Abstract

A novel dual channel Tm:YLF laser system was developed where two degenerate laser cavities were coupled by spectrally beam combining their emission and by implementing a common output coupler. Under continuous wave running conditions, each channel’s slope efficiency was greater than 45% and the maximum combined output power was 11 W. Passive Q-switching was achieved using an 80%, Cr:ZnSe saturable absorber. The output pulses had a maximum energy of 5.8 mJ and duration of 90 ns (~65 kW of peak power) at 5.7 W of absorbed pump power. Each channel showed less than 1 nm of spectral width with central wavelengths around 1880 nm and 1908 nm correspondingly. The system had adjustable spectral difference between the channels ranging from 5 to 20 nm which corresponds to 0.4 – 1.7 THz if the system is used for nonlinear difference frequency generation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-Switched Tm:CaGdAlO4 laser using a Cr2+:ZnSe saturable absorber

Jinglong Lan, Zhiyong Zhou, Xiaofeng Guan, Bin Xu, Huiying Xu, Zhiping Cai, Xiaodong Xu, Dongzhen Li, and Jun Xu
Opt. Mater. Express 7(6) 1725-1731 (2017)

Passively Q-switched Tm:YLF laser

Raffaele Faoro, Martin Kadankov, Daniela Parisi, Stefano Veronesi, Mauro Tonelli, Valentin Petrov, Uwe Griebner, Martha Segura, and Xavier Mateos
Opt. Lett. 37(9) 1517-1519 (2012)

Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser

Zhengping Wang, Hong Liu, Jiyang Wang, Yaohui Lv, Yuanhua Sang, Ruijun Lan, Haohai Yu, Xinguang Xu, and Zongshu Shao
Opt. Express 17(14) 12076-12081 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
    [Crossref]
  2. P. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  3. C. G. Bethea, “Megawatt power at 1.318 μm in Nd3:YAG and simultaneous oscillation at both 1.06 and 1.318,” IEEE J. Quantum Electron. 9(2), 254 (1973).
    [Crossref]
  4. B. Xu, Y. Wang, H. Cheng, Z. Cai, and R. Moncorge, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 μm,” Opt. Commun. 345, 111–115 (2015).
    [Crossref]
  5. B. Xu, Y. Wang, H. Cheng, Z. Lin, and R. Moncorge, “Diode-pumped CW laser operation of a c-cut Nd:YAlO3 crystal on low-gain emission lines around 1.1 μm,” IEEE Photonics J. 7, 1503407 (2015).
    [Crossref]
  6. M. B. Danailov and I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61(7), 746–748 (1992).
    [Crossref]
  7. H. Lin, W. Zhu, F. Xiong, and J. Ruan, “Simultaneous dual-wavelength Q-switched Nd:YAG laser at 1052 and 1073 nm,” Appl. Opt. 56(4), 948–951 (2017).
    [Crossref] [PubMed]
  8. L. B. Glebov, “Volume Holographic Elements in a Photo-Thermo-Refractive Glass,” J. Holography Speckle 5, 1–8 (2008).
  9. L. Glebov, “High-performance solid-state and fiber lasers controlled by volume Bragg gratings,” Rev. Laser Eng. 41, 684–690 (2013).
  10. I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, “Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003).
    [Crossref]
  11. S. A. Zolotovskaya, N. Daghestani, G. B. Venus, L. B. Glebov, V. I. Smirnov, and E. U. Rafailov, “Stable dual-wavelength operation of InGaAs diode lasers with volume Bragg gratings,” Appl. Phys. Lett. 91(17), 171113 (2007).
    [Crossref]
  12. F. Wang, D. Shen, D. Fan, and Q. Lu, “Widely tunable dual-wavelength operation of a high-power Tm:fiber laser using volume Bragg gratings,” Opt. Lett. 35(14), 2388–2390 (2010).
    [Crossref] [PubMed]
  13. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
    [Crossref]
  14. S. So, J. Mackenzie, D. Shepheard, W. Clarkson, J. Betterton, and E. Gorton, “A power-scaling strategy for longitudinally diode- pumped Tm:YLF laser,” Appl. Phys. B 84(3), 389–393 (2006).
    [Crossref]
  15. D. Ott, I. Divliansky, B. Anderson, G. Venus, and L. Glebov, “Scaling the spectral beam combining channels in a multiplexed volume Bragg grating,” Opt. Express 21(24), 29620–29627 (2013).
    [Crossref] [PubMed]
  16. K. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
    [Crossref]
  17. J. J. Degnan, “Optimzation of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
    [Crossref]
  18. G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
    [Crossref]
  19. R. Paschotta, “Field guide to laser pulse generation, dynamics of passive Q switching,” SPIE Field Guides 14, 18–20 (2008).
  20. A. Korenfeld, D. Sebbag, U. Ben-Ami, E. Shalom, G. Marcus, and S. Noach, “High pulse energy passive Q-switching of a diode pumped Tm:YLF laser by Cr:ZnSe,” Laser Phys. Lett. 12(4), 045804 (2015).
    [Crossref]
  21. F. Canbaz, I. Yorulmaz, and A. Sennaroglu, “2.3-μm Tm3+:YLF laser passively Q-switched with a Cr2+:ZnSe saturable absorber,” Opt. Lett. 42(9), 1656–1659 (2017).
    [Crossref] [PubMed]
  22. R. Faoro, M. Kadankov, D. Parisi, S. Veronesi, M. Tonelli, V. Petrov, U. Griebner, M. Segura, and X. Mateos, “Passively Q-switched Tm:YLF laser,” Opt. Lett. 37(9), 1517–1519 (2012).
    [Crossref] [PubMed]

