–508 (2009).
[Crossref]

Shih, K.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, “Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles,” J. Appl. Phys. 121(2), 023102 (2017).
[Crossref]

Singh, R.

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, “Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles,” J. Appl. Phys. 121(2), 023102 (2017).
[Crossref]

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q Plasmonic Fano Resonance for Multiband Surface-Enhanced Infrared Absorption of Molecular Vibrational Sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Skivesen, N.

Soci, C.

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q Plasmonic Fano Resonance for Multiband Surface-Enhanced Infrared Absorption of Molecular Vibrational Sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

Song, C.

Song, L.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80(1), 407–410 (2009).
[Crossref]

Srivastava, T.

T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48(6), 334 (2016).
[Crossref]

Srivastava, Y. K.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Su, Z.

Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, “All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles,” Org. Electron. 39, 71–76 (2016).
[Crossref]

Sun, X.

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref]

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Taya, S.

S. Taya, M. Shabat, and H. Khalil, “Enhancement of sensitivity in optical waveguide sensors using left-handed materials,” Optik (Stuttg.) 120(10), 504–508 (2009).
[Crossref]

Taylor, A. D.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Labelfree detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Wang, G.

Wang, J.

Wang, Q.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensor Actuat. Biol. Chem. 249, 542–548 (2017).

Wen, S.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Wu, L.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly Sensitive Terahertz Gas Sensor Based on Surface Plasmon Resonance With Graphene,” IEEE. Photon. J. 10, 6800507 (2018).

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensor Actuat. Biol. Chem. 249, 542–548 (2017).

B. Ruan, J. Guo, L. Wu, J. Zhu, Q. You, X. Dai, and Y. Xiang, “Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure,” Sensors (Basel) 17(8), 1924 (2017).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor,” IEEE Photonics J. 8(2), 4801409 (2016).
[Crossref]

L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

Xiang, Y.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly Sensitive Terahertz Gas Sensor Based on Surface Plasmon Resonance With Graphene,” IEEE. Photon. J. 10, 6800507 (2018).

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensor Actuat. Biol. Chem. 249, 542–548 (2017).

B. Ruan, J. Guo, L. Wu, J. Zhu, Q. You, X. Dai, and Y. Xiang, “Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure,” Sensors (Basel) 17(8), 1924 (2017).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor,” IEEE Photonics J. 8(2), 4801409 (2016).
[Crossref]

J. Guo, L. Jiang, X. Dai, and Y. Xiang, “Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength,” Opt. Express 24(5), 4740–4748 (2016).
[Crossref]

L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Xiao, F.

Xu, H.

Yamaguchi, I.

Yamamoto, M.

Yang, D.

Yee, S. S.

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

You, Q.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly Sensitive Terahertz Gas Sensor Based on Surface Plasmon Resonance With Graphene,” IEEE. Photon. J. 10, 6800507 (2018).

B. Ruan, J. Guo, L. Wu, J. Zhu, Q. You, X. Dai, and Y. Xiang, “Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure,” Sensors (Basel) 17(8), 1924 (2017).
[Crossref]

Yu, M.

M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, “Progress in Research on Graphene-based Composite Supercapacitor Materials,” J. Mater. Eng. 44, 101–111 (2016).

Zeng, C.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Zhan, Y.

Y. Zhan, D. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref]

Zhang, F.

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Zhang, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80(1), 407–410 (2009).
[Crossref]

Zhao, H.

Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, “All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles,” Org. Electron. 39, 71–76 (2016).
[Crossref]

Zhao, J.

Zhu, J.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly Sensitive Terahertz Gas Sensor Based on Surface Plasmon Resonance With Graphene,” IEEE. Photon. J. 10, 6800507 (2018).

B. Ruan, J. Guo, L. Wu, J. Zhu, Q. You, X. Dai, and Y. Xiang, “Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure,” Sensors (Basel) 17(8), 1924 (2017).
[Crossref]

ACS Nano (1)

P. Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

Adv. Opt. Mater. (2)

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q Plasmonic Fano Resonance for Multiband Surface-Enhanced Infrared Absorption of Molecular Vibrational Sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Anal. Bioanal. Chem. (2)

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Labelfree detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[Crossref]

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bioanal. Chem. 387(4), 1449–1458 (2007).
[Crossref]

Appl. Phys. Express (1)

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

IEEE Photonics J. (1)

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor,” IEEE Photonics J. 8(2), 4801409 (2016).
[Crossref]

IEEE. Photon. J. (1)

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly Sensitive Terahertz Gas Sensor Based on Surface Plasmon Resonance With Graphene,” IEEE. Photon. J. 10, 6800507 (2018).

