Abstract

Here we numerically and experimentally explore the rich phenomena in the optical responses and local electromagnetic fields of a MIM absorber mediated by the dispersive spacer. We first show that the line shape of the spectral absorption is strongly modified by the interaction between the plasmonic resonances and the optical phonons in the silicon dioxide spacer. Importantly, broadening the spectral absorption in the long wave infrared range is achieved by tuning the strength of coupling. Modification to the local electromagnetic field distribution in the epsilon-near-zero region is also numerically studied. The incident-angle dependence and polarization dependence of the broadened absorption spectrum are evaluated. We also show that the spectral broadening mechanism can be generalized to other frequency bands by employing different spacing materials such as silicon nitride and polydimethylsiloxane. Our results can be useful for designing spectrally selective thermal detectors and thermal emitters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Role of epsilon-near-zero substrates in the optical response of plasmonic antennas

Jongbum Kim, Aveek Dutta, Gururaj V. Naik, Alexander J. Giles, Francisco J. Bezares, Chase T. Ellis, Joseph G. Tischler, Ahmed M. Mahmoud, Humeyra Caglayan, Orest J. Glembocki, Alexander V. Kildishev, Joshua D. Caldwell, Alexandra Boltasseva, and Nader Engheta
Optica 3(3) 339-346 (2016)

Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging

Junyu Li, Li Bao, Shun Jiang, Qiushi Guo, Dehui Xu, Bin Xiong, Guangzu Zhang, and Fei Yi
Opt. Express 27(6) 8375-8386 (2019)

Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber

James Grant, Iain J. H. McCrindle, and David R. S. Cumming
Opt. Express 24(4) 3451-3463 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  3. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [Crossref]
  4. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  5. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  6. G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
    [Crossref] [PubMed]
  7. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  8. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  9. H. Zhu, F. Yi, and E. Cubukcu, “Nanoantenna Absorbers for Thermal Detectors,” IEEE Photonic Tech L 24(14), 1194–1196 (2012).
    [Crossref]
  10. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
    [Crossref] [PubMed]
  11. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  12. J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
    [Crossref] [PubMed]
  13. C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [Crossref]
  14. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
    [Crossref] [PubMed]
  15. A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
    [Crossref] [PubMed]
  16. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
    [Crossref] [PubMed]
  17. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  18. P. T. Bowen, A. Baron, and D. R. Smith, “Theory of patch-antenna metamaterial perfect absorbers,” Phys. Rev. A 93(6), 063849 (2016).
    [Crossref]
  19. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
    [Crossref]
  20. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J Opt. 14(2), 024005 (2012).
    [Crossref]
  21. J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong Coupling of Molecular and Mid-Infrared Perfect Absorber Resonances,” IEEE Photonic Tech L 24(1), 31–33 (2012).
    [Crossref]
  22. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale Metamaterials and Phonons,” Nano Lett. 11(5), 2104–2108 (2011).
    [Crossref] [PubMed]
  23. C. Huck, J. Vogt, T. Neuman, T. Nagao, R. Hillenbrand, J. Aizpurua, A. Pucci, and F. Neubrech, “Strong coupling between phonon-polaritons and plasmonic nanorods,” Opt. Express 24(22), 25528–25539 (2016).
    [Crossref] [PubMed]
  24. Y.-B. Chen and F.-C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
    [Crossref] [PubMed]
  25. F. Liu, T. Zhan, A. Y. Zhu, F. Yi, and W. Shi, “Band structure and dispersion engineering of strongly coupled plasmon-phonon-polaritons in graphene-integrated structures,” Opt. Express 24(2), 1480–1494 (2016).
    [Crossref] [PubMed]
  26. I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
    [Crossref]
  27. M. K. Gunde, “Vibrational modes in amorphous silicon dioxide,” Physica B 292(3-4), 286–295 (2000).
    [Crossref]
  28. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  29. Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
    [Crossref] [PubMed]
  30. J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–346 (2016).
    [Crossref]
  31. S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-Near-Zero Modes for Tailored Light-Matter Interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
    [Crossref]
  32. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
    [Crossref] [PubMed]
  33. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer New York, 2010).
  34. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
    [Crossref]
  35. S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
    [Crossref]
  36. Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
    [Crossref] [PubMed]
  37. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
    [Crossref] [PubMed]
  38. V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
    [Crossref] [PubMed]
  39. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
    [Crossref] [PubMed]
  40. Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
  41. W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
    [Crossref]
  42. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  43. J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
  44. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]
  45. S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
    [Crossref] [PubMed]
  46. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  47. Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared Refractive Index and Extinction Coefficient of Polyimide Films,” Int. J. Thermophys. 19(3), 905–916 (1998).
    [Crossref]
  48. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2017 (5)

