Abstract

An investigation was carried out on the polarization attraction (PA) of a polarization-scrambled 10.7-GBaud NRZ-BPSK signal in a 1-km-long highly nonlinear fiber (HNLF). For the back-to-back case, PA on an ASE-loaded signal yielded a receiver sensitivity penalty of ≈ 14.5 dB at the ITU-T G.975.1.I3 FEC threshold of 3.5 × 10−3, relative to matched-filter reception theory. After long-haul 100-GHz DWDM transmission in a recirculating loop, PA on the output signal was found to achieve approximately the same receiver sensitivity performance, as that of the back-to-back case. From these experiments, it is concluded that the Gordon-Mollenauer effect due to propagation in the HNLF during PA dominates other impairments including those arising from the long-haul 100-GHz DWDM recirculating loop transmission.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization attraction of 10-Gb/s NRZ-BPSK signal in a highly nonlinear fiber

A. DeLong, W. Astar, T. Mahmood, and G. M. Carter
Opt. Express 25(21) 25625-25636 (2017)

Ultra-long-haul transmission of 7×42.9 Gbit/s PS-QPSK and PDM-BPSK

Carsten Behrens, Domaniç Lavery, David S. Millar, Sergejs Makovejs, Benn C. Thomsen, Robert I. Killey, Seb J. Savory, and Polina Bayvel
Opt. Express 19(26) B581-B586 (2011)

All-optical amplitude-phase transmultiplexing of RZ-OOK and RZ-BPSK to RZ-QPSK by polarization-insensitive XPM using a nonlinear birefringent AlGaAs waveguide

