Abstract

This paper introduces the application of microscopic dual-view tomographic holography (M-DTH) to measure the 3D position and motion of micro-particles located in dense suspensions. Pairing of elongated traces of the same particle in the two inclined reconstructed fields requires precise matching of the entire sample volume that accounts for the inherent distortions in each view. It is achieved by an iterative volumetric self-calibration method, consisting of mapping one view onto the next, dividing the sample volume into slabs, and cross-correlating the two views. Testing of the procedures using synthetic particle fields with imposed distortion and realistic errors in particle locations shows that the self-calibration method achieves a 3D uncertainty of about 1µm, a third of the particle diameter. Multiplying the corrected intensity fields is used for truncating the elongated traces, whose centers are located within 1µm of the exact value. Without correction, only a small fraction of the traces even overlap. The distortion correction also increases the number of intersecting traces in experimental data along with their intensity. Application of this method for 3D velocity measurements is based on the centroids of the truncated/shortened particle traces. Matching of these traces in successive fields is guided by several criteria, including results of volumetric cross-correlation of the multiplied intensity fields. The resulting 3D velocity distribution is substantially more divergence-free, i.e., satisfies conservation of mass, compared to analysis performed using single-view data. Sample application of the new method shows the 3D flow structure around a pair of cubic roughness elements embedded in the inner part of a high Reynolds number turbulent boundary layer.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single beam two-views holographic particle image velocimetry

Jian Sheng, Edwin Malkiel, and Joseph Katz
Appl. Opt. 42(2) 235-250 (2003)

Polarization-resolved dual-view holographic system for 3D inspection of scattering particles

Johan Öhman, Per Gren, and Mikael Sjödahl
Appl. Opt. 58(34) G31-G40 (2019)

High fidelity digital inline holographic method for 3D flow measurements

Mostafa Toloui and Jiarong Hong
Opt. Express 23(21) 27159-27173 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
    [Crossref]
  2. H. Ling, S. Srinivasan, K. Golovin, G. H. McKinley, A. Tuteja, and J. Katz, “High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces,” J. Fluid Mech. 801, 670–703 (2016).
    [Crossref]
  3. M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28, 044009 (2017).
    [Crossref]
  4. D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
    [Crossref] [PubMed]
  5. J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett. 38, 1893–1895 (2013).
    [Crossref] [PubMed]
  6. D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1670 (2014).
    [Crossref]
  7. C. Li, J. Miller, J. Wang, S. S. Koley, and J. Katz, “Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks,” J. Geophys. Res. Ocean. 122, 7938–7957 (2017).
    [Crossref]
  8. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. 104, 17512–17517 (2007).
    [Crossref] [PubMed]
  9. M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
    [Crossref] [PubMed]
  10. H. Byeon, J. Lee, J. Doh, and S. J. Lee, “Hybrid bright-field and hologram imaging of cell dynamics,” Sci. Reports 6, 33750 (2016).
    [Crossref]
  11. D. R. Guildenbecher, M. A. Cooper, W. Gill, H. L. Stauffacher, M. S. Oliver, and T. W. Grasser, “Quantitative, three-dimensional imaging of aluminum drop combustion in solid propellant plumes via digital in-line holography,” Opt. Lett. 39, 5126–5129 (2014).
    [Crossref] [PubMed]
  12. Y. Wu, L. Yao, X. Wu, J. Chen, G. Gréhan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel. 206, 429–436 (2017).
    [Crossref]
  13. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
    [Crossref]
  14. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [Crossref] [PubMed]
  15. J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).
    [Crossref] [PubMed]
  16. H. Ling and J. Katz, “Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms,” Appl. Opt. 53, G1–G11 (2014).
    [Crossref] [PubMed]
  17. F. Soulez, L. Denis, C. Fournier, Éric Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).
    [Crossref]
  18. D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).
    [Crossref] [PubMed]
  19. K. W. Seo and S. J. Lee, “High-accuracy measurement of depth-displacement using a focus function and its cross-correlation in holographic PTV,” Opt. Express 22, 15542–15553 (2014).
    [Crossref] [PubMed]
  20. M. Toloui and J. Hong, “High fidelity digital inline holographic method for 3D flow measurements,” Opt. Express 23, 27159–27173 (2015).
    [Crossref] [PubMed]
  21. J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
    [Crossref]
  22. J. Sheng, E. Malkiel, and J. Katz, {Single beam two-views holographic particle image velocimetry, Appl. Opt. 42, 235–250 (2003).
    [Crossref] [PubMed]
  23. D. R. Guildenbecher, J. Gao, J. Chen, and P. E. Sojka, “Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography,” Int. J. Multiph. Flow 94, 107–122 (2017).
    [Crossref]
  24. N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
    [Crossref]
  25. H. Byeon, T. Go, and S. J. Lee, “Digital stereo-holographic microscopy for studying three-dimensional particle dynamics,” Opt. Lasers Eng. 105, 6–13 (2018).
    [Crossref]
  26. J. Soria and C. Atkinson, “Towards 3C-3D digital holographic fluid velocity vector field measurement–tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002 (2008).
    [Crossref]
  27. B. Wieneke, “Stereo-piv using self-calibration on particle images,” Exp. Fluids 39, 267–280 (2005).
    [Crossref]
  28. B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45, 549–556 (2008).
    [Crossref]
  29. K. Bai and J. Katz, “On the refractive index of sodium iodide solutions for index matching in PIV,” Exp. Fluids 55, 1704 (2014).
    [Crossref]
  30. J. Hong, J. Katz, and M. P. Schultz, “Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow,” J. Fluid Mech. 667, 1–37 (2011).
    [Crossref]
  31. S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24, 024004 (2013).
    [Crossref]
  32. M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12, 2270–2279 (2004).
    [Crossref] [PubMed]
  33. B. Lecordier and J. Westerweel, “The EUROPIV synthetic image generator (S.I.G.),” in Particle Image Velocimetry: Recent Improvements, M. Stanislas, J. Westerweel, and J. Kompenhans, eds. (SpringerBerlin Heidelberg, Berlin, Heidelberg, 2004), pp. 145–161.
  34. R. J. Adrian and J. Westerweel, Particle Image Velocimetry (Cambridge University, 2011).
  35. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “A PIV algorithm for estimating time-averaged velocity fields,” J. Fluids Eng. 122, 285–289 (2000).
    [Crossref]
  36. R. Martinuzzi and C. Tropea, “The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow (data bank contribution),” J. Fluids Eng. 115, 85–92 (1993).
    [Crossref]
  37. J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
    [Crossref]
  38. C. Wang, Q. Gao, H. Wang, R. Wei, T. Li, and J. Wang, “Divergence-free smoothing for volumetric PIV data,” Exp. Fluids 57, 15 (2016).
    [Crossref]
  39. C. M. de Silva, J. Philip, and I. Marusic, “Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics,” Exp. Fluids 54, 1557 (2013).
    [Crossref]