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref] [PubMed]

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

2016 (5)

2015 (1)

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-Near-Zero Modes for Tailored Light-Matter Interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

2014 (6)

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

2013 (6)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Y.-B. Chen and F.-C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

2012 (7)

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J Opt. 14(2), 024005 (2012).
[Crossref]

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong Coupling of Molecular and Mid-Infrared Perfect Absorber Resonances,” IEEE Photonic Tech L 24(1), 31–33 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

H. Zhu, F. Yi, and E. Cubukcu, “Nanoantenna Absorbers for Thermal Detectors,” IEEE Photonic Tech L 24(14), 1194–1196 (2012).
[Crossref]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

2011 (7)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[Crossref] [PubMed]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale Metamaterials and Phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).

2010 (3)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).

2007 (1)

2004 (1)

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

2000 (1)

M. K. Gunde, “Vibrational modes in amorphous silicon dioxide,” Physica B 292(3-4), 286–295 (2000).
[Crossref]

1998 (2)

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref] [PubMed]

Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared Refractive Index and Extinction Coefficient of Polyimide Films,” Int. J. Thermophys. 19(3), 905–916 (1998).
[Crossref]

Aizpurua, J.

Alam, M. Z.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Allen, G.

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong Coupling of Molecular and Mid-Infrared Perfect Absorber Resonances,” IEEE Photonic Tech L 24(1), 31–33 (2012).
[Crossref]

Atwater, H.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
[Crossref] [PubMed]

Atwater, H. A.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Bai, S.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Baron, A.

P. T. Bowen, A. Baron, and D. R. Smith, “Theory of patch-antenna metamaterial perfect absorbers,” Phys. Rev. A 93(6), 063849 (2016).
[Crossref]

Benz, A.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-Near-Zero Modes for Tailored Light-Matter Interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

Bezares, F. J.

Bingham, C.

Boltasseva, A.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–346 (2016).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Boreman, G. D.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale Metamaterials and Phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Bowen, P. T.

P. T. Bowen, A. Baron, and D. R. Smith, “Theory of patch-antenna metamaterial perfect absorbers,” Phys. Rev. A 93(6), 063849 (2016).
[Crossref]

Boyd, R. W.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Brar, V. W.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Brener, I.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-Near-Zero Modes for Tailored Light-Matter Interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale Metamaterials and Phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Burton Neuner, I.

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Butun, B.

Caglayan, H.

Caldwell, J. D.

Campione, S.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-Near-Zero Modes for Tailored Light-Matter Interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

Capasso, F.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Chen, C.

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

Chen, X.

Chen, Y.

Chen, Y.-B.

Chilkoti, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Chiu, F.-C.

Choi, M.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
[Crossref] [PubMed]

Ciracì, C.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Coffey, K. R.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale Metamaterials and Phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Cubukcu, E.

H. Zhu, F. Yi, and E. Cubukcu, “Nanoantenna Absorbers for Thermal Detectors,” IEEE Photonic Tech L 24(14), 1194–1196 (2012).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Cui, Y. X.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).

De Leon, I.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Deng, B.

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

Dereshgi, S. A.

Dewalt, C. J.

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Djurišic, A. B.

Du, K.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Dutta, A.

Elazar, J. M.

Ellis, C. T.

Engheta, N.

Faist, J.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Fan, K.

Fang, N. X.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).

Fung, K. H.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).

Gan, C. H.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Ghobadi, A.

