Abstract

Erbium-doped materials have played an important role in the fabrication of light sources used in silicon photonics. Recent studies demonstrated that erbium silicate nanowire had a high net gain attributable to its high erbium concentration and excellent material quality. We establish a more accurate and comprehensive theoretical model of erbium silicate nanowire, analyze the modeled nanowire’s properties, and optimize a high-gain erbium silicate waveguide amplifier and low-threshold, high-efficiency laser by considering upconversion, energy transfer, and amplified spontaneous emission. The simulation results and previous experimental data reported in reference showed some agreement. A proposed waveguide amplifier, based on the optimized design, displayed a gain greater than 20 dB/mm. Then, a 3.3 mW low-threshold laser with a maximum power-conversion efficiency of 50% was modeled by choosing the optimized resonator cavity and reflector. The results indicate that erbium silicate compound materials with large optical gains can serve as potential candidates for inclusion in scale-integrated amplifiers and other applications requiring lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Erbium silicate compound optical waveguide amplifier and laser [Invited]

Xingjun Wang, Peiqi Zhou, Yandong He, and Zhiping Zhou
Opt. Mater. Express 8(10) 2970-2990 (2018)

Low threshold ErxYb(Y)2−xSiO5 nanowire waveguide amplifier

Xingjun Wang, Shengming Wang, and Zhiping Zhou
Appl. Opt. 54(9) 2501-2506 (2015)

Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides

E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo
J. Opt. Soc. Am. B 12(8) 1468-1474 (1995)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  2. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
    [Crossref] [PubMed]
  3. G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
    [Crossref]
  4. D. J. Lockwood and L. Pavesi, “Silicon Photonics II,” (Springer, 2011).
  5. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
    [Crossref]
  6. H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
    [Crossref]
  7. K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
    [Crossref]
  8. M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
    [Crossref]
  9. R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 943 (2008).
    [Crossref]
  10. Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
    [Crossref] [PubMed]
  11. X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
    [Crossref]
  12. K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18(8), 7724–7731 (2010).
    [Crossref] [PubMed]
  13. X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
    [Crossref]
  14. M. Vanhoutte, B. Wang, J. Michel, and L. C. Kimerling, “Processing and properties of ytterbium-erbium silicate thin film gain media,” in 6th IEEE Int. Conf. on Group IV Photon. (2009), pp. 63–65.
    [Crossref]
  15. R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
    [Crossref]
  16. R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
    [Crossref]
  17. R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
    [Crossref] [PubMed]
  18. L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
    [Crossref]
  19. B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. P. Zhou, “Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate,” Opt. Mater. 34(8), 1289–1293 (2012).
    [Crossref]
  20. A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
    [Crossref]
  21. L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
    [Crossref]
  22. Z. C. Liu, L. J. Yin, and C. Z. Ning, “Extremely large signal enhancement in an erbium chloride silicate single-crystal nanowire,” in Conf. Lasers and Electro-Optics (Optical Society of America, 2013), CF1I.6.
  23. L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
    [Crossref]
  24. X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
    [Crossref] [PubMed]
  25. H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).
  26. R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
    [Crossref] [PubMed]
  27. A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
    [Crossref]
  28. K. Liu and Y. B. Edwin, “Pun, “Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun. 273(2), 413–420 (2007).
    [Crossref]
  29. D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), 299–306 (1964).
    [Crossref]
  30. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16(4), 258–260 (1991).
    [Crossref] [PubMed]
  31. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  32. D. L. Dexter and J. H. Schulman, “Theory of Concentration Quenching in Inorganic Phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
    [Crossref]
  33. C. Y. Chen, R. R. Petrin, D. C. Yeh, W. A. Sibley, and J. L. Adam, “Concentration-dependent energy-transfer processes in Er3+-and Tm3+-doped heavy-metal fluoride glass,” Opt. Lett. 14(9), 432–434 (1989).
    [Crossref] [PubMed]
  34. G. Yuan, X. J. Wang, B. Dong, B. Wang, R. M. Guo, L. Wang, and Z. Zhou, “Numerical analysis of amplification characteristics of ErxY2-xSiO5,” Opt. Commun. 284(21), 5167–5170 (2011).
    [Crossref]
  35. X. Wang, S. Wang, and Z. Zhou, “Low threshold ErxYb(Y)2-xSiO5 nanowire waveguide amplifier,” Appl. Opt. 54(9), 2501–2506 (2015).
    [Crossref] [PubMed]
  36. C. Z. Ning, “Semiconductor Nanolasers (A Tutorial),” Phys. Status Solidi, B Basic Res. 247(4), 774–788 (2010).
  37. G. T. Reed, “Silicon Photonics: The State of the Art,” (Wiley, 2008), pp. 147–153.
  38. E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34(3), 55–571 (2012).
    [Crossref]
  39. E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
    [Crossref]
  40. J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
    [Crossref] [PubMed]
  41. E. S. Hosseini, J. D. B. Purnawirman, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
    [Crossref] [PubMed]
  42. M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22(9), 10655–10660 (2014).
    [Crossref] [PubMed]
  43. G. Singh, P. Purnawirman, J. D. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
    [Crossref] [PubMed]
  44. D. G. Lancaster, Y. Li, Y. W. Duan, S. Gross, M. W. Withford, and T. M. Monro, “Er3+ Active Yb3+Ce3+ Co-Doped Fluorozirconate Guided-Wave Chip Lasers,” IEEE Photonics Technol. Lett. 28(21), 2315–2318 (2016).
    [Crossref]
  45. N. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
    [Crossref] [PubMed]
  46. D. Brüske, S. Suntsov, C. E. Rüter, and D. Kip, “Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti indiffusion,” Opt. Express 25(23), 29374–29379 (2017).
    [Crossref]