B. M. Cannon, T. Mahmood, W. Astar, P. Apiratikul, G. Porkolab, P. Boudra, T. Mohsenin, C. J. K. Richardson, and G. M. Carter
Opt. Express 21(17) 19885-19899 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
    [Crossref]
  2. J. Garnier, J. Fatome, and G. Le Meur, “Statistical analysis of pulse propagation driven by polarization-mode dispersion,” J. Opt. Soc. Am. B 19(9), 1968–1977 (2002).
    [Crossref]
  3. M. Brodsky, N. J. Frigo, M. Boroditsky, and M. Tur, “Polarization mode dispersion of installed fibers,” J. Lightwave Technol. 24(12), 4584–4599 (2006).
    [Crossref]
  4. V. E. Chernov and B. A. Zon, “Depolarization of laser radiation in a nonlinear medium,” J. Opt. Soc. Am. B 10(2), 210–212 (1993).
    [Crossref]
  5. A. Picozzi, “Entropy and degree of polarization for nonlinear optical waves,” Opt. Lett. 29(14), 1653–1655 (2004).
    [Crossref] [PubMed]
  6. H. Prakash and D. K. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. At. Mol. Opt. Phys. 41(4), 1–5 (2008).
    [Crossref]
  7. K. Inoue, “Polarization Independent Wavelength Conversion Using Fiber Four-Wave Mixing with Two Orthogonal Pump Lights of Different Frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
    [Crossref]
  8. B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photonics Technol. Lett. 12(11), 1582–1584 (2000).
    [Crossref]
  9. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  10. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [Crossref] [PubMed]
  11. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35(12), 2025–2027 (2010).
    [Crossref] [PubMed]
  12. V. V. Kozlov, J. Nuño, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B 28(1), 100–108 (2011).
    [Crossref]
  13. V. V. Kozlov, J. Nuño, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers: erratum,” J. Opt. Soc. Am. B 29(1), 153–154 (2012).
    [Crossref]
  14. S. Pitois and M. Haelterman, “Optical fiber polarization funnel,” in Nonlinear Guided Waves and Their Applications, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper MC79.
  15. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25(4), 257–259 (2000).
    [Crossref] [PubMed]
  16. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
    [Crossref] [PubMed]
  17. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
    [Crossref] [PubMed]
  18. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19(18), 17158–17166 (2011).
    [Crossref] [PubMed]
  19. V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28(8), 1782–1791 (2011).
    [Crossref]
  20. M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
    [Crossref]
  21. V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high-birefringence and spun fibers,” Opt. Lett. 35(23), 3949–3951 (2010).
    [Crossref] [PubMed]
  22. E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36(20), 4038–4040 (2011).
    [Crossref] [PubMed]
  23. M. Barozzi and A. Vannucci, “Dynamics of lossless polarization attraction,” Photon. Res. 3(5), 229–233 (2015).
    [Crossref]
  24. P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a lightbeam in optical fibers,” J. Opt. Soc. Am. B 29(8), 2046–2052 (2012).
    [Crossref]
  25. J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-GBaud RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
    [Crossref]
  26. M. Barozzi and A. Vannucci, “Lossless polarization attraction of telecom signals: application to all-optical OSNR enhancement,” J. Opt. Soc. Am. B 31(11), 2712–2720 (2014).
    [Crossref]
  27. M. Barozzi, A. Vannucci, and G. Picchi, “All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer,” Proc. SPIE 9450, 94501G (2015).
  28. V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
    [Crossref]
  29. A. DeLong, W. Astar, T. Mahmood, and G. M. Carter, “Polarization attraction of 10-Gb/s NRZ-BPSK signal in a highly nonlinear fiber,” Opt. Express 25(21), 25625–25636 (2017).
    [Crossref] [PubMed]
  30. P. J. Winzer and R. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [Crossref]
  31. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [Crossref] [PubMed]
  32. H. Kim and A. H. Gnauck, “Experimental Investigation of the Performance Limitation of DPSK Systems Due to Nonlinear Phase Noise,” IEEE Photonics Technol. Lett. 15(2), 320–322 (2003).
    [Crossref]
  33. A. H. Gnauck and P. J. Winzer, “Optical Phase-Shift-Keyed Transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
    [Crossref]
  34. Y.-J. Qiao, J. Zhou, W.-H. Qian, and Y.-F. Ji, “The Gordon-Mollenauer Effect in 112 Gbit/s DP-QPSK Systems,” Chin. Phys. Lett. 30(8), 084203 (2013).
    [Crossref]
  35. G. M. Carter, H. Xu, H. Jiao, Y. Sun, B. S. Marks, and L. Yan, “Effects of polarization dependent loss and polarization mode dispersion in recirculating loops,” in Proceedings of Lasers and Electro-Optics Society, 2003 (IEEE 2003), pp. 322–323.
  36. G. M. Carter and Y. Sun, “Making the Q distribution in a recirculating loop resemble a straight line distribution,” in Proceedings of Optical Fiber Communication Conference and Exhibit, 2002 (IEEE 2002), pp. 509–510.
    [Crossref]
  37. G. P. Agrawal, Nonlinear Optics (Academic, 2001), Chaps. 5, 1.
  38. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200 km transmission of 448-GBs ETDM 56-GBaud PDM 16-QAM using a single IQ modulator,” in Proceedings of Optical Communication (ECOC), 2010 36th European Conference and Exhibition on (IEEE 2010), pp. 1–3.
  39. K.-P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate nonlinear phase noise,” J. Lightwave Technol. 22(3), 779–783 (2004).
    [Crossref]
  40. A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modelling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. 30(10), 1524–1539 (2012).
    [Crossref]
  41. S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihasi, and T. Ito, “Coherent transmission experiment over 2,223 km at 2.5 Gbit/s using erbium-doped fibre amplifiers,” Electron. Lett. 26(10), 669–671 (1990).
    [Crossref]
  42. S. Kumar, “Analysis of nonlinear phase noise in coherent fiber-optic systems based on phase shift keying,” J. Lightwave Technol. 27(21), 4722–4733 (2009).
    [Crossref]
  43. S. Kumar and M. J. Deen, Fiber Optic Communications, Fundamentals and Applications (John Wiley & Sons, 2014), Chap. 10.
  44. Y. Sun, A. O. Lima, I. T. Lima, J. Zweck, L. Yan, C. R. Menyuk, and G. M. Carter, “Statistics of the System Performance in a Scrambled Recirculating Loop with PDL and PDG,” IEEE Photonics Technol. Lett. 15(8), 1067–1069 (2003).
    [Crossref]
  45. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally Efficient Long-Haul WDM Transmission Using 224-GBaud Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 29(4), 373–377 (2011).
    [Crossref]
  46. C. Peucheret, N. Hanik, R. Freund, L. Molle, and P. Jeppesen, “Optimization of pre- and post-dispersion compensation schmese for 10-Gbits/s NRZ links using standard and dispersion compensating fibers,” IEEE Photonics Technol. Lett. 12(8), 992–994 (2000).
    [Crossref]
  47. R. Jopson, A. Gnauck, L. Nelson, L. Garrett, and C. Wolf, “Evaluation of return-to-zero modulation for wavelength-division-multiplexed transmission over conventional single-mode fiber,” in Proceedings of Optical Fiber Communication Conference Technical Digest, 1998 (IEEE 1998), pp. 406–407.
    [Crossref]
  48. S. Wen, “Bi-end dispersion compensation for ultralong optical communication system,” J. Lightwave Technol. 17(5), 792–798 (1999).
    [Crossref]
  49. D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
    [Crossref]
  50. G. Bellotti, A. Bertaina, and S. Bigo, “Dependence of self-phase modulation impairments on residual dispersion in 10-Gb/s-based terrestrial transmissions using standard fiber,” IEEE Photonics Technol. Lett. 11(7), 824–826 (1999).
    [Crossref]
  51. C. Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011).
    [Crossref] [PubMed]
  52. L. F. Mollenauer, J. P. Gordon, and F. Heismann, “Polarization scattering by soliton-soliton collisions,” Opt. Lett. 20(20), 2060–2062 (1995).
    [Crossref] [PubMed]
  53. M. Karlsson and H. Sunnerud, “Effects of nonlinearities on PMD-induced system impairments,” J. Lightwave Technol. 24(11), 4127–4137 (2006).
    [Crossref]
  54. M. R. Phillips, S. L. Woodward, and R. L. Smith, “Cross-polarization modulation: theory and measurement in subcarrier-modulated WDM systems,” J. Lightwave Technol. 24(11), 4089–4099 (2006).
    [Crossref]
  55. K.-P. Ho, “Asymptotic probability density of nonlinear phase noise,” Opt. Lett. 28(15), 1350–1352 (2003).
    [Crossref] [PubMed]
  56. K.-P. Ho, “Error probability of DPSK signals with cross-phase modulation induced nonlinear phase noise,” IEEE J. Sel. Top. Quantum Electron. 10(2), 421–427 (2004).
    [Crossref]
  57. M. Shtaif and M. Eiselt, “analysis of intensity interference caused by cross-pahse modulation in dispersive optical fibers,” IEEE Photonics Technol. Lett. 10(7), 979–981 (1998).
    [Crossref]
  58. S. Bigo, G. Bellotti, and M. W. Chbat, “Investigation of cross-phase modulation limitation over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11(5), 605–607 (1999).
    [Crossref]
  59. D. Marcuse, A. Chraplyvy, and R. Tkach, “Dependence of cross-phase modulation on channel number in fiber WDM systems,” J. Lightwave Technol. Lett. 12(5), 885–890 (1994).
    [Crossref]
  60. H. Kim, “Cross-Phase-Modulation-Induced Nonlinear Phase Noise in WDM Direct-Detection DPSK Systems,” J. Lightwave Technol. 21(8), 1770–1774 (2003).
    [Crossref]
  61. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
    [Crossref] [PubMed]
  62. P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photonics J. 2(3), 284–291 (2010).
    [Crossref]
  63. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-Optical Signal Processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  64. T. Kurosu, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Signal phase regeneration through multiple wave coherent addition enabled by hybrid optical phase squeezer,” Opt. Express 23(21), 27920–27930 (2015).
    [Crossref] [PubMed]
  65. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [Crossref]
  66. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
    [Crossref]
  67. A. Almaiman, Y. Cao, M. Ziyadi, A. Mohajerin-Ariaei, P. Liao, C. Bao, F. Alishahi, A. Fallahpour, B. Shamee, N. Ahmed, A. J. Willner, Y. Akasaka, T. Ikeuchi, S. Takasaka, R. Sugizaki, S. Wilkinson, J. D. Touch, M. Tur, and A. E. Willner, “Experimental demonstration of phase-sensitive regeneration of a binary phase-shift keying channel without a phase-locked loop using Brillouin amplification,” Opt. Lett. 41(23), 5434–5437 (2016).
    [Crossref] [PubMed]
  68. G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
    [Crossref] [PubMed]
  69. P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
    [Crossref] [PubMed]
  70. J.-W. Goossens, M. I. Yousefi, Y. Jaouën, and H. Hafermann, “Polarization-division multiplexing based on the nonlinear Fourier transform,” Opt. Express 25(22), 26437–26452 (2017).
    [Crossref] [PubMed]
  71. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
    [Crossref]
  72. P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
    [Crossref] [PubMed]
  73. A. Mecozzi, “Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers,” J. Lightwave Technol. 12(11), 1993–2000 (1994).
    [Crossref]
  74. K.-P. Ho, “Statistical properties of nonlinear phase noise,” https://arxiv.org/pdf/physics/0303090 .
  75. Y. C. Eldar, A. V. Oppenheim, and D. Egnor, “Orthogonal and projected orthogonal matched filter detection,” Signal Process. 84(4), 677–693 (2004).
    [Crossref]