2018 (1)

H. Byeon, T. Go, and S. J. Lee, “Digital stereo-holographic microscopy for studying three-dimensional particle dynamics,” Opt. Lasers Eng. 105, 6–13 (2018).
[Crossref]

2017 (5)

D. R. Guildenbecher, J. Gao, J. Chen, and P. E. Sojka, “Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography,” Int. J. Multiph. Flow 94, 107–122 (2017).
[Crossref]

M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28, 044009 (2017).
[Crossref]

C. Li, J. Miller, J. Wang, S. S. Koley, and J. Katz, “Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks,” J. Geophys. Res. Ocean. 122, 7938–7957 (2017).
[Crossref]

M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
[Crossref] [PubMed]

Y. Wu, L. Yao, X. Wu, J. Chen, G. Gréhan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel. 206, 429–436 (2017).
[Crossref]

2016 (3)

H. Byeon, J. Lee, J. Doh, and S. J. Lee, “Hybrid bright-field and hologram imaging of cell dynamics,” Sci. Reports 6, 33750 (2016).
[Crossref]

H. Ling, S. Srinivasan, K. Golovin, G. H. McKinley, A. Tuteja, and J. Katz, “High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces,” J. Fluid Mech. 801, 670–703 (2016).
[Crossref]

C. Wang, Q. Gao, H. Wang, R. Wei, T. Li, and J. Wang, “Divergence-free smoothing for volumetric PIV data,” Exp. Fluids 57, 15 (2016).
[Crossref]

2015 (1)

2014 (5)

2013 (6)

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).
[Crossref] [PubMed]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).
[Crossref] [PubMed]

J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett. 38, 1893–1895 (2013).
[Crossref] [PubMed]

C. M. de Silva, J. Philip, and I. Marusic, “Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics,” Exp. Fluids 54, 1557 (2013).
[Crossref]

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24, 024004 (2013).
[Crossref]