Giles, A. J.

Ginn, J. C.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale Metamaterials and Phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Girard, C.

G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Glembocki, O. J.

Gokbayrak, M.

Greffet, J.-J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guinea, F.

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

Guler, U.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Gunde, M. K.

M. K. Gunde, “Vibrational modes in amorphous silicon dioxide,” Physica B 292(3-4), 286–295 (2000).
[Crossref]

Guo, Q.

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

Hajian, H.

Halas, N. J.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Hao, J.

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Hao, J. M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, S. L.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Hill, R. T.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Hillenbrand, R.

Hirsch, L. R.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Huck, C.

Hugonin, J.-P.

Jacob, Z.

Jang, M. S.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Jonasz, M.

Jun, Y. C.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Kildishev, A. V.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–346 (2016).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kim, J.

Kim, L. B.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
[Crossref] [PubMed]

Kim, S.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
[Crossref] [PubMed]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kitamura, R.

Klem, J. F.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-Near-Zero Modes for Tailored Light-Matter Interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

Kong, J.

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Kumar, A.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).

Lefever-Button, G.

Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared Refractive Index and Extinction Coefficient of Polyimide Films,” Int. J. Thermophys. 19(3), 905–916 (1998).
[Crossref]

Li, C.

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

Li, P.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Li, Q.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Ling, X.

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

Liu, F.

Liu, P. Q.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Liu, S.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-Near-Zero Modes for Tailored Light-Matter Interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Liu, X. L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Lopez, J. J.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Luxmoore, I. J.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Mahmoud, A. M.

Majewski, M. L.

Marquier, F.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Mason, J. A.

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong Coupling of Molecular and Mid-Infrared Perfect Absorber Resonances,” IEEE Photonic Tech L 24(1), 31–33 (2012).
[Crossref]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Mock, J. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Molesky, S.

Montoya, J.

Moreau, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Nagao, T.

Naik, G. V.

Nash, G. R.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Neubrech, F.

Neuman, T.

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J Opt. 14(2), 024005 (2012).
[Crossref]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

O’Neal, D. P.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Ozbay, E.

Padilla, W. J.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).

Pan, M.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Payne, J. D.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Peters, D. W.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale Metamaterials and Phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Pilon, L.

Podolskiy, V. A.

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong Coupling of Molecular and Mid-Infrared Perfect Absorber Resonances,” IEEE Photonic Tech L 24(1), 31–33 (2012).
[Crossref]

Powell, F. R.

Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared Refractive Index and Extinction Coefficient of Polyimide Films,” Int. J. Thermophys. 19(3), 905–916 (1998).
[Crossref]

Pucci, A.

Qiu, M.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[Crossref] [PubMed]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).

Qu, Y.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Rakic, A. D.

Reno, J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Ribaudo, T.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Sarpkaya, I.

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Schulz, S. A.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Shalaev, V. M.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shaner, E.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Shelton, D. J.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale Metamaterials and Phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Sherrott, M.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

Shi, W.

Shvets, G.

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Sinclair, M.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Sinclair, M. B.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-Near-Zero Modes for Tailored Light-Matter Interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale Metamaterials and Phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Smith, D. R.

P. T. Bowen, A. Baron, and D. R. Smith, “Theory of patch-antenna metamaterial perfect absorbers,” Phys. Rev. A 93(6), 063849 (2016).
[Crossref]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Sriram, S.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Stenger, V.

Suen, J. Y.

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Tahir, A. A.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Tian, J.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Tischler, J. G.

Toprak, A.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Upham, J.

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

Valmorra, F.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Vassant, S.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Vogt, J.

Wang, J.

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[Crossref] [PubMed]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).

Wang, Q.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Wang, W.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Wasserman, D.

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong Coupling of Molecular and Mid-Infrared Perfect Absorber Resonances,” IEEE Photonic Tech L 24(1), 31–33 (2012).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

West, J. L.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

Wiley, B. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Xia, F.

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

Xu, J.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).

Yan, M.

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Ye, H.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yi, F.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Zhan, T.

Zhang, Z. M.

Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared Refractive Index and Extinction Coefficient of Polyimide Films,” Int. J. Thermophys. 19(3), 905–916 (1998).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).

Zhu, A. Y.

Zhu, H.

H. Zhu, F. Yi, and E. Cubukcu, “Nanoantenna Absorbers for Thermal Detectors,” IEEE Photonic Tech L 24(14), 1194–1196 (2012).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

ACS Photonics (1)

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Adv. Mater. (3)

Q. Guo, F. Guinea, B. Deng, I. Sarpkaya, C. Li, C. Chen, X. Ling, J. Kong, and F. Xia, “Electrothermal Control of Graphene Plasmon-Phonon Polaritons,” Adv. Mater. 29(31), 1700566 (2017).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Cancer Lett. (1)

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[Crossref] [PubMed]

IEEE Photonic Tech L (2)

H. Zhu, F. Yi, and E. Cubukcu, “Nanoantenna Absorbers for Thermal Detectors,” IEEE Photonic Tech L 24(14), 1194–1196 (2012).
[Crossref]

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strong Coupling of Molecular and Mid-Infrared Perfect Absorber Resonances,” IEEE Photonic Tech L 24(1), 31–33 (2012).
[Crossref]

Int. J. Thermophys. (1)

Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared Refractive Index and Extinction Coefficient of Polyimide Films,” Int. J. Thermophys. 19(3), 905–916 (1998).
[Crossref]

J Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J Opt. 14(2), 024005 (2012).
[Crossref]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Laser Photonics Rev. (2)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Nano Lett. (5)

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale Metamaterials and Phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures,” Nano Lett. 14(7), 3876–3880 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Nature (1)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Opt. Express (7)

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref] [PubMed]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

C. Huck, J. Vogt, T. Neuman, T. Nagao, R. Hillenbrand, J. Aizpurua, A. Pucci, and F. Neubrech, “Strong coupling between phonon-polaritons and plasmonic nanorods,” Opt. Express 24(22), 25528–25539 (2016).
[Crossref] [PubMed]

Y.-B. Chen and F.-C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
[Crossref] [PubMed]

F. Liu, T. Zhan, A. Y. Zhu, F. Yi, and W. Shi, “Band structure and dispersion engineering of strongly coupled plasmon-phonon-polaritons in graphene-integrated structures,” Opt. Express 24(2), 1480–1494 (2016).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (2)

Phys. Rev. A (2)

S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, “Optical response of dipole antennas on an epsilon-near-zero substrate,” Phys. Rev. A 93(6), 063846 (2016).
[Crossref]

P. T. Bowen, A. Baron, and D. R. Smith, “Theory of patch-antenna metamaterial perfect absorbers,” Phys. Rev. A 93(6), 063849 (2016).
[Crossref]

Phys. Rev. Appl. (1)

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-Near-Zero Modes for Tailored Light-Matter Interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

Phys. Rev. B (2)

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Phys. Rev. Lett. (3)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Physica B (1)

M. K. Gunde, “Vibrational modes in amorphous silicon dioxide,” Physica B 292(3-4), 286–295 (2000).
[Crossref]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Other (2)

