Abstract

Microscale local strain gauges with low-power consumption and large strain range were demonstrated by integrating microdisk lasers in a deformable and flexible polymer substrate. The lasing spectra of microdisk lasers were sensitive to substrate deformation and can be modulated by strains. The measured relative wavelength tuning under strains of the novel strain sensors illustrated a linear behavior with the gauge factor being ~4.0 nm and ~6.7 nm per stretching unit for microdisk lasers with the diameter of 1.2 μm and 1.5 μm, which corresponding to a smooth wavelength tuning of 1.5 nm and 2.6 nm under 36% strain, respectively. In addition, to being used as microscale strain gauges, the visible lasers on the deformable substrate can also function as a tunable light source for the photonic integrated circuits and flexible laser projection displays.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Proposal and numerical study of a flexible visible photonic crystal defect cavity for nanoscale strain sensors

Jie Zhou, Taojie Zhou, Jiagen Li, Kebo He, Zhiren Qiu, Bocang Qiu, and Zhaoyu Zhang
Opt. Express 25(20) 23645-23653 (2017)

Flexible compact microdisk lasers on a polydimethylsiloxane (PDMS) substrate

M. H. Shih, K. S. Hsu, Y. C. Wang, Y. C. Yang, S. K. Tsai, Y. C. Liu, Z. C. Chang, and M. C. Wu
Opt. Express 17(2) 991-996 (2009)

Compact optical curvature sensor with a flexible microdisk laser on a polymer substrate

M. H. Shih, K. S. Hsu, Wan Kunag, Y. C. Yang, Y. C. Wang, S. K. Tsai, Y. C. Liu, Z. C. Chang, and M. C. Wu
Opt. Lett. 34(18) 2733-2735 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
    [Crossref] [PubMed]
  2. Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Controlled buckling of semiconductor nanoribbons for stretchable electronics,” Nat. Nanotechnol. 1(3), 201–207 (2006).
    [Crossref] [PubMed]
  3. J. W. Boley, E. L. White, G. T. C. Chiu, and R. K. Kramer, “Direct writing of gallium‐indium alloy for stretchable electronics,” Adv. Funct. Mater. 24(23), 3501–3507 (2014).
    [Crossref]
  4. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
    [Crossref] [PubMed]
  5. S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
    [Crossref] [PubMed]
  6. J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
    [Crossref] [PubMed]
  7. D. Y. Khang, J. A. Rogers, and H. H. Lee, “Mechanical buckling: mechanics, metrology, and stretchable electronics,” Adv. Funct. Mater. 19(10), 1526–1536 (2009).
    [Crossref]
  8. D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. Rogers, “Stretchable, curvilinear electronics based on inorganic materials,” Adv. Mater. 22(19), 2108–2124 (2010).
    [Crossref] [PubMed]
  9. K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
    [Crossref] [PubMed]
  10. D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6(12), 788–792 (2011).
    [Crossref] [PubMed]
  11. D. H. Kim and J. A. Rogers, “Stretchable electronics: materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008).
    [Crossref]
  12. R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
    [Crossref] [PubMed]
  13. J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
    [Crossref] [PubMed]
  14. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
    [Crossref] [PubMed]
  15. X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
    [Crossref] [PubMed]
  16. C. Pang, G.-Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres,” Nat. Mater. 11(9), 795–801 (2012).
    [Crossref] [PubMed]
  17. T.-W. Lu, C.-C. Wu, C. Wang, and P.-T. Lee, “Compressible 1D photonic crystal nanolasers with wide wavelength tuning,” Opt. Lett. 42(12), 2267–2270 (2017).
    [Crossref] [PubMed]
  18. J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
    [Crossref] [PubMed]
  19. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
    [Crossref] [PubMed]
  20. Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
    [Crossref] [PubMed]
  21. N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4(9), 1151–1156 (2017).
    [Crossref]
  22. C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
    [Crossref]
  23. A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
    [Crossref]
  24. Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
    [Crossref]
  25. M. H. Shih, K.-S. Hsu, W. Kunag, Y.-C. Yang, Y. C. Wang, S. K. Tsai, Y. C. Liu, Z. C. Chang, and M. C. Wu, “Compact optical curvature sensor with a flexible microdisk laser on a polymer substrate,” Opt. Lett. 34(18), 2733–2735 (2009).
    [Crossref] [PubMed]
  26. B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
    [Crossref]
  27. L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett. 22(17), 1270–1272 (2010).
    [Crossref]
  28. K. Hoshino and I. Shimoyama, “An elastic thin-film microlens array with a pneumatic actuator,” in Micro Electro Mechanical Systems,2001. MEMS 2001. The 14th IEEE International Conference on, (IEEE, 2001), 321–324.
    [Crossref]