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[Crossref]

2011 (2)

J. Hong, J. Katz, and M. P. Schultz, “Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow,” J. Fluid Mech. 667, 1–37 (2011).
[Crossref]

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
[Crossref] [PubMed]

2010 (1)

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[Crossref]

2008 (4)

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[Crossref]

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[Crossref]

B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45, 549–556 (2008).
[Crossref]

J. Soria and C. Atkinson, “Towards 3C-3D digital holographic fluid velocity vector field measurement–tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002 (2008).
[Crossref]

2007 (2)

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. 104, 17512–17517 (2007).
[Crossref] [PubMed]

F. Soulez, L. Denis, C. Fournier, Éric Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).
[Crossref]

2006 (1)

2005 (1)

B. Wieneke, “Stereo-piv using self-calibration on particle images,” Exp. Fluids 39, 267–280 (2005).
[Crossref]

2004 (1)

2003 (1)

2000 (1)

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “A PIV algorithm for estimating time-averaged velocity fields,” J. Fluids Eng. 122, 285–289 (2000).
[Crossref]

1997 (1)

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[Crossref]

1993 (1)

R. Martinuzzi and C. Tropea, “The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow (data bank contribution),” J. Fluids Eng. 115, 85–92 (1993).
[Crossref]

Adolf, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. 104, 17512–17517 (2007).
[Crossref] [PubMed]

Adrian, R. J.

R. J. Adrian and J. Westerweel, Particle Image Velocimetry (Cambridge University, 2011).

Agarwal, K.

M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
[Crossref] [PubMed]

Allano, D.

Atkinson, C.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[Crossref]

J. Soria and C. Atkinson, “Towards 3C-3D digital holographic fluid velocity vector field measurement–tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002 (2008).
[Crossref]

Bai, K.

K. Bai and J. Katz, “On the refractive index of sodium iodide solutions for index matching in PIV,” Exp. Fluids 55, 1704 (2014).
[Crossref]

Belas, R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. 104, 17512–17517 (2007).
[Crossref] [PubMed]

Boucheron, R.

Buchmann, N. A.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[Crossref]

Byeon, H.

H. Byeon, T. Go, and S. J. Lee, “Digital stereo-holographic microscopy for studying three-dimensional particle dynamics,” Opt. Lasers Eng. 105, 6–13 (2018).
[Crossref]

H. Byeon, J. Lee, J. Doh, and S. J. Lee, “Hybrid bright-field and hologram imaging of cell dynamics,” Sci. Reports 6, 33750 (2016).
[Crossref]

Cammarato, A.

M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
[Crossref] [PubMed]

Cen, K.

Y. Wu, L. Yao, X. Wu, J. Chen, G. Gréhan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel. 206, 429–436 (2017).
[Crossref]

Chen, J.

Y. Wu, L. Yao, X. Wu, J. Chen, G. Gréhan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel. 206, 429–436 (2017).
[Crossref]

D. R. Guildenbecher, J. Gao, J. Chen, and P. E. Sojka, “Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography,” Int. J. Multiph. Flow 94, 107–122 (2017).
[Crossref]

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1670 (2014).
[Crossref]

J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett. 38, 1893–1895 (2013).
[Crossref] [PubMed]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).
[Crossref] [PubMed]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).
[Crossref] [PubMed]

Coëtmellec, S.

Cooper, M. A.

Corbin, F.

de Silva, C. M.

C. M. de Silva, J. Philip, and I. Marusic, “Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics,” Exp. Fluids 54, 1557 (2013).
[Crossref]

Denis, L.

Doh, J.

H. Byeon, J. Lee, J. Doh, and S. J. Lee, “Hybrid bright-field and hologram imaging of cell dynamics,” Sci. Reports 6, 33750 (2016).
[Crossref]

Engvall, L.

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1670 (2014).
[Crossref]

Fournier, C.

Fréchou, D.

Fugal, J. P.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[Crossref]

Gao, J.

D. R. Guildenbecher, J. Gao, J. Chen, and P. E. Sojka, “Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography,” Int. J. Multiph. Flow 94, 107–122 (2017).
[Crossref]

M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
[Crossref] [PubMed]

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1670 (2014).
[Crossref]

J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett. 38, 1893–1895 (2013).
[Crossref] [PubMed]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).
[Crossref] [PubMed]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).
[Crossref] [PubMed]

Gao, Q.