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer New York, 2010).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the MIM absorber with a top layer of gold nanodisk antenna array, a silicon dioxide spacer and a gold backplate. The configuration of a unit cell of the absorber and the normally incident plane wave excitation used in simulation are also shown. The relevant parameters are: period P of the gold nanodisk array; radius R and thickness t1 of the gold nanodisk; thickness t2 of the spacer and thickness t3 of the gold backplate. The inset is the SEM image of a gold nanodisk antenna array. (b) Optical properties of silicon dioxide in the mid-infrared range. The dielectric functions of silicon dioxide display an ENZ point at 8 μm and two ENP points at 9.4 μm (ENP1) and 12.5 μm (ENP2), respectively.
Fig. 2
Fig. 2 The spectral absorption of the MIM absorber with silicon dioxide spacer (t2 = 500 nm) obtained by (a) simulation and (b) measurement as a function of R. Black dotted line in (a): the simulated resonant wavelength of the MIM absorber with fixed index spacer (t2 = 500 nm, ε = 1.452 = 2.1025) as a function of R. The white dash lines in (a) label the wavelengths of ENZ, ENP1 and ENP2, respectively. (c) Black dash line: the real part Re(ε) of the dielectric function of silicon dioxide; Black solid line and blue dots: the simulated and measured resonant wavelengths of the MIM absorber with silicon dioxide spacer as a function of R ; Red dash line: the dielectric function of the fixed index spacer (ε = 1.452 = 2.1025); Red solid line: the simulated resonant wavelength of the MIM absorber with fixed index spacer as a function of R; (d) Red solid line and black dash-dotted line: The simulated and measured spectral absorption of the MIM absorber with silicon dioxide spacer assuming t2 = 500 nm and R = 1750 nm, respectively and green solid line: the simulated spectral absorption of the MIM absorber with fixed index spacer with t2 = 200 nm and R = 1750 nm. The period P is set to be 5 μm in all the simulations.
Fig. 3
Fig. 3 The near field distribution of the PMA across the ENZ region of the silicon dioxide spacer. (a) The real part and imaginary part dielectric functioin of silicon dioxide and the corresponding spectral absorption from 6 μm to 9 μm. (b)-(i) The distribution of electric field magnitude |E| and electric field vector E at the wavelength of 6.45 μm, 7.34 μm, 7.77 μm, 8.0 μm, 8.4 μm, 8.66 μm, 8.76 μm and 8.97 μm, respectively.
Fig. 4
Fig. 4 Dependence of the absorption spectrum on the incident angle for TE (a) and (c) and TM (b) and (d) polarizations.
Fig. 5
Fig. 5 (a) The SEM image of a MIM absorber with nanorod antennas on the top with the configuration of the unit cell and (b) The simulated and measured absorption spectra of the absorber. The relevant parameters are: L = 3200 nm, W = 1000 nm, t1 = 50 nm, t2 = 500 nm, t3 = 100 nm, P = 4 μm. Scale bar = 20 μm. Calculated (b) and experimental (c) absorption spectra of a series of absorber structures with a variety of L and a fixed W.
Fig. 6
Fig. 6 (a) Simulated absorption spectrum of a MIM absorber with silicon nitride as the spacer and the complex permittivity of silicon nitride. Relevant parameters: R = 1660 nm, t1 = 50 nm, t2 = 1200 nm, t3 = 100 nm, P = 4 μm. (b) The simulated absorption spectra of the silicon nitride based MIM absorber with varied nanodisk radius. (c) Simulated absorption spectrum of a MIM absorber with PDMS as the spacer and the complex permittivity of PDMS. Relevant parameters: R = 1687.5 nm, t1 = 50 nm, t2 = 600 nm, t3 = 100 nm, P = 5 μm. (d) The simulated absorption spectra of the PDMS based MIM absorber with varied nanodisk radius. The white dash lines in (b) and (d) mark the nanodisk radius corresponding to the absorption spectra shown in (a) and (c).
Fig. 7
Fig. 7 The dielectric function of silicon dioxide in the (a) 5 μm–30 μm range (b) 8.5 μm–10.5 μm range (c) 11.5 μm–15.5 μm range and (d) 7.5 μm–8.5 μm range.
Fig. 8
Fig. 8 The spectral absorption of the MIM absorber with (a) 500 nm thick fixed index spacer (ε = 1.452 = 2.1025) (b) 250 nm thick silicon dioxide spacer (c) 500 nm thick silicon dioxide spacer and (d) 750 nm thick silicon dioxide spacer.
Fig. 9
Fig. 9 The distribution of local electromagnetic fields at the resonant wavelengths of the fundamental mode and higher order mode, respectively. (a), (c), (e) The distribution of local electric fields at FM1, FM2 and HM (b), (d),(f) The distribution of the local magnetic fields at FM1, FM2 and HM

Tables (1)

Tables Icon

Table 1 Lorentz model parameters for silicon dioxide

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε( ω )= ε + j=1 N S j ω j 2 ω j 2 ω 2 i γ j

Metrics