2017 (2)

2016 (1)

2015 (4)

M. Barozzi and A. Vannucci, “Dynamics of lossless polarization attraction,” Photon. Res. 3(5), 229–233 (2015).
[Crossref]

T. Kurosu, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Signal phase regeneration through multiple wave coherent addition enabled by hybrid optical phase squeezer,” Opt. Express 23(21), 27920–27930 (2015).
[Crossref] [PubMed]

M. Barozzi, A. Vannucci, and G. Picchi, “All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer,” Proc. SPIE 9450, 94501G (2015).

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

2014 (5)

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
[Crossref]

P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
[Crossref] [PubMed]

A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-Optical Signal Processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
[Crossref]

M. Barozzi and A. Vannucci, “Lossless polarization attraction of telecom signals: application to all-optical OSNR enhancement,” J. Opt. Soc. Am. B 31(11), 2712–2720 (2014).
[Crossref]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref] [PubMed]

2013 (2)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Y.-J. Qiao, J. Zhou, W.-H. Qian, and Y.-F. Ji, “The Gordon-Mollenauer Effect in 112 Gbit/s DP-QPSK Systems,” Chin. Phys. Lett. 30(8), 084203 (2013).
[Crossref]

2012 (4)

2011 (6)

2010 (6)

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[Crossref] [PubMed]

E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35(12), 2025–2027 (2010).
[Crossref] [PubMed]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
[Crossref] [PubMed]

V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high-birefringence and spun fibers,” Opt. Lett. 35(23), 3949–3951 (2010).
[Crossref] [PubMed]

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photonics J. 2(3), 284–291 (2010).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

2009 (2)

2008 (4)

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref] [PubMed]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
[Crossref] [PubMed]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[Crossref]

H. Prakash and D. K. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. At. Mol. Opt. Phys. 41(4), 1–5 (2008).
[Crossref]

2006 (4)

2005 (1)

2004 (4)

K.-P. Ho, “Error probability of DPSK signals with cross-phase modulation induced nonlinear phase noise,” IEEE J. Sel. Top. Quantum Electron. 10(2), 421–427 (2004).
[Crossref]

Y. C. Eldar, A. V. Oppenheim, and D. Egnor, “Orthogonal and projected orthogonal matched filter detection,” Signal Process. 84(4), 677–693 (2004).
[Crossref]

K.-P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate nonlinear phase noise,” J. Lightwave Technol. 22(3), 779–783 (2004).
[Crossref]