C. Wang, Q. Gao, H. Wang, R. Wei, T. Li, and J. Wang, “Divergence-free smoothing for volumetric PIV data,” Exp. Fluids 57, 15 (2016).
[Crossref]

Gill, W.

Go, T.

H. Byeon, T. Go, and S. J. Lee, “Digital stereo-holographic microscopy for studying three-dimensional particle dynamics,” Opt. Lasers Eng. 105, 6–13 (2018).
[Crossref]

Goepfert, C.

Golovin, K.

H. Ling, S. Srinivasan, K. Golovin, G. H. McKinley, A. Tuteja, and J. Katz, “High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces,” J. Fluid Mech. 801, 670–703 (2016).
[Crossref]

Grasser, T. W.

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1670 (2014).
[Crossref]

D. R. Guildenbecher, M. A. Cooper, W. Gill, H. L. Stauffacher, M. S. Oliver, and T. W. Grasser, “Quantitative, three-dimensional imaging of aluminum drop combustion in solid propellant plumes via digital in-line holography,” Opt. Lett. 39, 5126–5129 (2014).
[Crossref] [PubMed]

Gréhan, G.

Y. Wu, L. Yao, X. Wu, J. Chen, G. Gréhan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel. 206, 429–436 (2017).
[Crossref]

Guildenbecher, D. R.

D. R. Guildenbecher, J. Gao, J. Chen, and P. E. Sojka, “Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography,” Int. J. Multiph. Flow 94, 107–122 (2017).
[Crossref]

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1670 (2014).
[Crossref]

D. R. Guildenbecher, M. A. Cooper, W. Gill, H. L. Stauffacher, M. S. Oliver, and T. W. Grasser, “Quantitative, three-dimensional imaging of aluminum drop combustion in solid propellant plumes via digital in-line holography,” Opt. Lett. 39, 5126–5129 (2014).
[Crossref] [PubMed]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).
[Crossref] [PubMed]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).
[Crossref] [PubMed]

J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett. 38, 1893–1895 (2013).
[Crossref] [PubMed]

Hong, J.

M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28, 044009 (2017).
[Crossref]

M. Toloui and J. Hong, “High fidelity digital inline holographic method for 3D flow measurements,” Opt. Express 23, 27159–27173 (2015).
[Crossref] [PubMed]

J. Hong, J. Katz, and M. P. Schultz, “Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow,” J. Fluid Mech. 667, 1–37 (2011).
[Crossref]

Katz, J.

C. Li, J. Miller, J. Wang, S. S. Koley, and J. Katz, “Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks,” J. Geophys. Res. Ocean. 122, 7938–7957 (2017).
[Crossref]

M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
[Crossref] [PubMed]

H. Ling, S. Srinivasan, K. Golovin, G. H. McKinley, A. Tuteja, and J. Katz, “High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces,” J. Fluid Mech. 801, 670–703 (2016).
[Crossref]

K. Bai and J. Katz, “On the refractive index of sodium iodide solutions for index matching in PIV,” Exp. Fluids 55, 1704 (2014).
[Crossref]

H. Ling and J. Katz, “Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms,” Appl. Opt. 53, G1–G11 (2014).
[Crossref] [PubMed]

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24, 024004 (2013).
[Crossref]

J. Hong, J. Katz, and M. P. Schultz, “Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow,” J. Fluid Mech. 667, 1–37 (2011).
[Crossref]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[Crossref]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. 104, 17512–17517 (2007).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, {Single beam two-views holographic particle image velocimetry, Appl. Opt. 42, 235–250 (2003).
[Crossref] [PubMed]

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[Crossref]

Koley, S. S.

C. Li, J. Miller, J. Wang, S. S. Koley, and J. Katz, “Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks,” J. Geophys. Res. Ocean. 122, 7938–7957 (2017).
[Crossref]

Kulkarni, V.

Lebrun, D.

Lecordier, B.

B. Lecordier and J. Westerweel, “The EUROPIV synthetic image generator (S.I.G.),” in Particle Image Velocimetry: Recent Improvements, M. Stanislas, J. Westerweel, and J. Kompenhans, eds. (SpringerBerlin Heidelberg, Berlin, Heidelberg, 2004), pp. 145–161.

Lee, J.

H. Byeon, J. Lee, J. Doh, and S. J. Lee, “Hybrid bright-field and hologram imaging of cell dynamics,” Sci. Reports 6, 33750 (2016).
[Crossref]

Lee, S. J.