2017 (3)

2016 (3)

G. Singh, P. Purnawirman, J. D. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref] [PubMed]

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

D. G. Lancaster, Y. Li, Y. W. Duan, S. Gross, M. W. Withford, and T. M. Monro, “Er3+ Active Yb3+Ce3+ Co-Doped Fluorozirconate Guided-Wave Chip Lasers,” IEEE Photonics Technol. Lett. 28(21), 2315–2318 (2016).
[Crossref]

2015 (3)

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

X. Wang, S. Wang, and Z. Zhou, “Low threshold ErxYb(Y)2-xSiO5 nanowire waveguide amplifier,” Appl. Opt. 54(9), 2501–2506 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref] [PubMed]

2012 (6)

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
[Crossref] [PubMed]

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
[Crossref] [PubMed]

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34(3), 55–571 (2012).
[Crossref]

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. P. Zhou, “Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate,” Opt. Mater. 34(8), 1289–1293 (2012).
[Crossref]

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

2011 (5)

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

G. Yuan, X. J. Wang, B. Dong, B. Wang, R. M. Guo, L. Wang, and Z. Zhou, “Numerical analysis of amplification characteristics of ErxY2-xSiO5,” Opt. Commun. 284(21), 5167–5170 (2011).
[Crossref]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

2010 (4)

K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18(8), 7724–7731 (2010).
[Crossref] [PubMed]

C. Z. Ning, “Semiconductor Nanolasers (A Tutorial),” Phys. Status Solidi, B Basic Res. 247(4), 774–788 (2010).

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

2009 (2)

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

2008 (1)

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 943 (2008).
[Crossref]

2007 (2)

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

K. Liu and Y. B. Edwin, “Pun, “Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun. 273(2), 413–420 (2007).
[Crossref]

2006 (1)

E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
[Crossref]

2005 (1)

K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
[Crossref]

2004 (1)

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

1998 (1)

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

1991 (1)

1989 (1)

1964 (1)

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), 299–306 (1964).
[Crossref]

1954 (1)

D. L. Dexter and J. H. Schulman, “Theory of Concentration Quenching in Inorganic Phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Adam, J. L.

Adam, T. N.

Baldycheva, A.

Belt, M.

Blumenthal, D. J.

Bongiorno, C.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Bradley, J. D.

Bradley, J. D. B.

Brüske, D.

Bucio, T. D.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Cantelar, E.

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34(3), 55–571 (2012).
[Crossref]

E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
[Crossref]

Cardile, P.

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

Cassan, E.

Chang, J. S.

Chen, C. Y.

Chen, Y.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Coolbaugh, D.

Coolbaugh, D. D.