A. Picozzi, “Entropy and degree of polarization for nonlinear optical waves,” Opt. Lett. 29(14), 1653–1655 (2004).
[Crossref] [PubMed]

2003 (4)

K.-P. Ho, “Asymptotic probability density of nonlinear phase noise,” Opt. Lett. 28(15), 1350–1352 (2003).
[Crossref] [PubMed]

H. Kim, “Cross-Phase-Modulation-Induced Nonlinear Phase Noise in WDM Direct-Detection DPSK Systems,” J. Lightwave Technol. 21(8), 1770–1774 (2003).
[Crossref]

Y. Sun, A. O. Lima, I. T. Lima, J. Zweck, L. Yan, C. R. Menyuk, and G. M. Carter, “Statistics of the System Performance in a Scrambled Recirculating Loop with PDL and PDG,” IEEE Photonics Technol. Lett. 15(8), 1067–1069 (2003).
[Crossref]

H. Kim and A. H. Gnauck, “Experimental Investigation of the Performance Limitation of DPSK Systems Due to Nonlinear Phase Noise,” IEEE Photonics Technol. Lett. 15(2), 320–322 (2003).
[Crossref]

2002 (2)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

J. Garnier, J. Fatome, and G. Le Meur, “Statistical analysis of pulse propagation driven by polarization-mode dispersion,” J. Opt. Soc. Am. B 19(9), 1968–1977 (2002).
[Crossref]

2000 (3)

C. Peucheret, N. Hanik, R. Freund, L. Molle, and P. Jeppesen, “Optimization of pre- and post-dispersion compensation schmese for 10-Gbits/s NRZ links using standard and dispersion compensating fibers,” IEEE Photonics Technol. Lett. 12(8), 992–994 (2000).
[Crossref]

B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photonics Technol. Lett. 12(11), 1582–1584 (2000).
[Crossref]

J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25(4), 257–259 (2000).
[Crossref] [PubMed]

1999 (3)

S. Bigo, G. Bellotti, and M. W. Chbat, “Investigation of cross-phase modulation limitation over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11(5), 605–607 (1999).
[Crossref]

S. Wen, “Bi-end dispersion compensation for ultralong optical communication system,” J. Lightwave Technol. 17(5), 792–798 (1999).
[Crossref]

G. Bellotti, A. Bertaina, and S. Bigo, “Dependence of self-phase modulation impairments on residual dispersion in 10-Gb/s-based terrestrial transmissions using standard fiber,” IEEE Photonics Technol. Lett. 11(7), 824–826 (1999).
[Crossref]

1998 (1)

M. Shtaif and M. Eiselt, “analysis of intensity interference caused by cross-pahse modulation in dispersive optical fibers,” IEEE Photonics Technol. Lett. 10(7), 979–981 (1998).
[Crossref]

1997 (1)

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

1995 (1)

1994 (3)

A. Mecozzi, “Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers,” J. Lightwave Technol. 12(11), 1993–2000 (1994).
[Crossref]

D. Marcuse, A. Chraplyvy, and R. Tkach, “Dependence of cross-phase modulation on channel number in fiber WDM systems,” J. Lightwave Technol. Lett. 12(5), 885–890 (1994).
[Crossref]

K. Inoue, “Polarization Independent Wavelength Conversion Using Fiber Four-Wave Mixing with Two Orthogonal Pump Lights of Different Frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
[Crossref]

1993 (1)

1990 (2)

J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
[Crossref] [PubMed]

S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihasi, and T. Ito, “Coherent transmission experiment over 2,223 km at 2.5 Gbit/s using erbium-doped fibre amplifiers,” Electron. Lett. 26(10), 669–671 (1990).
[Crossref]

1986 (1)

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

Ahmed, N.

Akasaka, Y.

Alishahi, F.

Almaiman, A.

Alvarado, A.

Andrekson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Assemat, E.

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
[Crossref]

Assémat, E.

Astar, W.

Bao, C.

Barozzi, M.

Bayvel, P.

Bellotti, G.

G. Bellotti, A. Bertaina, and S. Bigo, “Dependence of self-phase modulation impairments on residual dispersion in 10-Gb/s-based terrestrial transmissions using standard fiber,” IEEE Photonics Technol. Lett. 11(7), 824–826 (1999).
[Crossref]

S. Bigo, G. Bellotti, and M. W. Chbat, “Investigation of cross-phase modulation limitation over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11(5), 605–607 (1999).
[Crossref]

Bennink, R. S.

Bertaina, A.

G. Bellotti, A. Bertaina, and S. Bigo, “Dependence of self-phase modulation impairments on residual dispersion in 10-Gb/s-based terrestrial transmissions using standard fiber,” IEEE Photonics Technol. Lett. 11(7), 824–826 (1999).
[Crossref]

Bigo, S.

G. Bellotti, A. Bertaina, and S. Bigo, “Dependence of self-phase modulation impairments on residual dispersion in 10-Gb/s-based terrestrial transmissions using standard fiber,” IEEE Photonics Technol. Lett. 11(7), 824–826 (1999).
[Crossref]

S. Bigo, G. Bellotti, and M. W. Chbat, “Investigation of cross-phase modulation limitation over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11(5), 605–607 (1999).
[Crossref]

Blow, K. J.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[Crossref]

Bogris, A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Boivin, L.