2017 (2)

2016 (1)

J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref] [PubMed]

2014 (2)

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

J. W. Boley, E. L. White, G. T. C. Chiu, and R. K. Kramer, “Direct writing of gallium‐indium alloy for stretchable electronics,” Adv. Funct. Mater. 24(23), 3501–3507 (2014).
[Crossref]

2013 (2)

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

2012 (1)

C. Pang, G.-Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres,” Nat. Mater. 11(9), 795–801 (2012).
[Crossref] [PubMed]

2011 (3)

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref] [PubMed]

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6(12), 788–792 (2011).
[Crossref] [PubMed]

2010 (7)

D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. Rogers, “Stretchable, curvilinear electronics based on inorganic materials,” Adv. Mater. 22(19), 2108–2124 (2010).
[Crossref] [PubMed]

K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
[Crossref] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref] [PubMed]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett. 22(17), 1270–1272 (2010).
[Crossref]

2009 (3)

M. H. Shih, K.-S. Hsu, W. Kunag, Y.-C. Yang, Y. C. Wang, S. K. Tsai, Y. C. Liu, Z. C. Chang, and M. C. Wu, “Compact optical curvature sensor with a flexible microdisk laser on a polymer substrate,” Opt. Lett. 34(18), 2733–2735 (2009).
[Crossref] [PubMed]

D. Y. Khang, J. A. Rogers, and H. H. Lee, “Mechanical buckling: mechanics, metrology, and stretchable electronics,” Adv. Funct. Mater. 19(10), 1526–1536 (2009).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

2008 (3)

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

D. H. Kim and J. A. Rogers, “Stretchable electronics: materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008).
[Crossref]

J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
[Crossref] [PubMed]

2007 (1)

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[Crossref]

2006 (1)

Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Controlled buckling of semiconductor nanoribbons for stretchable electronics,” Nat. Nanotechnol. 1(3), 201–207 (2006).
[Crossref] [PubMed]

2004 (1)

Ahn, S.-H.

C. Pang, G.-Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres,” Nat. Mater. 11(9), 795–801 (2012).
[Crossref] [PubMed]

Anetsberger, G.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

Arcizet, O.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

Armani, D. K.

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Bao, G.

J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
[Crossref] [PubMed]

Bao, Z.

D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6(12), 788–792 (2011).
[Crossref] [PubMed]

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Barman, S.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Bauer, S.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Bauer-Gogonea, S.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Behnaz, A.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Bian, Z.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Boley, J. W.

J. W. Boley, E. L. White, G. T. C. Chiu, and R. K. Kramer, “Direct writing of gallium‐indium alloy for stretchable electronics,” Adv. Funct. Mater. 24(23), 3501–3507 (2014).
[Crossref]

Bonifas, A. P.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Cai, Z.

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

Chang, Z. C.

Chen, C. V. H.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Cheng, H.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Chiu, G. T. C.

J. W. Boley, E. L. White, G. T. C. Chiu, and R. K. Kramer, “Direct writing of gallium‐indium alloy for stretchable electronics,” Adv. Funct. Mater. 24(23), 3501–3507 (2014).
[Crossref]

Choi, J.-H.

J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref] [PubMed]

Choi, W. M.

Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Controlled buckling of semiconductor nanoribbons for stretchable electronics,” Nat. Nanotechnol. 1(3), 201–207 (2006).
[Crossref] [PubMed]

Ding, T.

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

Dong, C.-H.

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Drack, M.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Duan, Z.

Fearing, R. S.

K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
[Crossref] [PubMed]

Fei, P.

J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
[Crossref] [PubMed]

Fox, C. H.

D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6(12), 788–792 (2011).
[Crossref] [PubMed]

Futaba, D. N.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref] [PubMed]

Gaddam, V.

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Gao, Y.

J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
[Crossref] [PubMed]

Gillies, A. G.

K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
[Crossref] [PubMed]

Gong, Q.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Gorbach, A. M.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Graz, I.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Gu, Y.

J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
[Crossref] [PubMed]

Gu, Z.

Guo, G.-C.

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Han, H.

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

Han, Z.-F.