Crozat, P.

Cui, J.

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

Cussó, F.

E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
[Crossref]

De Dood, M. J. A.

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

Dexter, D. L.

D. L. Dexter and J. H. Schulman, “Theory of Concentration Quenching in Inorganic Phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Dong, B.

G. Yuan, X. J. Wang, B. Dong, B. Wang, R. M. Guo, L. Wang, and Z. Zhou, “Numerical analysis of amplification characteristics of ErxY2-xSiO5,” Opt. Commun. 284(21), 5167–5170 (2011).
[Crossref]

Duan, X.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Duan, Y. W.

D. G. Lancaster, Y. Li, Y. W. Duan, S. Gross, M. W. Withford, and T. M. Monro, “Er3+ Active Yb3+Ce3+ Co-Doped Fluorozirconate Guided-Wave Chip Lasers,” IEEE Photonics Technol. Lett. 28(21), 2315–2318 (2016).
[Crossref]

Edwin, Y. B.

K. Liu and Y. B. Edwin, “Pun, “Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun. 273(2), 413–420 (2007).
[Crossref]

Fan, F.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).

Fédéli, J. M.

Feng, X.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).

Franzò, G.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Gardes, F. Y.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Gross, S.

D. G. Lancaster, Y. Li, Y. W. Duan, S. Gross, M. W. Withford, and T. M. Monro, “Er3+ Active Yb3+Ce3+ Co-Doped Fluorozirconate Guided-Wave Chip Lasers,” IEEE Photonics Technol. Lett. 28(21), 2315–2318 (2016).
[Crossref]

Guo, P.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Guo, R.

Guo, R. M.

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. P. Zhou, “Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate,” Opt. Mater. 34(8), 1289–1293 (2012).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

G. Yuan, X. J. Wang, B. Dong, B. Wang, R. M. Guo, L. Wang, and Z. Zhou, “Numerical analysis of amplification characteristics of ErxY2-xSiO5,” Opt. Commun. 284(21), 5167–5170 (2011).
[Crossref]

Hartmann, J. M.

Hatami-Hanza, H.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Hosseini, E. S.

Hu, Y. F.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Huang, Y.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Iacona, F.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 943 (2008).
[Crossref]

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Irrera, A.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Isshiki, H.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
[Crossref]

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

Jaque, D.

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34(3), 55–571 (2012).
[Crossref]

Jiang, L.

Jiang, L. J.

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

Khokhar, A. Z.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Kimerling, L. C.

M. Vanhoutte, B. Wang, J. Michel, and L. C. Kimerling, “Processing and properties of ytterbium-erbium silicate thin film gain media,” in 6th IEEE Int. Conf. on Group IV Photon. (2009), pp. 63–65.
[Crossref]

Kimura, T.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
[Crossref]

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

Kip, D.

Kopp, C.

Lancaster, D. G.

D. G. Lancaster, Y. Li, Y. W. Duan, S. Gross, M. W. Withford, and T. M. Monro, “Er3+ Active Yb3+Ce3+ Co-Doped Fluorozirconate Guided-Wave Chip Lasers,” IEEE Photonics Technol. Lett. 28(21), 2315–2318 (2016).
[Crossref]

Leake, G.

Lee, H.

Lee, M.

Li, K.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Li, N.

Li, Y.

D. G. Lancaster, Y. Li, Y. W. Duan, S. Gross, M. W. Withford, and T. M. Monro, “Er3+ Active Yb3+Ce3+ Co-Doped Fluorozirconate Guided-Wave Chip Lasers,” IEEE Photonics Technol. Lett. 28(21), 2315–2318 (2016).
[Crossref]

Li, Y. Z.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).

Liang, J.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Lifante, G.

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34(3), 55–571 (2012).
[Crossref]

E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
[Crossref]

Littlejohns, C. G.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Liu, K.

K. Liu and Y. B. Edwin, “Pun, “Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun. 273(2), 413–420 (2007).
[Crossref]

Liu, R. B.

Liu, Z. C.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

Lo Savio, R.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 943 (2008).
[Crossref]

Magden, E. S.

Marris-Morini, D.

Masaki, K.

K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), 299–306 (1964).
[Crossref]

Michel, J.