B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photonics Technol. Lett. 12(11), 1582–1584 (2000).
[Crossref]

Bony, P.-Y.

P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
[Crossref] [PubMed]

Boroditsky, M.

Bosco, G.

Boscolo, S.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[Crossref]

Boyd, R. W.

Brodsky, M.

Cao, Y.

Carena, A.

Carter, G. M.

A. DeLong, W. Astar, T. Mahmood, and G. M. Carter, “Polarization attraction of 10-Gb/s NRZ-BPSK signal in a highly nonlinear fiber,” Opt. Express 25(21), 25625–25636 (2017).
[Crossref] [PubMed]

Y. Sun, A. O. Lima, I. T. Lima, J. Zweck, L. Yan, C. R. Menyuk, and G. M. Carter, “Statistics of the System Performance in a Scrambled Recirculating Loop with PDL and PDG,” IEEE Photonics Technol. Lett. 15(8), 1067–1069 (2003).
[Crossref]

Chandrasekhar, S.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally Efficient Long-Haul WDM Transmission Using 224-GBaud Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 29(4), 373–377 (2011).
[Crossref]

Chbat, M. W.

S. Bigo, G. Bellotti, and M. W. Chbat, “Investigation of cross-phase modulation limitation over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11(5), 605–607 (1999).
[Crossref]

Chernov, V. E.

Chitgarha, M. R.

Chraplyvy, A.

D. Marcuse, A. Chraplyvy, and R. Tkach, “Dependence of cross-phase modulation on channel number in fiber WDM systems,” J. Lightwave Technol. Lett. 12(5), 885–890 (1994).
[Crossref]

Chraplyvy, A. R.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Claveau, R.

Collings, B. C.

B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photonics Technol. Lett. 12(11), 1582–1584 (2000).
[Crossref]

Cristiani, I.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photonics J. 2(3), 284–291 (2010).
[Crossref]

Curri, V.

Dargent, D.

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Degiorgio, V.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photonics J. 2(3), 284–291 (2010).
[Crossref]

DeLong, A.

Egnor, D.

Y. C. Eldar, A. V. Oppenheim, and D. Egnor, “Orthogonal and projected orthogonal matched filter detection,” Signal Process. 84(4), 677–693 (2004).
[Crossref]

Eiselt, M.

M. Shtaif and M. Eiselt, “analysis of intensity interference caused by cross-pahse modulation in dispersive optical fibers,” IEEE Photonics Technol. Lett. 10(7), 979–981 (1998).
[Crossref]

Eldar, Y. C.

Y. C. Eldar, A. V. Oppenheim, and D. Egnor, “Orthogonal and projected orthogonal matched filter detection,” Signal Process. 84(4), 677–693 (2004).
[Crossref]

Ellis, A. D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Essiambre, R.

Fallahpour, A.

Fatome, J.

P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
[Crossref] [PubMed]

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
[Crossref]

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-GBaud RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
[Crossref]

P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a lightbeam in optical fibers,” J. Opt. Soc. Am. B 29(8), 2046–2052 (2012).
[Crossref]

V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28(8), 1782–1791 (2011).
[Crossref]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19(18), 17158–17166 (2011).
[Crossref] [PubMed]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
[Crossref] [PubMed]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
[Crossref] [PubMed]

J. Garnier, J. Fatome, and G. Le Meur, “Statistical analysis of pulse propagation driven by polarization-mode dispersion,” J. Opt. Soc. Am. B 19(9), 1968–1977 (2002).
[Crossref]

Finot, C.

Fisher, R. A.

Forghieri, F.

Freund, R.

C. Peucheret, N. Hanik, R. Freund, L. Molle, and P. Jeppesen, “Optimization of pre- and post-dispersion compensation schmese for 10-Gbits/s NRZ links using standard and dispersion compensating fibers,” IEEE Photonics Technol. Lett. 12(8), 992–994 (2000).
[Crossref]

Frigo, N. J.

Fukuda, H.

Garnier, J.

Gnauck, A. H.

Goossens, J.-W.

Gordon, J. P.

Grüner-Nielsen, L.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Guasoni, M.

P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
[Crossref] [PubMed]

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
[Crossref]

Hafermann, H.

Hanik, N.

C. Peucheret, N. Hanik, R. Freund, L. Molle, and P. Jeppesen, “Optimization of pre- and post-dispersion compensation schmese for 10-Gbits/s NRZ links using standard and dispersion compensating fibers,” IEEE Photonics Technol. Lett. 12(8), 992–994 (2000).
[Crossref]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Heebner, J. E.

Heismann, F.

Herstrøm, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Ho, K.-P.

Ichihasi, Y.

S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihasi, and T. Ito, “Coherent transmission experiment over 2,223 km at 2.5 Gbit/s using erbium-doped fibre amplifiers,” Electron. Lett. 26(10), 669–671 (1990).
[Crossref]

Ikeuchi, T.

Imai, T.

S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihasi, and T. Ito, “Coherent transmission experiment over 2,223 km at 2.5 Gbit/s using erbium-doped fibre amplifiers,” Electron. Lett. 26(10), 669–671 (1990).
[Crossref]

Inoue, K.

K. Inoue, “Polarization Independent Wavelength Conversion Using Fiber Four-Wave Mixing with Two Orthogonal Pump Lights of Different Frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
[Crossref]

Itabashi, S.

Ito, T.