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Hata, K.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref] [PubMed]

Hayamizu, Y.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref] [PubMed]

He, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Hellstrom, S. L.

D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6(12), 788–792 (2011).
[Crossref] [PubMed]

Ho, J. C.

K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
[Crossref] [PubMed]

Hong, T.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[Crossref]

Hsu, K.-S.

Huang, S. H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Huang, Y.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref] [PubMed]

D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. Rogers, “Stretchable, curvilinear electronics based on inorganic materials,” Adv. Mater. 22(19), 2108–2124 (2010).
[Crossref] [PubMed]

Huang, Y. Y.

Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Controlled buckling of semiconductor nanoribbons for stretchable electronics,” Nat. Nanotechnol. 1(3), 201–207 (2006).
[Crossref] [PubMed]

Hwang, M.-S.

J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref] [PubMed]

Izadi-Najafabadi, A.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref] [PubMed]

Javey, A.

K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
[Crossref] [PubMed]

Jiang, H.

Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Controlled buckling of semiconductor nanoribbons for stretchable electronics,” Nat. Nanotechnol. 1(3), 201–207 (2006).
[Crossref] [PubMed]

Jiang, X.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Kaltenbrunner, M.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Khang, D. Y.

D. Y. Khang, J. A. Rogers, and H. H. Lee, “Mechanical buckling: mechanics, metrology, and stretchable electronics,” Adv. Funct. Mater. 19(10), 1526–1536 (2009).
[Crossref]

Kim, D. H.

D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. Rogers, “Stretchable, curvilinear electronics based on inorganic materials,” Adv. Mater. 22(19), 2108–2124 (2010).
[Crossref] [PubMed]

D. H. Kim and J. A. Rogers, “Stretchable electronics: materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008).
[Crossref]

Kim, H. N.

C. Pang, G.-Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres,” Nat. Mater. 11(9), 795–801 (2012).
[Crossref] [PubMed]

Kim, K.-H.

J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref] [PubMed]

Kim, S. M.

C. Pang, G.-Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres,” Nat. Mater. 11(9), 795–801 (2012).
[Crossref] [PubMed]

Kim, T. I.

C. Pang, G.-Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres,” Nat. Mater. 11(9), 795–801 (2012).
[Crossref] [PubMed]

Kim, Y.-S.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Kippenberg, T. J.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

Ko, H.

K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
[Crossref] [PubMed]

Kramer, R. K.

J. W. Boley, E. L. White, G. T. C. Chiu, and R. K. Kramer, “Direct writing of gallium‐indium alloy for stretchable electronics,” Adv. Funct. Mater. 24(23), 3501–3507 (2014).
[Crossref]

Kunag, W.

Kuribara, K.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Kwon, S.-H.

J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref] [PubMed]

Lee, G.-Y.

C. Pang, G.-Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres,” Nat. Mater. 11(9), 795–801 (2012).
[Crossref] [PubMed]

Lee, H. H.

D. Y. Khang, J. A. Rogers, and H. H. Lee, “Mechanical buckling: mechanics, metrology, and stretchable electronics,” Adv. Funct. Mater. 19(10), 1526–1536 (2009).
[Crossref]

Lee, J. A.

D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6(12), 788–792 (2011).
[Crossref] [PubMed]

Lee, J. M.

J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref] [PubMed]

Lee, P.-T.

Leu, P. W.

K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
[Crossref] [PubMed]

Li, B.-B.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Li, Y.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Lipomi, D. J.

D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6(12), 788–792 (2011).
[Crossref] [PubMed]

Liu, L.

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett. 22(17), 1270–1272 (2010).
[Crossref]

Liu, S.

Liu, V.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[Crossref]

Liu, Y.

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

Liu, Y. C.

Liu, Z.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Long, G. L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Lu, T.-W.

Mai, W.

J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
[Crossref] [PubMed]

Mannsfeld, S. C.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Monifi, F.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Muir, B. V.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

No, Y.-S.

J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref] [PubMed]

Ozdemir, S.

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Özdemir, S. K.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Pang, C.

C. Pang, G.-Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres,” Nat. Mater. 11(9), 795–801 (2012).
[Crossref] [PubMed]

Park, H.-G.

J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref] [PubMed]

Park, J. S.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Peng, B.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Reeder, J.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Reese, C.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Regreny, P.

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett. 22(17), 1270–1272 (2010).
[Crossref]

Rivière, R.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

Roelkens, G.