H. Byeon, T. Go, and S. J. Lee, “Digital stereo-holographic microscopy for studying three-dimensional particle dynamics,” Opt. Lasers Eng. 105, 6–13 (2018).
[Crossref]

H. Byeon, J. Lee, J. Doh, and S. J. Lee, “Hybrid bright-field and hologram imaging of cell dynamics,” Sci. Reports 6, 33750 (2016).
[Crossref]

K. W. Seo and S. J. Lee, “High-accuracy measurement of depth-displacement using a focus function and its cross-correlation in holographic PTV,” Opt. Express 22, 15542–15553 (2014).
[Crossref] [PubMed]

Lehman, W.

M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
[Crossref] [PubMed]

Li, C.

C. Li, J. Miller, J. Wang, S. S. Koley, and J. Katz, “Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks,” J. Geophys. Res. Ocean. 122, 7938–7957 (2017).
[Crossref]

Li, T.

C. Wang, Q. Gao, H. Wang, R. Wei, T. Li, and J. Wang, “Divergence-free smoothing for volumetric PIV data,” Exp. Fluids 57, 15 (2016).
[Crossref]

Ling, H.

H. Ling, S. Srinivasan, K. Golovin, G. H. McKinley, A. Tuteja, and J. Katz, “High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces,” J. Fluid Mech. 801, 670–703 (2016).
[Crossref]

H. Ling and J. Katz, “Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms,” Appl. Opt. 53, G1–G11 (2014).
[Crossref] [PubMed]

Lu, J.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[Crossref]

Malek, M.

Malkiel, E.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[Crossref]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. 104, 17512–17517 (2007).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, {Single beam two-views holographic particle image velocimetry, Appl. Opt. 42, 235–250 (2003).
[Crossref] [PubMed]

Mallery, K.

M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28, 044009 (2017).
[Crossref]

Martinuzzi, R.

R. Martinuzzi and C. Tropea, “The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow (data bank contribution),” J. Fluids Eng. 115, 85–92 (1993).
[Crossref]

Marusic, I.

C. M. de Silva, J. Philip, and I. Marusic, “Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics,” Exp. Fluids 54, 1557 (2013).
[Crossref]

McKinley, G. H.

H. Ling, S. Srinivasan, K. Golovin, G. H. McKinley, A. Tuteja, and J. Katz, “High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces,” J. Fluid Mech. 801, 670–703 (2016).
[Crossref]

Méès, L.

Meinhart, C. D.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “A PIV algorithm for estimating time-averaged velocity fields,” J. Fluids Eng. 122, 285–289 (2000).
[Crossref]

Miller, J.

C. Li, J. Miller, J. Wang, S. S. Koley, and J. Katz, “Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks,” J. Geophys. Res. Ocean. 122, 7938–7957 (2017).
[Crossref]

Nordsiek, H.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[Crossref]

Oliver, M. S.

Philip, J.

C. M. de Silva, J. Philip, and I. Marusic, “Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics,” Exp. Fluids 54, 1557 (2013).
[Crossref]

Place, A. R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. 104, 17512–17517 (2007).
[Crossref] [PubMed]

Reu, P. L.

Rynkiewicz, M. J.

M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
[Crossref] [PubMed]

Santiago, J. G.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “A PIV algorithm for estimating time-averaged velocity fields,” J. Fluids Eng. 122, 285–289 (2000).
[Crossref]

Saw, E. W.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[Crossref]

Schmidt, W.

M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
[Crossref] [PubMed]

Schultz, M. P.

J. Hong, J. Katz, and M. P. Schultz, “Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow,” J. Fluid Mech. 667, 1–37 (2011).
[Crossref]

Seo, K. W.

Shaw, R. A.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[Crossref]

Sheng, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[Crossref]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. 104, 17512–17517 (2007).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, {Single beam two-views holographic particle image velocimetry, Appl. Opt. 42, 235–250 (2003).
[Crossref] [PubMed]

Sojka, P. E.

D. R. Guildenbecher, J. Gao, J. Chen, and P. E. Sojka, “Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography,” Int. J. Multiph. Flow 94, 107–122 (2017).
[Crossref]

J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett. 38, 1893–1895 (2013).
[Crossref] [PubMed]

Soria, J.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[Crossref]

J. Soria and C. Atkinson, “Towards 3C-3D digital holographic fluid velocity vector field measurement–tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002 (2008).
[Crossref]

Soulez, F.

Srinivasan, S.