S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihasi, and T. Ito, “Coherent transmission experiment over 2,223 km at 2.5 Gbit/s using erbium-doped fibre amplifiers,” Electron. Lett. 26(10), 669–671 (1990).
[Crossref]

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Jaouën, Y.

Jauslin, H. R.

P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
[Crossref] [PubMed]

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
[Crossref]

E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36(20), 4038–4040 (2011).
[Crossref] [PubMed]

E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35(12), 2025–2027 (2010).
[Crossref] [PubMed]

Jeppesen, P.

C. Peucheret, N. Hanik, R. Freund, L. Molle, and P. Jeppesen, “Optimization of pre- and post-dispersion compensation schmese for 10-Gbits/s NRZ links using standard and dispersion compensating fibers,” IEEE Photonics Technol. Lett. 12(8), 992–994 (2000).
[Crossref]

Ji, Y.-F.

Y.-J. Qiao, J. Zhou, W.-H. Qian, and Y.-F. Ji, “The Gordon-Mollenauer Effect in 112 Gbit/s DP-QPSK Systems,” Chin. Phys. Lett. 30(8), 084203 (2013).
[Crossref]

Kahn, J. M.

Kakande, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Karlsson, M.

Khaleghi, S.

Killey, R. I.

Kim, H.

H. Kim, “Cross-Phase-Modulation-Induced Nonlinear Phase Noise in WDM Direct-Detection DPSK Systems,” J. Lightwave Technol. 21(8), 1770–1774 (2003).
[Crossref]

H. Kim and A. H. Gnauck, “Experimental Investigation of the Performance Limitation of DPSK Systems Due to Nonlinear Phase Noise,” IEEE Photonics Technol. Lett. 15(2), 320–322 (2003).
[Crossref]

Kozlov, V. V.

Kumar, S.

Kurosu, T.

Lagrange, S.

Le Meur, G.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Liao, P.

Liga, G.

Lima, A. O.

Y. Sun, A. O. Lima, I. T. Lima, J. Zweck, L. Yan, C. R. Menyuk, and G. M. Carter, “Statistics of the System Performance in a Scrambled Recirculating Loop with PDL and PDG,” IEEE Photonics Technol. Lett. 15(8), 1067–1069 (2003).
[Crossref]

Lima, I. T.

Y. Sun, A. O. Lima, I. T. Lima, J. Zweck, L. Yan, C. R. Menyuk, and G. M. Carter, “Statistics of the System Performance in a Scrambled Recirculating Loop with PDL and PDG,” IEEE Photonics Technol. Lett. 15(8), 1067–1069 (2003).
[Crossref]

Lima, M.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Liu, X.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally Efficient Long-Haul WDM Transmission Using 224-GBaud Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 29(4), 373–377 (2011).
[Crossref]

Luis, R. S.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Lundström, C.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Mahmood, T.

Manyuk, C. R.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

Marazzi, L.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photonics J. 2(3), 284–291 (2010).
[Crossref]

Marcuse, D.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

D. Marcuse, A. Chraplyvy, and R. Tkach, “Dependence of cross-phase modulation on channel number in fiber WDM systems,” J. Lightwave Technol. Lett. 12(5), 885–890 (1994).
[Crossref]

Martinelli, M.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photonics J. 2(3), 284–291 (2010).
[Crossref]

Mecozzi, A.

A. Mecozzi, “Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers,” J. Lightwave Technol. 12(11), 1993–2000 (1994).
[Crossref]

Mendinueta, J. M. D.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Menyuk, C. R.

Y. Sun, A. O. Lima, I. T. Lima, J. Zweck, L. Yan, C. R. Menyuk, and G. M. Carter, “Statistics of the System Performance in a Scrambled Recirculating Loop with PDL and PDG,” IEEE Photonics Technol. Lett. 15(8), 1067–1069 (2003).
[Crossref]

Millot, G.

Minzioni, P.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photonics J. 2(3), 284–291 (2010).
[Crossref]

Mohajerin-Ariaei, A.

Molle, L.

C. Peucheret, N. Hanik, R. Freund, L. Molle, and P. Jeppesen, “Optimization of pre- and post-dispersion compensation schmese for 10-Gbits/s NRZ links using standard and dispersion compensating fibers,” IEEE Photonics Technol. Lett. 12(8), 992–994 (2000).
[Crossref]

Mollenauer, L. F.

Morin, P.

P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
[Crossref] [PubMed]

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
[Crossref]

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-GBaud RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
[Crossref]

P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a lightbeam in optical fibers,” J. Opt. Soc. Am. B 29(8), 2046–2052 (2012).
[Crossref]

V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28(8), 1782–1791 (2011).
[Crossref]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19(18), 17158–17166 (2011).
[Crossref] [PubMed]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
[Crossref] [PubMed]

Muga, N. J. C.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Namiki, S.

Nuño, J.

O’Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Ohkawa, N.

S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihasi, and T. Ito, “Coherent transmission experiment over 2,223 km at 2.5 Gbit/s using erbium-doped fibre amplifiers,” Electron. Lett. 26(10), 669–671 (1990).
[Crossref]

Oppenheim, A. V.

Y. C. Eldar, A. V. Oppenheim, and D. Egnor, “Orthogonal and projected orthogonal matched filter detection,” Signal Process. 84(4), 677–693 (2004).
[Crossref]

Parmigiani, F.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Peckham, D. W.