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett. 22(17), 1270–1272 (2010).
[Crossref]

Rogers, J. A.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref] [PubMed]

D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. Rogers, “Stretchable, curvilinear electronics based on inorganic materials,” Adv. Mater. 22(19), 2108–2124 (2010).
[Crossref] [PubMed]

D. Y. Khang, J. A. Rogers, and H. H. Lee, “Mechanical buckling: mechanics, metrology, and stretchable electronics,” Adv. Funct. Mater. 19(10), 1526–1536 (2009).
[Crossref]

D. H. Kim and J. A. Rogers, “Stretchable electronics: materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008).
[Crossref]

Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Controlled buckling of semiconductor nanoribbons for stretchable electronics,” Nat. Nanotechnol. 1(3), 201–207 (2006).
[Crossref] [PubMed]

Rojo-Romeo, P.

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett. 22(17), 1270–1272 (2010).
[Crossref]

Rong, Y.

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

Scherer, A.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[Crossref]

Schliesser, A.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

Schwödiauer, R.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Sekitani, T.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Shi, M.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Shih, M. H.

So, J.-P.

J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref] [PubMed]

Sokolov, A. N.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Someya, T.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref] [PubMed]

Song, J.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. Rogers, “Stretchable, curvilinear electronics based on inorganic materials,” Adv. Mater. 22(19), 2108–2124 (2010).
[Crossref] [PubMed]

Song, Q.

Spillane, S. M.

Spuesens, T.

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett. 22(17), 1270–1272 (2010).
[Crossref]

Stoltenberg, R. M.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Suh, K.-Y.

C. Pang, G.-Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres,” Nat. Mater. 11(9), 795–801 (2012).
[Crossref] [PubMed]

Sun, W.

Sun, Y.

Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Controlled buckling of semiconductor nanoribbons for stretchable electronics,” Nat. Nanotechnol. 1(3), 201–207 (2006).
[Crossref] [PubMed]

Takahashi, T.

K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
[Crossref] [PubMed]

Takei, K.

K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
[Crossref] [PubMed]

Tee, B. C.

D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6(12), 788–792 (2011).
[Crossref] [PubMed]

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Tokuhara, T.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Tsai, S. K.

Vahala, K.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[Crossref]

Vahala, K. J.

Van Thourhout, D.

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett. 22(17), 1270–1272 (2010).
[Crossref]

Vosgueritchian, M.

D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6(12), 788–792 (2011).
[Crossref] [PubMed]

Wang, C.

Wang, Q.-Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Wang, S.

Wang, Y.

Wang, Y. C.

Wang, Z. L.

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
[Crossref] [PubMed]

Webb, R. C.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

White, E. L.

J. W. Boley, E. L. White, G. T. C. Chiu, and R. K. Kramer, “Direct writing of gallium‐indium alloy for stretchable electronics,” Adv. Funct. Mater. 24(23), 3501–3507 (2014).
[Crossref]

Wu, C.-C.

Wu, M. C.

Xiao, J.

D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. Rogers, “Stretchable, curvilinear electronics based on inorganic materials,” Adv. Mater. 22(19), 2108–2124 (2010).
[Crossref] [PubMed]

Xiao, L.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Xiao, S.

Xiao, X.

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

Xiao, Y.-F.

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4(9), 1151–1156 (2017).
[Crossref]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Yamada, T.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref] [PubMed]

Yamamoto, Y.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref] [PubMed]

Yang, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[Crossref]

Yang, R.

J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
[Crossref] [PubMed]

Yang, X.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Yang, Y.-C.

Yeo, W. H.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Yilmaz, H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Yokota, T.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

Yomogida, Y.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref] [PubMed]

Yu, K. J.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Yuan, L.

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

Zhang, N.

Zhang, Y.

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[Crossref]

Zhong, J.

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

Zhou, J.