H. Ling, S. Srinivasan, K. Golovin, G. H. McKinley, A. Tuteja, and J. Katz, “High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces,” J. Fluid Mech. 801, 670–703 (2016).
[Crossref]

Stauffacher, H. L.

Talapatra, S.

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24, 024004 (2013).
[Crossref]

Tao, B.

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[Crossref]

Thiébaut, Éric

Toloui, M.

M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28, 044009 (2017).
[Crossref]

M. Toloui and J. Hong, “High fidelity digital inline holographic method for 3D flow measurements,” Opt. Express 23, 27159–27173 (2015).
[Crossref] [PubMed]

Tropea, C.

R. Martinuzzi and C. Tropea, “The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow (data bank contribution),” J. Fluids Eng. 115, 85–92 (1993).
[Crossref]

Tuteja, A.

H. Ling, S. Srinivasan, K. Golovin, G. H. McKinley, A. Tuteja, and J. Katz, “High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces,” J. Fluid Mech. 801, 670–703 (2016).
[Crossref]

Viswanathan, M. C.

M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
[Crossref] [PubMed]

Walle, F.

Wang, C.

C. Wang, Q. Gao, H. Wang, R. Wei, T. Li, and J. Wang, “Divergence-free smoothing for volumetric PIV data,” Exp. Fluids 57, 15 (2016).
[Crossref]

Wang, H.

C. Wang, Q. Gao, H. Wang, R. Wei, T. Li, and J. Wang, “Divergence-free smoothing for volumetric PIV data,” Exp. Fluids 57, 15 (2016).
[Crossref]

Wang, J.

C. Li, J. Miller, J. Wang, S. S. Koley, and J. Katz, “Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks,” J. Geophys. Res. Ocean. 122, 7938–7957 (2017).
[Crossref]

C. Wang, Q. Gao, H. Wang, R. Wei, T. Li, and J. Wang, “Divergence-free smoothing for volumetric PIV data,” Exp. Fluids 57, 15 (2016).
[Crossref]

Wei, R.

C. Wang, Q. Gao, H. Wang, R. Wei, T. Li, and J. Wang, “Divergence-free smoothing for volumetric PIV data,” Exp. Fluids 57, 15 (2016).
[Crossref]

Wereley, S. T.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “A PIV algorithm for estimating time-averaged velocity fields,” J. Fluids Eng. 122, 285–289 (2000).
[Crossref]

Westerweel, J.

B. Lecordier and J. Westerweel, “The EUROPIV synthetic image generator (S.I.G.),” in Particle Image Velocimetry: Recent Improvements, M. Stanislas, J. Westerweel, and J. Kompenhans, eds. (SpringerBerlin Heidelberg, Berlin, Heidelberg, 2004), pp. 145–161.

R. J. Adrian and J. Westerweel, Particle Image Velocimetry (Cambridge University, 2011).

Wieneke, B.

B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45, 549–556 (2008).
[Crossref]

B. Wieneke, “Stereo-piv using self-calibration on particle images,” Exp. Fluids 39, 267–280 (2005).
[Crossref]

Wu, X.

Y. Wu, L. Yao, X. Wu, J. Chen, G. Gréhan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel. 206, 429–436 (2017).
[Crossref]

Wu, Y.

Y. Wu, L. Yao, X. Wu, J. Chen, G. Gréhan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel. 206, 429–436 (2017).
[Crossref]

Yang, W.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[Crossref]

Yao, L.

Y. Wu, L. Yao, X. Wu, J. Chen, G. Gréhan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel. 206, 429–436 (2017).
[Crossref]

Zhang, J.

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[Crossref]

Annu. Rev. Fluid Mech. (1)

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[Crossref]

Appl. Opt. (5)

Cell Reports (1)

M. C. Viswanathan, W. Schmidt, M. J. Rynkiewicz, K. Agarwal, J. Gao, J. Katz, W. Lehman, and A. Cammarato, “Distortion of the actin a-triad results in contractile disinhibition and cardiomyopathy,” Cell Reports 20, 2612–2625 (2017).
[Crossref] [PubMed]

Exp. Fluids (8)

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1670 (2014).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[Crossref]

B. Wieneke, “Stereo-piv using self-calibration on particle images,” Exp. Fluids 39, 267–280 (2005).
[Crossref]

B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45, 549–556 (2008).
[Crossref]

K. Bai and J. Katz, “On the refractive index of sodium iodide solutions for index matching in PIV,” Exp. Fluids 55, 1704 (2014).
[Crossref]