2017 (2)

2015 (3)

B. Xu, Y. Wang, H. Cheng, Z. Cai, and R. Moncorge, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 μm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

B. Xu, Y. Wang, H. Cheng, Z. Lin, and R. Moncorge, “Diode-pumped CW laser operation of a c-cut Nd:YAlO3 crystal on low-gain emission lines around 1.1 μm,” IEEE Photonics J. 7, 1503407 (2015).
[Crossref]

A. Korenfeld, D. Sebbag, U. Ben-Ami, E. Shalom, G. Marcus, and S. Noach, “High pulse energy passive Q-switching of a diode pumped Tm:YLF laser by Cr:ZnSe,” Laser Phys. Lett. 12(4), 045804 (2015).
[Crossref]

2013 (2)

2012 (1)

2010 (2)

2009 (1)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

2008 (3)

K. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
[Crossref]

R. Paschotta, “Field guide to laser pulse generation, dynamics of passive Q switching,” SPIE Field Guides 14, 18–20 (2008).

L. B. Glebov, “Volume Holographic Elements in a Photo-Thermo-Refractive Glass,” J. Holography Speckle 5, 1–8 (2008).

2007 (1)

S. A. Zolotovskaya, N. Daghestani, G. B. Venus, L. B. Glebov, V. I. Smirnov, and E. U. Rafailov, “Stable dual-wavelength operation of InGaAs diode lasers with volume Bragg gratings,” Appl. Phys. Lett. 91(17), 171113 (2007).
[Crossref]

2006 (1)

S. So, J. Mackenzie, D. Shepheard, W. Clarkson, J. Betterton, and E. Gorton, “A power-scaling strategy for longitudinally diode- pumped Tm:YLF laser,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

2003 (1)

I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, “Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003).
[Crossref]

2002 (1)

P. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

1997 (1)

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

1995 (1)

J. J. Degnan, “Optimzation of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

1992 (1)

M. B. Danailov and I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61(7), 746–748 (1992).
[Crossref]

1973 (1)

C. G. Bethea, “Megawatt power at 1.318 μm in Nd3:YAG and simultaneous oscillation at both 1.06 and 1.318,” IEEE J. Quantum Electron. 9(2), 254 (1973).
[Crossref]

Anderson, B.

Andrusyak, O.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

Bass, M.

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

Ben-Ami, U.

A. Korenfeld, D. Sebbag, U. Ben-Ami, E. Shalom, G. Marcus, and S. Noach, “High pulse energy passive Q-switching of a diode pumped Tm:YLF laser by Cr:ZnSe,” Laser Phys. Lett. 12(4), 045804 (2015).
[Crossref]

Bethea, C. G.

C. G. Bethea, “Megawatt power at 1.318 μm in Nd3:YAG and simultaneous oscillation at both 1.06 and 1.318,” IEEE J. Quantum Electron. 9(2), 254 (1973).
[Crossref]

Betterton, J.

S. So, J. Mackenzie, D. Shepheard, W. Clarkson, J. Betterton, and E. Gorton, “A power-scaling strategy for longitudinally diode- pumped Tm:YLF laser,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Cai, Z.

B. Xu, Y. Wang, H. Cheng, Z. Cai, and R. Moncorge, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 μm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

Canbaz, F.

Cheng, H.