Petropoulos, P.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Peucheret, C.

C. Peucheret, N. Hanik, R. Freund, L. Molle, and P. Jeppesen, “Optimization of pre- and post-dispersion compensation schmese for 10-Gbits/s NRZ links using standard and dispersion compensating fibers,” IEEE Photonics Technol. Lett. 12(8), 992–994 (2000).
[Crossref]

Phelan, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Phillips, M. R.

Picchi, G.

M. Barozzi, A. Vannucci, and G. Picchi, “All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer,” Proc. SPIE 9450, 94501G (2015).

Picozzi, A.

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
[Crossref]

P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
[Crossref] [PubMed]

E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36(20), 4038–4040 (2011).
[Crossref] [PubMed]

E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35(12), 2025–2027 (2010).
[Crossref] [PubMed]

A. Picozzi, “Entropy and degree of polarization for nonlinear optical waves,” Opt. Lett. 29(14), 1653–1655 (2004).
[Crossref] [PubMed]

Pitois, S.

P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
[Crossref] [PubMed]

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
[Crossref]

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-GBaud RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
[Crossref]

P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a lightbeam in optical fibers,” J. Opt. Soc. Am. B 29(8), 2046–2052 (2012).
[Crossref]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19(18), 17158–17166 (2011).
[Crossref] [PubMed]

V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28(8), 1782–1791 (2011).
[Crossref]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
[Crossref] [PubMed]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
[Crossref] [PubMed]

Poggiolini, P.

Poole, C. D.

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

Prakash, H.

H. Prakash and D. K. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. At. Mol. Opt. Phys. 41(4), 1–5 (2008).
[Crossref]

Pusino, V.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photonics J. 2(3), 284–291 (2010).
[Crossref]

Puttnam, B. J.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Qian, W.-H.

Y.-J. Qiao, J. Zhou, W.-H. Qian, and Y.-F. Ji, “The Gordon-Mollenauer Effect in 112 Gbit/s DP-QPSK Systems,” Chin. Phys. Lett. 30(8), 084203 (2013).
[Crossref]

Qiao, Y.-J.

Y.-J. Qiao, J. Zhou, W.-H. Qian, and Y.-F. Ji, “The Gordon-Mollenauer Effect in 112 Gbit/s DP-QPSK Systems,” Chin. Phys. Lett. 30(8), 084203 (2013).
[Crossref]

Ribeiro, V. C.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Richardson, D. J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Saito, S.

S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihasi, and T. Ito, “Coherent transmission experiment over 2,223 km at 2.5 Gbit/s using erbium-doped fibre amplifiers,” Electron. Lett. 26(10), 669–671 (1990).
[Crossref]

Shahpari, A.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Shamee, B.

Shinada, S.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Shinojima, H.

Shtaif, M.

M. Shtaif and M. Eiselt, “analysis of intensity interference caused by cross-pahse modulation in dispersive optical fibers,” IEEE Photonics Technol. Lett. 10(7), 979–981 (1998).
[Crossref]

Singh, D. K.

H. Prakash and D. K. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. At. Mol. Opt. Phys. 41(4), 1–5 (2008).
[Crossref]

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Smith, R. L.

Solis-Trapala, K.

Sugie, T.

S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihasi, and T. Ito, “Coherent transmission experiment over 2,223 km at 2.5 Gbit/s using erbium-doped fibre amplifiers,” Electron. Lett. 26(10), 669–671 (1990).
[Crossref]

Sugizaki, R.

Sugny, D.

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
[Crossref]

P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
[Crossref] [PubMed]

E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36(20), 4038–4040 (2011).
[Crossref] [PubMed]

E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35(12), 2025–2027 (2010).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, A. O. Lima, I. T. Lima, J. Zweck, L. Yan, C. R. Menyuk, and G. M. Carter, “Statistics of the System Performance in a Scrambled Recirculating Loop with PDL and PDG,” IEEE Photonics Technol. Lett. 15(8), 1067–1069 (2003).
[Crossref]

Sunnerud, H.

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Syvridis, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Takasaka, S.

Tan, H. N.

Teixeira, A.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Tkach, R.

D. Marcuse, A. Chraplyvy, and R. Tkach, “Dependence of cross-phase modulation on channel number in fiber WDM systems,” J. Lightwave Technol. Lett. 12(5), 885–890 (1994).
[Crossref]

Tkach, R. W.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Touch, J. D.

Tsuchizawa, T.

Tur, M.

Turitsyn, S. K.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[Crossref]

Vannucci, A.

Wabnitz, S.

Wada, N.

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

Wagner, R. E.

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

Wai, P. K. A.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

Watanabe, T.

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Wen, S.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Wilkinson, S.

Willner, A. E.

Willner, A. J.

Winzer, P. J.

Woodward, S. L.

Xie, C.

Xu, T.

Yamada, K.

Yan, L.

Y. Sun, A. O. Lima, I. T. Lima, J. Zweck, L. Yan, C. R. Menyuk, and G. M. Carter, “Statistics of the System Performance in a Scrambled Recirculating Loop with PDL and PDG,” IEEE Photonics Technol. Lett. 15(8), 1067–1069 (2003).
[Crossref]

Yilmaz, O. F.

Yousefi, M. I.

Zhou, J.