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[Crossref]

C. Wang, Q. Gao, H. Wang, R. Wei, T. Li, and J. Wang, “Divergence-free smoothing for volumetric PIV data,” Exp. Fluids 57, 15 (2016).
[Crossref]

C. M. de Silva, J. Philip, and I. Marusic, “Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics,” Exp. Fluids 54, 1557 (2013).
[Crossref]

Fuel. (1)

Y. Wu, L. Yao, X. Wu, J. Chen, G. Gréhan, and K. Cen, “3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography,” Fuel. 206, 429–436 (2017).
[Crossref]

Int. J. Multiph. Flow (1)

D. R. Guildenbecher, J. Gao, J. Chen, and P. E. Sojka, “Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography,” Int. J. Multiph. Flow 94, 107–122 (2017).
[Crossref]

J. Fluid Mech. (2)

J. Hong, J. Katz, and M. P. Schultz, “Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow,” J. Fluid Mech. 667, 1–37 (2011).
[Crossref]

H. Ling, S. Srinivasan, K. Golovin, G. H. McKinley, A. Tuteja, and J. Katz, “High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces,” J. Fluid Mech. 801, 670–703 (2016).
[Crossref]

J. Fluids Eng. (2)

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “A PIV algorithm for estimating time-averaged velocity fields,” J. Fluids Eng. 122, 285–289 (2000).
[Crossref]

R. Martinuzzi and C. Tropea, “The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow (data bank contribution),” J. Fluids Eng. 115, 85–92 (1993).
[Crossref]

J. Geophys. Res. Ocean. (1)

C. Li, J. Miller, J. Wang, S. S. Koley, and J. Katz, “Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks,” J. Geophys. Res. Ocean. 122, 7938–7957 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (4)

M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28, 044009 (2017).
[Crossref]

J. Soria and C. Atkinson, “Towards 3C-3D digital holographic fluid velocity vector field measurement–tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002 (2008).
[Crossref]

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[Crossref]

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24, 024004 (2013).
[Crossref]

New J. Phys. (1)

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

H. Byeon, T. Go, and S. J. Lee, “Digital stereo-holographic microscopy for studying three-dimensional particle dynamics,” Opt. Lasers Eng. 105, 6–13 (2018).
[Crossref]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. (1)

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. 104, 17512–17517 (2007).
[Crossref] [PubMed]

Sci. Reports (1)

H. Byeon, J. Lee, J. Doh, and S. J. Lee, “Hybrid bright-field and hologram imaging of cell dynamics,” Sci. Reports 6, 33750 (2016).
[Crossref]

Other (2)

B. Lecordier and J. Westerweel, “The EUROPIV synthetic image generator (S.I.G.),” in Particle Image Velocimetry: Recent Improvements, M. Stanislas, J. Westerweel, and J. Kompenhans, eds. (SpringerBerlin Heidelberg, Berlin, Heidelberg, 2004), pp. 145–161.

R. J. Adrian and J. Westerweel, Particle Image Velocimetry (Cambridge University, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of the experimental facility showing the channel, the pair of cubes on the bottom wall, and the local particle injection system.
Fig. 2
Fig. 2 The microscopic dual-view tomographic holography (M-DTH) setup.
Fig. 3
Fig. 3 Sample cross-section of the imposed distortion, (a) e1, (b) e2, and (c) e3 in plane z1 = 350 µm.
Fig. 4
Fig. 4 A sample slab illustrating the elongated traces from view 1 along with the corresponding mapped particle centers from view 2. It is used for determining e1 and e2.
Fig. 5
Fig. 5 Sample sum-of-cross-correlation maps for one interrogation window based on 500 synthetic realizations: (a) without imposed positional errors; and (b) with imposed positional errors. (c) an illustration clarifying the causes for the elongated correlation profile with positional errors.
Fig. 6
Fig. 6 Mapping of synthetic particle centers from view 1 into view 2 along with the corresponding elongated traces of view 2 used for determining e3.
Fig. 7
Fig. 7 (a)–(c) The initial three components of the error (in µm) in the calculated distortion field at z1 = 350 µm for case 3; and (d)–(f) the corresponding errors after the first iteration. Note the difference in scales between columns.
Fig. 8
Fig. 8 (a) An illustration of the truncation of an elongated particle trace based on their intersection in the two distortion-corrected views; (b, c) distribution of depth error of the particle location detected using synthetic truncated traces with (b) intensity-weighted centroids and (c) geometric centroids.
Fig. 9
Fig. 9 Experimentally determined values of (a) E 1 ( 1 ), (b) E 2 ( 1 ), and (c) E 3 ( 1 ) in a plane located 500-µm away from the wall.
Fig. 10
Fig. 10 (a, c, e) Particle images detected over a depth of Δz1 = 960 µm compressed into an (x1, y1) plane, and (b, d, f) the corresponding compressed (x1, z1) planes. (a, b) Original view-1 data; (c, d) results after multiplying the projected views with distortion correction, and (e, f) multiplied results without distortion correction. (g) distributions of SNR2 within truncated traces in the experimental data. (h) Iso-surface plot of the 3D intensity fields of the particle marked in (a). Yellow circles point at the same particles in the two views. The pixel aspect ratio in (b), (d), and (f) is not 1.
Fig. 11
Fig. 11 Sample data showing legs of horseshoe vortices between the cubes visualized using: (a) iso-surfaces of streamwise vorticity, and (b) vectors showing the spanwise and wall-normal velocity components superimposed on the streamwise vorticity at (y, z) planes located x/a = 0.48, 1.62, and 2.58.
Fig. 12
Fig. 12 Cumulative distribution of the experimental normalized divergence, η.