B. Xu, Y. Wang, H. Cheng, Z. Cai, and R. Moncorge, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 μm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

B. Xu, Y. Wang, H. Cheng, Z. Lin, and R. Moncorge, “Diode-pumped CW laser operation of a c-cut Nd:YAlO3 crystal on low-gain emission lines around 1.1 μm,” IEEE Photonics J. 7, 1503407 (2015).
[Crossref]

Ciapurin, I. V.

I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, “Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003).
[Crossref]

Clarkson, W.

S. So, J. Mackenzie, D. Shepheard, W. Clarkson, J. Betterton, and E. Gorton, “A power-scaling strategy for longitudinally diode- pumped Tm:YLF laser,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Daghestani, N.

S. A. Zolotovskaya, N. Daghestani, G. B. Venus, L. B. Glebov, V. I. Smirnov, and E. U. Rafailov, “Stable dual-wavelength operation of InGaAs diode lasers with volume Bragg gratings,” Appl. Phys. Lett. 91(17), 171113 (2007).
[Crossref]

Danailov, M. B.

M. B. Danailov and I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61(7), 746–748 (1992).
[Crossref]

Degnan, J. J.

J. J. Degnan, “Optimzation of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

Divliansky, I.

Fan, D.

Faoro, R.

Glebov, L.

D. Ott, I. Divliansky, B. Anderson, G. Venus, and L. Glebov, “Scaling the spectral beam combining channels in a multiplexed volume Bragg grating,” Opt. Express 21(24), 29620–29627 (2013).
[Crossref] [PubMed]

L. Glebov, “High-performance solid-state and fiber lasers controlled by volume Bragg gratings,” Rev. Laser Eng. 41, 684–690 (2013).

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

Glebov, L. B.

L. B. Glebov, “Volume Holographic Elements in a Photo-Thermo-Refractive Glass,” J. Holography Speckle 5, 1–8 (2008).

S. A. Zolotovskaya, N. Daghestani, G. B. Venus, L. B. Glebov, V. I. Smirnov, and E. U. Rafailov, “Stable dual-wavelength operation of InGaAs diode lasers with volume Bragg gratings,” Appl. Phys. Lett. 91(17), 171113 (2007).
[Crossref]

I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, “Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003).
[Crossref]

Glebova, L. N.

I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, “Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003).
[Crossref]

Gorton, E.

S. So, J. Mackenzie, D. Shepheard, W. Clarkson, J. Betterton, and E. Gorton, “A power-scaling strategy for longitudinally diode- pumped Tm:YLF laser,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Griebner, U.

Kadankov, M.

Korenfeld, A.

A. Korenfeld, D. Sebbag, U. Ben-Ami, E. Shalom, G. Marcus, and S. Noach, “High pulse energy passive Q-switching of a diode pumped Tm:YLF laser by Cr:ZnSe,” Laser Phys. Lett. 12(4), 045804 (2015).
[Crossref]

Lin, H.

Lin, Z.

B. Xu, Y. Wang, H. Cheng, Z. Lin, and R. Moncorge, “Diode-pumped CW laser operation of a c-cut Nd:YAlO3 crystal on low-gain emission lines around 1.1 μm,” IEEE Photonics J. 7, 1503407 (2015).
[Crossref]

Lu, Q.

Mackenzie, J.

S. So, J. Mackenzie, D. Shepheard, W. Clarkson, J. Betterton, and E. Gorton, “A power-scaling strategy for longitudinally diode- pumped Tm:YLF laser,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Marcus, G.

A. Korenfeld, D. Sebbag, U. Ben-Ami, E. Shalom, G. Marcus, and S. Noach, “High pulse energy passive Q-switching of a diode pumped Tm:YLF laser by Cr:ZnSe,” Laser Phys. Lett. 12(4), 045804 (2015).
[Crossref]

Mateos, X.

Milev, I. Y.

M. B. Danailov and I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61(7), 746–748 (1992).
[Crossref]

Moncorge, R.

B. Xu, Y. Wang, H. Cheng, Z. Lin, and R. Moncorge, “Diode-pumped CW laser operation of a c-cut Nd:YAlO3 crystal on low-gain emission lines around 1.1 μm,” IEEE Photonics J. 7, 1503407 (2015).
[Crossref]

B. Xu, Y. Wang, H. Cheng, Z. Cai, and R. Moncorge, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 μm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

Noach, S.