Int. J. Food Microbiol. (1)

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref]

J. Appl. Phys. (1)

K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, “Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles,” J. Appl. Phys. 121(2), 023102 (2017).
[Crossref]

J. Food Prot. (1)

A. Rasooly, “Surface plasmon resonance analysis of staphylococcal enterotoxin B in food,” J. Food Prot. 64(1), 37–43 (2001).
[Crossref]

J. Mater. Eng. (1)

M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, “Progress in Research on Graphene-based Composite Supercapacitor Materials,” J. Mater. Eng. 44, 101–111 (2016).

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

S. Hayashi, D. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
[Crossref]

Nanoscale (1)

Y. Zhan, D. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref]

Nat. Photonics (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48(6), 334 (2016).
[Crossref]

Optik (Stuttg.) (1)

S. Taya, M. Shabat, and H. Khalil, “Enhancement of sensitivity in optical waveguide sensors using left-handed materials,” Optik (Stuttg.) 120(10), 504–508 (2009).
[Crossref]

Org. Electron. (1)

Y. Gao, F. Jin, Z. Su, H. Zhao, Y. Luo, B. Chu, and W. Li, “All thermal-evaporated surface plasmon enhanced organic solar cells by Au nanoparticles,” Org. Electron. 39, 71–76 (2016).
[Crossref]

Photon. Res. (2)

Phys. Rev. (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Rep. (2)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref]

Sensor Actuat. Biol. Chem. (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat. Biol. Chem. 54, 3–15 (1999).

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sensor Actuat. Biol. Chem. 111, 416–422 (2005).

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensor Actuat. Biol. Chem. 249, 542–548 (2017).

Sensors (Basel) (1)

B. Ruan, J. Guo, L. Wu, J. Zhu, Q. You, X. Dai, and Y. Xiang, “Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure,” Sensors (Basel) 17(8), 1924 (2017).
[Crossref]

Talanta (1)

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80(1), 407–410 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram and the corresponding reflection spectra of (a) PWG 1, (b) PWG 2, and (c) proposed Fano resonance structure.
Fig. 2
Fig. 2 Effective refractive indices of PWG 1 and PWG 2.
Fig. 3
Fig. 3 (a) Reflectance as a function of the incident angle for different thickness d2. (b) Electric field profiles (field enhancement factors) with d2 = 89nm, d 1 = 450 nm and d 3 = 1100 nm for the triangular marks and (c) for the circular marks.
Fig. 4
Fig. 4 (a) Reflectance as a function of the incident angle and the layer number of graphene; (b) Reflectance as a function of the incident angle for different thickness of coupling layer d3; (c) Reflectance as a function of the incident angle and the thickness of cytop d1; (d) The change of the reflectance dip in the multilayer thin films structure with the increase of the refractive index of water by 1.0 × 10−4.
Fig. 5
Fig. 5 Reflectance as a function of incident angle for different refractive index of sensing medium with (a) TM mode, (b) TE mode, where d 1 = 340 nm, d 2 = 42 nm d 3 = 1040 nm, d 4 = 40 nm, and L = 1. (c) The dependence of FOM on the refractive index of sensing medium with both polarized modes, the inset shows the traditional SPR sensor based on 50 nm thick Au.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

tan h α 2 d 2 = Γ 1 + Γ 3 1 + Γ 1 Γ 3
σ intra = i e 2 K B T π 2 ( ω + i τ ) [ E F K B T + 2 ln ( e E F K B T + 1 ) ] ,
σ inter = i e 2 4 π ln | 2 E F ( ω + i τ ) 2 E F + ( ω + i τ ) | ,
tan k 4 z d 4 = k 4 z ( p 3 α 3 + p s α s ) k 4 z 2 p 3 α 3 p s α s ,
[ U 1 V 1 ] = M [ U N 1 V N 1 ] ,
M = k = 2 N 1 M k = [ M 11 M 12 M 21 M 22 ] ,
M k = = [ cos β k ( i sin β k ) / q k i q k sin β k cos β k ] ,
r p = ( M 11 + M 12 q N ) q 1 ( M 21 + M 22 q N ) ( M 11 + M 12 q N ) q 1 + ( M 21 + M 22 q N ) .
R = | r p | 2

Metrics