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
[Crossref] [PubMed]

Zhu, J.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

J. W. Boley, E. L. White, G. T. C. Chiu, and R. K. Kramer, “Direct writing of gallium‐indium alloy for stretchable electronics,” Adv. Funct. Mater. 24(23), 3501–3507 (2014).
[Crossref]

D. Y. Khang, J. A. Rogers, and H. H. Lee, “Mechanical buckling: mechanics, metrology, and stretchable electronics,” Adv. Funct. Mater. 19(10), 1526–1536 (2009).
[Crossref]

Adv. Mater. (3)

D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. Rogers, “Stretchable, curvilinear electronics based on inorganic materials,” Adv. Mater. 22(19), 2108–2124 (2010).
[Crossref] [PubMed]

D. H. Kim and J. A. Rogers, “Stretchable electronics: materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008).
[Crossref]

X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou, and Z. L. Wang, “High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films,” Adv. Mater. 23(45), 5440–5444 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[Crossref]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Liu, T. Spuesens, G. Roelkens, D. Van Thourhout, P. Regreny, and P. Rojo-Romeo, “A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits,” IEEE Photonics Technol. Lett. 22(17), 1270–1272 (2010).
[Crossref]

Nano Lett. (2)

J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett. 8(9), 3035–3040 (2008).
[Crossref] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

J.-H. Choi, Y.-S. No, J.-P. So, J. M. Lee, K.-H. Kim, M.-S. Hwang, S.-H. Kwon, and H.-G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref] [PubMed]

Nat. Mater. (4)

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater. 9(10), 821–826 (2010).
[Crossref] [PubMed]

C. Pang, G.-Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres,” Nat. Mater. 11(9), 795–801 (2012).
[Crossref] [PubMed]

R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterization of human skin,” Nat. Mater. 12(10), 938–944 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Controlled buckling of semiconductor nanoribbons for stretchable electronics,” Nat. Nanotechnol. 1(3), 201–207 (2006).
[Crossref] [PubMed]

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref] [PubMed]

D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6(12), 788–792 (2011).
[Crossref] [PubMed]

Nature (1)

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499(7459), 458–463 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]

Opt. Lett. (3)

Optica (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Science (1)

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref] [PubMed]

Other (1)

K. Hoshino and I. Shimoyama, “An elastic thin-film microlens array with a pneumatic actuator,” in Micro Electro Mechanical Systems,2001. MEMS 2001. The 14th IEEE International Conference on, (IEEE, 2001), 321–324.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagrams of key fabrication processes for the proposed microscale strain gauges. Visible microdisk resonators with mushroom shape were fabricated (a) and embedded in the PDMS polymer (b). The resonators were peeled off form the hard substrate and embedded in the flexible substrate with the supporting posts being selectively removed by wet-etching (c). Photography and optical microscopic images of compact microdisk resonators embedded in a PDMS substrate (d). (e) indicates a tilted SEM image of microdisk resonator with diameter 1.2 μm before being embedded in PDMS.
Fig. 2
Fig. 2 (a) Calculated normalized intensity spectra map for a micodisk resonator embedded in polymer with refractive index changing from 1.2 to 1.4. The index and diameter of microdisk is 3.4 and 1.2 μm, respectively. The inset illustrates a magnified normalized intensity map of spectra for TE1,13 mode. (b) 1-D slice of the normalized spectra map with refractive index n = 1.26 of polymer. (c) Calculated Q factors of three first-order WGMs: TE1,14, TE1,13 and TE1,12, respectively. (d) - (h) Calculated magnetic field profiles of various WGMs. Resonant modes from (d) to (h) are identified as TE1,14, TE2,10, TE1,13 TE2,9 and TE1,12, respectively. The green dashed line indicates the boundary of microdisk.
Fig. 3
Fig. 3 The single-mode lasing spectra of a microdisk laser with diameter 1.2 μm embedded in the flexible PDMS substrate without stretching (a) and the inset indicates the lasing wavelengths under different pumping power. Collected output power and measured linewidth of the lasing wavelength as a function of peak pumping power are plotted in (b), and the lasing threshold is ~580 μW. Calculated magnetic field top-view (c) and side-view (d) profiles of WGM mode of microdisk with diameter 1.2 μm embedded in PDMS.
Fig. 4
Fig. 4 Measured lasing spectra from a microdisk laser with diameter 1.2 μm under various stretching conditions (a). The inset in (a) indicates the lasing spectra without stretching (b). Measured lasing wavelength shift under various stretching conditions for four microdisk lasers with diameter 1.2 μm and the inset illustrates the stretching diagram of microdisk lasers embedded in PDMS.
Fig. 5
Fig. 5 Spectra characteristics of a microdisk laser with diameter of 1.5 μm embedded in flexible PDMS. Measured lasing wavelength shifts and Q factors under various stretching conditions (a). (b) The normalized lasing spectra with 0%, 8%, 16%, 24% 36% stretching percentage, respectively. (c) and (d) showing the L-L curves of lasing at 0% and 36% stretching, respectively.

Metrics