A. Korenfeld, D. Sebbag, U. Ben-Ami, E. Shalom, G. Marcus, and S. Noach, “High pulse energy passive Q-switching of a diode pumped Tm:YLF laser by Cr:ZnSe,” Laser Phys. Lett. 12(4), 045804 (2015).
[Crossref]

Ott, D.

Parisi, D.

Paschotta, R.

R. Paschotta, “Field guide to laser pulse generation, dynamics of passive Q switching,” SPIE Field Guides 14, 18–20 (2008).

Petrov, V.

Rafailov, E. U.

S. A. Zolotovskaya, N. Daghestani, G. B. Venus, L. B. Glebov, V. I. Smirnov, and E. U. Rafailov, “Stable dual-wavelength operation of InGaAs diode lasers with volume Bragg gratings,” Appl. Phys. Lett. 91(17), 171113 (2007).
[Crossref]

Rotar, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

Rotari, E. V.

I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, “Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003).
[Crossref]

Ruan, J.

Sebbag, D.

A. Korenfeld, D. Sebbag, U. Ben-Ami, E. Shalom, G. Marcus, and S. Noach, “High pulse energy passive Q-switching of a diode pumped Tm:YLF laser by Cr:ZnSe,” Laser Phys. Lett. 12(4), 045804 (2015).
[Crossref]

Segura, M.

Sennaroglu, A.

Shalom, E.

A. Korenfeld, D. Sebbag, U. Ben-Ami, E. Shalom, G. Marcus, and S. Noach, “High pulse energy passive Q-switching of a diode pumped Tm:YLF laser by Cr:ZnSe,” Laser Phys. Lett. 12(4), 045804 (2015).
[Crossref]

Shen, D.

Shepheard, D.

S. So, J. Mackenzie, D. Shepheard, W. Clarkson, J. Betterton, and E. Gorton, “A power-scaling strategy for longitudinally diode- pumped Tm:YLF laser,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Siegel, P.

P. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Smirnov, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

Smirnov, V. I.

S. A. Zolotovskaya, N. Daghestani, G. B. Venus, L. B. Glebov, V. I. Smirnov, and E. U. Rafailov, “Stable dual-wavelength operation of InGaAs diode lasers with volume Bragg gratings,” Appl. Phys. Lett. 91(17), 171113 (2007).
[Crossref]

I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, “Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003).
[Crossref]

So, S.

S. So, J. Mackenzie, D. Shepheard, W. Clarkson, J. Betterton, and E. Gorton, “A power-scaling strategy for longitudinally diode- pumped Tm:YLF laser,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Tonelli, M.

Venus, G.

D. Ott, I. Divliansky, B. Anderson, G. Venus, and L. Glebov, “Scaling the spectral beam combining channels in a multiplexed volume Bragg grating,” Opt. Express 21(24), 29620–29627 (2013).
[Crossref] [PubMed]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

Venus, G. B.

S. A. Zolotovskaya, N. Daghestani, G. B. Venus, L. B. Glebov, V. I. Smirnov, and E. U. Rafailov, “Stable dual-wavelength operation of InGaAs diode lasers with volume Bragg gratings,” Appl. Phys. Lett. 91(17), 171113 (2007).
[Crossref]

Veronesi, S.

Vodopyanov, K.

K. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
[Crossref]

Walsh, B. M.

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

Wang, F.

Wang, Y.

B. Xu, Y. Wang, H. Cheng, Z. Cai, and R. Moncorge, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 μm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

B. Xu, Y. Wang, H. Cheng, Z. Lin, and R. Moncorge, “Diode-pumped CW laser operation of a c-cut Nd:YAlO3 crystal on low-gain emission lines around 1.1 μm,” IEEE Photonics J. 7, 1503407 (2015).
[Crossref]

Xiao, G.

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

Xiong, F.

Xu, B.

B. Xu, Y. Wang, H. Cheng, Z. Lin, and R. Moncorge, “Diode-pumped CW laser operation of a c-cut Nd:YAlO3 crystal on low-gain emission lines around 1.1 μm,” IEEE Photonics J. 7, 1503407 (2015).
[Crossref]

B. Xu, Y. Wang, H. Cheng, Z. Cai, and R. Moncorge, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 μm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

Yorulmaz, I.

Zhu, W.

Zolotovskaya, S. A.