M. Vanhoutte, B. Wang, J. Michel, and L. C. Kimerling, “Processing and properties of ytterbium-erbium silicate thin film gain media,” in 6th IEEE Int. Conf. on Group IV Photon. (2009), pp. 63–65.
[Crossref]

Miniscalco, W. J.

Miritello, M.

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 943 (2008).
[Crossref]

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Mitchell, C. J.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Monro, T. M.

D. G. Lancaster, Y. Li, Y. W. Duan, S. Gross, M. W. Withford, and T. M. Monro, “Er3+ Active Yb3+Ce3+ Co-Doped Fluorozirconate Guided-Wave Chip Lasers,” IEEE Photonics Technol. Lett. 28(21), 2315–2318 (2016).
[Crossref]

Moresco, M.

Najafi, S. I.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Nedeljkovic, M.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Nichols, P. L.

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

Ning, C. Z.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

C. Z. Ning, “Semiconductor Nanolasers (A Tutorial),” Phys. Status Solidi, B Basic Res. 247(4), 774–788 (2010).

Ning, H.

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Osmond, J.

Pan, A.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

Park, N.

Passaro, V. M. N.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Penades, J. S.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Petrin, R. R.

Piro, A. M.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 943 (2008).
[Crossref]

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Pollnau, M.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Polman, A.

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

Polzer, A.

Priolo, F.

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 943 (2008).
[Crossref]

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Purnawirman, J.

Purnawirman, J. D. B.

Purnawirman, N.

Purnawirman, P.

Qin, G. G.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Quimby, R. S.

Ran, G. Z.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Reed, G. T.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Reynolds, S. A.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Rüter, C. E.

Safavi-Naeini, S.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Savio, R.

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

Savio, R. L.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Schulman, J. H.

D. L. Dexter and J. H. Schulman, “Theory of Concentration Quenching in Inorganic Phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

Shah Hosseini, E.

Shelhammer, D.

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

Shin, J. H.

Shooshtari, A.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Sibley, W. A.

Singh, G.

Singh, N.

Stankovic, S.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Suh, K.

Sun, H.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).

Sun, J.

Sun, K.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Sun, M. H.

Sung, G. Y.

Suntsov, S.

Thomson, D. J.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Topley, R.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Touam, T.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Troia, B.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Turkdogan, S.

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Vanhoutte, M.

M. Vanhoutte, B. Wang, J. Michel, and L. C. Kimerling, “Processing and properties of ytterbium-erbium silicate thin film gain media,” in 6th IEEE Int. Conf. on Group IV Photon. (2009), pp. 63–65.
[Crossref]

Vivien, L.

Wang, B.

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
[Crossref] [PubMed]

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. P. Zhou, “Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate,” Opt. Mater. 34(8), 1289–1293 (2012).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

G. Yuan, X. J. Wang, B. Dong, B. Wang, R. M. Guo, L. Wang, and Z. Zhou, “Numerical analysis of amplification characteristics of ErxY2-xSiO5,” Opt. Commun. 284(21), 5167–5170 (2011).
[Crossref]

M. Vanhoutte, B. Wang, J. Michel, and L. C. Kimerling, “Processing and properties of ytterbium-erbium silicate thin film gain media,” in 6th IEEE Int. Conf. on Group IV Photon. (2009), pp. 63–65.
[Crossref]

Wang, C. Q.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Wang, L.

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. P. Zhou, “Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate,” Opt. Mater. 34(8), 1289–1293 (2012).
[Crossref]

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
[Crossref] [PubMed]

G. Yuan, X. J. Wang, B. Dong, B. Wang, R. M. Guo, L. Wang, and Z. Zhou, “Numerical analysis of amplification characteristics of ErxY2-xSiO5,” Opt. Commun. 284(21), 5167–5170 (2011).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

Wang, S.

Wang, S. M.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Wang, X.

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

X. Wang, S. Wang, and Z. Zhou, “Low threshold ErxYb(Y)2-xSiO5 nanowire waveguide amplifier,” Appl. Opt. 54(9), 2501–2506 (2015).
[Crossref] [PubMed]

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
[Crossref] [PubMed]

Wang, X. J.