Tables (3)

Tables Icon

Table 1 Parameters for the analytical functions fi (uint: µm)

Tables Icon

Table 2 Conditions of the different cases used to test the self-calibration procedure

Tables Icon

Table 3 Mean and standard deviation of distortion error (unit: µm)

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

q i = C i + a i j ( p j + e j ( p j ) ) .
p i = C i + A i j ( q j + o j ( q j ) ) ,
a i j = [ M 1 0 0 0 M 2 0 0 0 M 3 ] [ cos φ cos θ sin ψ sin φ cos θ cos ψ sin θ cos ψ sin φ cos θ + sin ψ sin θ cos φ sin θ sin ψ sin φ sin θ + cos ψ cos θ cos ψ sin φ sin θ sin ψ cos θ sin φ sin ψ cos φ cos ψ cos φ ] ,
e i ( p i ) = A i j f j ( p i ) , and f i = o i
f i ( x 1 , y 1 , z 1 ) = G i exp ( ( x 1 μ i 1 ) 2 2 σ i 1 2 ) exp ( ( y 1 μ i 2 ) 2 2 σ i 2 2 ) exp ( ( z 1 μ i 3 ) 2 2 σ i 3 2 ) + B i .
g 1 i ( δ 1 i ) = ( 2 π σ i ) 1 exp ( δ 1 i 2 / 2 σ i 2 ) , g 2 i ( δ 2 i ) = ( 2 π σ i ) 1 exp ( δ 2 i 2 / 2 σ i 2 ) .
P m i = C i + A i j ( Q j + δ 2 j ) .
P m i = P i + e i ( P i ) + A i j δ 2 j .
Y 1 m Y 1 = e 2 + A 21 δ 21 + A 22 δ 22 + A 23 δ 23 .
[ X 2 m Y 2 m Z 2 m ] = [ C 1 C 2 C 3 ] + [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ X 1 + δ 11 + E 1 ( 0 ) ( X 1 , Y 1 , z 1 ( n ) ) Y 1 + δ 12 + E 2 ( 0 ) ( X 1 , Y 1 , z 1 ( n ) ) Z 1 + δ 13 ] .
[ X 2 X 2 m Y 2 Y 2 m Z 2 Z 2 m ] = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ e 1 ( X 1 , Y 1 , Z 1 ) E 1 ( 0 ) ( X 1 , Y 1 , z 1 ( 0 ) ) δ 11 e 2 ( X 1 , Y 1 , Z 1 ) E 2 ( 0 ) ( X 1 , Y 1 , z 1 ( 0 ) ) δ 12 e 3 ( X 1 , Y 1 , Z 1 ) δ 13 ] ,
D y 2 = A v g ( Y 2 Y 2 m ) = a 21 ( e 1 E 1 ( 0 ) ) + a 21 ( e 2 E 2 ( 0 ) ) + a 23 e 3 .
E 3 ( 0 ) = D y 2 / a 23 .
P m i = C i + A i j ( Q j + δ 2 j ) E i ( k 1 ) ,
η = ( u x x + u y y + u z z ) 2 / [ ( u x x ) 2 + ( u y y ) 2 + ( u z z ) 2 ] .

Metrics