S. A. Zolotovskaya, N. Daghestani, G. B. Venus, L. B. Glebov, V. I. Smirnov, and E. U. Rafailov, “Stable dual-wavelength operation of InGaAs diode lasers with volume Bragg gratings,” Appl. Phys. Lett. 91(17), 171113 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

S. So, J. Mackenzie, D. Shepheard, W. Clarkson, J. Betterton, and E. Gorton, “A power-scaling strategy for longitudinally diode- pumped Tm:YLF laser,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Appl. Phys. Lett. (2)

S. A. Zolotovskaya, N. Daghestani, G. B. Venus, L. B. Glebov, V. I. Smirnov, and E. U. Rafailov, “Stable dual-wavelength operation of InGaAs diode lasers with volume Bragg gratings,” Appl. Phys. Lett. 91(17), 171113 (2007).
[Crossref]

M. B. Danailov and I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61(7), 746–748 (1992).
[Crossref]

IEEE J. Quantum Electron. (3)

C. G. Bethea, “Megawatt power at 1.318 μm in Nd3:YAG and simultaneous oscillation at both 1.06 and 1.318,” IEEE J. Quantum Electron. 9(2), 254 (1973).
[Crossref]

J. J. Degnan, “Optimzation of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
[Crossref]

IEEE Photonics J. (1)

B. Xu, Y. Wang, H. Cheng, Z. Lin, and R. Moncorge, “Diode-pumped CW laser operation of a c-cut Nd:YAlO3 crystal on low-gain emission lines around 1.1 μm,” IEEE Photonics J. 7, 1503407 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

J. Holography Speckle (1)

L. B. Glebov, “Volume Holographic Elements in a Photo-Thermo-Refractive Glass,” J. Holography Speckle 5, 1–8 (2008).

Laser Photonics Rev. (1)

K. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
[Crossref]

Laser Phys. (1)

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

Laser Phys. Lett. (1)

A. Korenfeld, D. Sebbag, U. Ben-Ami, E. Shalom, G. Marcus, and S. Noach, “High pulse energy passive Q-switching of a diode pumped Tm:YLF laser by Cr:ZnSe,” Laser Phys. Lett. 12(4), 045804 (2015).
[Crossref]

Opt. Commun. (1)

B. Xu, Y. Wang, H. Cheng, Z. Cai, and R. Moncorge, “Single- and multi-wavelength laser operation of a diode-pumped Nd:GGG single crystal around 1.33 μm,” Opt. Commun. 345, 111–115 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, “Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003).
[Crossref]

Rev. Laser Eng. (1)

L. Glebov, “High-performance solid-state and fiber lasers controlled by volume Bragg gratings,” Rev. Laser Eng. 41, 684–690 (2013).

SPIE Field Guides (1)

R. Paschotta, “Field guide to laser pulse generation, dynamics of passive Q switching,” SPIE Field Guides 14, 18–20 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of a tunable dual channel Tm:YLF laser providing spectral beam combining with reflecting volume Bragg gratings.
Fig. 2
Fig. 2 Output power versus absorbed pump power per channel for individual and simultaneous CW operation with a 30% transmission coupler.
Fig. 3
Fig. 3 Reflectance spectra at normal incidence for each volume reflecting Bragg grating with a thickness of 5 mm. Efficiency of each grating is >99% with bandwidth (FWHM) of 1.6 nm.
Fig. 4
Fig. 4 Emission spectra for a single channel Tm:YLF cavity with VBG2 as depicted in Fig. 1 (red) and with a broadband dielectric mirror instead of the VBG2(black).
Fig. 5
Fig. 5 Emission spectra taken with a high resolution spectrometer for channel with VBG1 (left) and VBG2 (right).
Fig. 6
Fig. 6 Emission spectra of a double channel Tm:YLF laser with different pumping levels in different channels. A. 1st channel – 12.9 W absorbed and 0.817 W output power, 2nd channel – 6.97 W and 0.432 W. B. 1st channel – 12.9 W absorbed and 0.817 W output power, 2nd channel – 12.9 W and 0.801 W. C. 1st channel – 6.9 W absorbed and 0.432 W output power, 2nd channel – 12.9 W and 0.801 W
Fig. 7
Fig. 7 Emission spectra for different incident angles at VBGs. Black lines – channel separation 5 nm (0.4 THZ), red lines – channel separation 20 nm (1.7 THz).
Fig. 8
Fig. 8 Average output power versus absorbed pump power for CW and PQS operation with a 30% transmission coupler.
Fig. 9
Fig. 9 Pulse parameters dependence on absorbed pump power for the passively Q switched dual channel system.
Fig. 10
Fig. 10 Temporal pulse train and pulse profile (insertion) for the passively Q switched dual channel system, measuring ~90 ns FWHM pulse duration.

Metrics