B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. P. Zhou, “Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate,” Opt. Mater. 34(8), 1289–1293 (2012).
[Crossref]

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

G. Yuan, X. J. Wang, B. Dong, B. Wang, R. M. Guo, L. Wang, and Z. Zhou, “Numerical analysis of amplification characteristics of ErxY2-xSiO5,” Opt. Commun. 284(21), 5167–5170 (2011).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

Wang, Y.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Wang, Y. G.

Watts, M. R.

Wilson, P. R.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Withford, M. W.

D. G. Lancaster, Y. Li, Y. W. Duan, S. Gross, M. W. Withford, and T. M. Monro, “Er3+ Active Yb3+Ce3+ Co-Doped Fluorozirconate Guided-Wave Chip Lasers,” IEEE Photonics Technol. Lett. 28(21), 2315–2318 (2016).
[Crossref]

Xu, C.

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

Xu, W. J.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Yang, S.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Ye, R.

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

Yeh, D. C.

Yin, L. J.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

Yin, Y.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Yuan, G.

G. Yuan, X. J. Wang, B. Dong, B. Wang, R. M. Guo, L. Wang, and Z. Zhou, “Numerical analysis of amplification characteristics of ErxY2-xSiO5,” Opt. Commun. 284(21), 5167–5170 (2011).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

Zang, K.

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

Zhang, Q.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Zhao, G. J.

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

Zhao, S. L.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).

Zheng, Y. Z.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).

Zhou, H.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Zhou, Z.

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

X. Wang, S. Wang, and Z. Zhou, “Low threshold ErxYb(Y)2-xSiO5 nanowire waveguide amplifier,” Appl. Opt. 54(9), 2501–2506 (2015).
[Crossref] [PubMed]

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
[Crossref] [PubMed]

G. Yuan, X. J. Wang, B. Dong, B. Wang, R. M. Guo, L. Wang, and Z. Zhou, “Numerical analysis of amplification characteristics of ErxY2-xSiO5,” Opt. Commun. 284(21), 5167–5170 (2011).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

Zhou, Z. P.

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. P. Zhou, “Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate,” Opt. Mater. 34(8), 1289–1293 (2012).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

Zhu, X.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Zhuang, X.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Zimmermann, H.

Adv. Mater. (1)

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 943 (2008).
[Crossref]

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

D. G. Lancaster, Y. Li, Y. W. Duan, S. Gross, M. W. Withford, and T. M. Monro, “Er3+ Active Yb3+Ce3+ Co-Doped Fluorozirconate Guided-Wave Chip Lasers,” IEEE Photonics Technol. Lett. 28(21), 2315–2318 (2016).
[Crossref]

J. Appl. Phys. (2)

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

J. Chem. Phys. (2)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

D. L. Dexter and J. H. Schulman, “Theory of Concentration Quenching in Inorganic Phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

J. Phys. Condens. Matter (1)

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Nat. Photonics (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589 (2017).

Opt. Commun. (2)

K. Liu and Y. B. Edwin, “Pun, “Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun. 273(2), 413–420 (2007).
[Crossref]

G. Yuan, X. J. Wang, B. Dong, B. Wang, R. M. Guo, L. Wang, and Z. Zhou, “Numerical analysis of amplification characteristics of ErxY2-xSiO5,” Opt. Commun. 284(21), 5167–5170 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Opt. Mater. (3)

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34(3), 55–571 (2012).
[Crossref]

B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. P. Zhou, “Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate,” Opt. Mater. 34(8), 1289–1293 (2012).
[Crossref]

K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
[Crossref]

Opt. Mater. Express (1)

Opt. Quantum Electron. (2)

E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
[Crossref]

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Phys. Rev. (1)

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), 299–306 (1964).
[Crossref]

Phys. Rev. Lett. (1)

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

C. Z. Ning, “Semiconductor Nanolasers (A Tutorial),” Phys. Status Solidi, B Basic Res. 247(4), 774–788 (2010).

Sci. Rep. (1)

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

Other (4)

G. T. Reed, “Silicon Photonics: The State of the Art,” (Wiley, 2008), pp. 147–153.

D. J. Lockwood and L. Pavesi, “Silicon Photonics II,” (Springer, 2011).

Z. C. Liu, L. J. Yin, and C. Z. Ning, “Extremely large signal enhancement in an erbium chloride silicate single-crystal nanowire,” in Conf. Lasers and Electro-Optics (Optical Society of America, 2013), CF1I.6.

M. Vanhoutte, B. Wang, J. Michel, and L. C. Kimerling, “Processing and properties of ytterbium-erbium silicate thin film gain media,” in 6th IEEE Int. Conf. on Group IV Photon. (2009), pp. 63–65.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Energy-levels model of Er-Yb silicate nanowire system.
Fig. 2
Fig. 2 ECS nanowire absorption and emission cross-sectional spectra from 1400 nm to 1600 nm.The inset depicts a detailed view of the gray highlighted region of the spectra from1525 nm to 1540 nm.
Fig. 3
Fig. 3 Signal net gain vs (a) short propagation distance and (b) long propagation distance for different input pump powers from 50 mW to 100 mW. The inset in (b) shows signal gain vs propagation distance with pump power of 75.6 mW. The optimum pump length is 600 μm. The gain can reach 4 dB when NEr = 1.62 × 1022 cm−3 and Pp = 75.6 mW.
Fig. 4
Fig. 4 Signal net gain vs input pump power.
Fig. 5
Fig. 5 Signal net gain vs Er3+ concentration for input pump power of 75.6 mW. The optimum Er3+ concentration occurs at 8.2 × 1021 cm−3. The gain can be improved to 0.97 dB
Fig. 6
Fig. 6 Signal net gain vs Yb:Er ratio (a) and propagation distance (b). (a) The optimum Yb:Er ratio is 2.2:1. The gain can be improved to 1.19 dB (210 dB/cm), where L = 56.2 μm, Pp = 75.6 mW, and Ntotal = 1.62 × 1022 cm−3. (b) Signal net gain vs propagation distance at Yb:Er ratios from 1:0 to 1:5 at input pump power of 75.6 mW. The inset in (b) shows a magnified view of the red dashed region from 0 μm to 60 μm.
Fig. 7
Fig. 7 Schematic configuration of the ErYbCS nanowire waveguide laser.
Fig. 8
Fig. 8 Output power variations by cavity length. (a) Output power for short cavity lengths at varying pump powers (1–80 mW). The threshold resonator length is about 12 μm at a pump power of 75.6 mW. (b) Output power for long cavity lengths at varying pump powers (1–100 mW). The optimum cavity lengths were approximately 130 μm, 170 μm, 250 μm, 290 μm, and 330 μm for pump powers of 20 mW, 40 mW, 60 mW, 80 mW, and 100 mW, respectively.
Fig. 9
Fig. 9 Output power vs pump power at (a) various short cavity lengths and (b) various optimum cavity lengths. The inset in (b) shows an expanded view of the red-dashed region for pump powers 0–20 mW.

Tables (3)

Tables Icon

Table 1 Parameters of an Er/Er-Yb Silicate Nanowire Waveguide Amplifier

Tables Icon

Table 2 Comparison of Simulation and Experimental Data

Tables Icon

Table 3 Comparison of Laser Properites of Er-Yb silicate Nanowire Laser with Values Obtained from Other Er-doped-material Lasers

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

{ N 1 t = R 13 N 1 W 12 N 1 + W 21 N 2 + A 21 N 2 + C 2 N 2 2 + C 3 N 3 2 C 14 N 1 N 4 + R 31 N 3 + A 41 N 4 + A 31 N 3 K tr N 2 Yb N 1 =0 N 2 t = W 12 N 1 W 21 N 2 A 21 N 2 + A 32 N 3 2 C 2 N 2 2 +2 C 14 N 1 N 4 =0 N 3 t = R 13 N 1 A 32 N 3 2 C 3 N 3 2 + A 43 N 4 R 31 N 3 A 31 N 3 + K tr N 2 Yb N 1 =0 .  N 4 t = A 43 N 4 + C 2 N 2 2 + C 3 N 3 2 C 14 N 1 N 4 A 41 N 4 =0 N 5 t = C 3 N 3 2 A 54 N 5 =0 N 1 + N 2 + N 3 + N 4 + N 5 = N Er
{   N 1 Yb t = R 12 Yb N 1 Yb + R 21 Yb N 2 Yb + A 21 Yb N 2 Yb + K tr N 2 Yb N 1 =0 N 2 Yb t = R 12 Yb N 1 Yb R 21 Yb N 2 Yb A 21 Yb N 2 Yb K tr N 2 Yb N 1 =0   N 1 Yb + N 2 Yb = N Yb                                                                          .
W 12 = σ 12 ( v s ) A c h v s Γ s P s ( z )+ j=1 M σ 12 ( v j ) A c h v j × Γ s [ P ASE + ( z, v j )+ P ASE ( z, v j ) ]   ,
W 21 = σ 21 ( v s ) A c h v s Γ s P s ( z )+ j=1 M σ 21 ( v j ) A c h v j × Γ s [ P ASE + ( z, v j )+ P ASE ( z, v j ) ] ,
R 13 = σ 13 ( v p ) A c h v p Γ p P p ( z ),
R 12 Yb = σ 12 Yb ( v p ) A c h v p Γ p P p ( z ),
R 21 Yb = σ 21 Yb ( v p ) A c h v p Γ p P p ( z ),
Γ s,p = A c Ψ p,s ( x,y ) g Er ( x,y )dxdy,
{   d P p ( z ) dz = Γ p [ σ 13 N 1 ( z )+ σ 12 Yb N 1 Yb ( z ) σ 21 Yb N 2 Yb ( z ) ] P p ( z )α( ν p ) P p ( z ) d P s ( z ) dz = Γ s [ σ 21 N 2 ( z ) σ 12 N 1 ( z ) ] P s ( z )α( ν s ) P s ( z ) d P ASE ± ( z, v j ) dz =± Γ s ( v j )[ σ 21 ( v j ) N 2 ( z ) σ 12 ( v j ) N 1 ( z ) ]× P ASE ± ( z, v j )                              α( ν s ) P ASE ± ( z, v j )                              ±mh v j Δ v j Γ s ( v j ) σ 21 ( v j ) N 2 ( z ) ( j=1,2,,M )        .
P p ( 0 )= P p0 ,
P s ( 0 )= P s0 ,
P ASE + ( 0, v j )=0,
P ASE + ( L, v j )=0( j=1,2,,M ),
G( z )(dB)=10lg[ P s ( z ) P s ( 0 ) ],
NF( z )( dB )=10lg[ 1 G(z) + P ASE + ( z, v s ) G(z)h v s Δ v s ],
P ASE ± ( z )= j=1 M P ASE ± ( z, v j ).
σ 21 = σ 12 e ( 2πc λ 2πc λ 0 )/ k B T ,
1 τ = 1 τ rad + 1 τ nonrad ,
1 τ rad = 8π n 2 c 2 ν 2 σ 21 ( ν )dν,
P da = 1 τ d 3 4 c 4 4π n 4 Q a R da 6 f d ( E ) F a ( E ) E 4 dE ,
  P da = R 0 6 τ d R da 6  .
C ij 17.6 R 0 6 ( N a + N d ) τ d  ,
{   d P p ± ( z ) dz = Γ p [ σ 13 N 1 ( z )+ σ 12 Yb N 1 Yb ( z ) σ 21 Yb N 2 Yb ( z ) ] P p ± ( z )α( ν p ) P p ± ( z )                    d P s ± ( z ) dz =± Γ s [ σ 21 N 2 ( z ) σ 12 N 1 ( z ) ] P s ± ( z )α( ν s ) P s ± ( z ) d P ASE ± ( z, v j ) dz =± Γ s ( v j )[ σ 21 ( v j ) N 2 ( z ) σ 12 ( v j ) N 1 ( z ) ]× P ASE ± ( z, v j )                         α( ν s ) P ASE ± ( z, v j )                         ±mh v j Δ v j Γ s ( v j ) σ 21 ( v j ) N 2 ( z ) ( j=1,2,,M )       .    
 { P s ( 0 )= R 1s P s + (0) P s ( L )= R 2s P s + (L) P p ( L )= R 2p P p + (L) P p + ( 0 )= R 1p P p ( 0 )+ T 1p P p0 P out = T 2s P s + (L) ,
T 1,2;s,p 1 R 1,2;s,p
Γ g th = 1 2L ln( 1 R 1 R 2 ).

Metrics