Y.-J. Qiao, J. Zhou, W.-H. Qian, and Y.-F. Ji, “The Gordon-Mollenauer Effect in 112 Gbit/s DP-QPSK Systems,” Chin. Phys. Lett. 30(8), 084203 (2013).
[Crossref]

Zhu, B.

Ziyadi, M.

Zon, B. A.

Zweck, J.

Y. Sun, A. O. Lima, I. T. Lima, J. Zweck, L. Yan, C. R. Menyuk, and G. M. Carter, “Statistics of the System Performance in a Scrambled Recirculating Loop with PDL and PDG,” IEEE Photonics Technol. Lett. 15(8), 1067–1069 (2003).
[Crossref]

Chin. Phys. Lett. (1)

Y.-J. Qiao, J. Zhou, W.-H. Qian, and Y.-F. Ji, “The Gordon-Mollenauer Effect in 112 Gbit/s DP-QPSK Systems,” Chin. Phys. Lett. 30(8), 084203 (2013).
[Crossref]

Electron. Lett. (2)

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[Crossref]

S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihasi, and T. Ito, “Coherent transmission experiment over 2,223 km at 2.5 Gbit/s using erbium-doped fibre amplifiers,” Electron. Lett. 26(10), 669–671 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

K.-P. Ho, “Error probability of DPSK signals with cross-phase modulation induced nonlinear phase noise,” IEEE J. Sel. Top. Quantum Electron. 10(2), 421–427 (2004).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-GBaud RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 621–628 (2012).
[Crossref]

IEEE Photonics J. (1)

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photonics J. 2(3), 284–291 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (8)

M. Shtaif and M. Eiselt, “analysis of intensity interference caused by cross-pahse modulation in dispersive optical fibers,” IEEE Photonics Technol. Lett. 10(7), 979–981 (1998).
[Crossref]

S. Bigo, G. Bellotti, and M. W. Chbat, “Investigation of cross-phase modulation limitation over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11(5), 605–607 (1999).
[Crossref]

G. Bellotti, A. Bertaina, and S. Bigo, “Dependence of self-phase modulation impairments on residual dispersion in 10-Gb/s-based terrestrial transmissions using standard fiber,” IEEE Photonics Technol. Lett. 11(7), 824–826 (1999).
[Crossref]

Y. Sun, A. O. Lima, I. T. Lima, J. Zweck, L. Yan, C. R. Menyuk, and G. M. Carter, “Statistics of the System Performance in a Scrambled Recirculating Loop with PDL and PDG,” IEEE Photonics Technol. Lett. 15(8), 1067–1069 (2003).
[Crossref]

C. Peucheret, N. Hanik, R. Freund, L. Molle, and P. Jeppesen, “Optimization of pre- and post-dispersion compensation schmese for 10-Gbits/s NRZ links using standard and dispersion compensating fibers,” IEEE Photonics Technol. Lett. 12(8), 992–994 (2000).
[Crossref]

V. C. Ribeiro, R. S. Luis, J. M. D. Mendinueta, B. J. Puttnam, A. Shahpari, N. J. C. Muga, M. Lima, S. Shinada, N. Wada, and A. Teixeira, “All-Optical Packet Alignment Using Polarization Attraction Effect,” IEEE Photonics Technol. Lett. 27(5), 541–544 (2015).
[Crossref]

H. Kim and A. H. Gnauck, “Experimental Investigation of the Performance Limitation of DPSK Systems Due to Nonlinear Phase Noise,” IEEE Photonics Technol. Lett. 15(2), 320–322 (2003).
[Crossref]

B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photonics Technol. Lett. 12(11), 1582–1584 (2000).
[Crossref]

J. Lightwave Technol. (15)

K. Inoue, “Polarization Independent Wavelength Conversion Using Fiber Four-Wave Mixing with Two Orthogonal Pump Lights of Different Frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
[Crossref]

M. Brodsky, N. J. Frigo, M. Boroditsky, and M. Tur, “Polarization mode dispersion of installed fibers,” J. Lightwave Technol. 24(12), 4584–4599 (2006).
[Crossref]

A. H. Gnauck and P. J. Winzer, “Optical Phase-Shift-Keyed Transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
[Crossref]

K.-P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate nonlinear phase noise,” J. Lightwave Technol. 22(3), 779–783 (2004).
[Crossref]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modelling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. 30(10), 1524–1539 (2012).
[Crossref]

P. J. Winzer and R. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
[Crossref]

S. Wen, “Bi-end dispersion compensation for ultralong optical communication system,” J. Lightwave Technol. 17(5), 792–798 (1999).
[Crossref]

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally Efficient Long-Haul WDM Transmission Using 224-GBaud Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 29(4), 373–377 (2011).
[Crossref]

S. Kumar, “Analysis of nonlinear phase noise in coherent fiber-optic systems based on phase shift keying,” J. Lightwave Technol. 27(21), 4722–4733 (2009).
[Crossref]

M. Karlsson and H. Sunnerud, “Effects of nonlinearities on PMD-induced system impairments,” J. Lightwave Technol. 24(11), 4127–4137 (2006).
[Crossref]

M. R. Phillips, S. L. Woodward, and R. L. Smith, “Cross-polarization modulation: theory and measurement in subcarrier-modulated WDM systems,” J. Lightwave Technol. 24(11), 4089–4099 (2006).
[Crossref]

A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-Optical Signal Processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
[Crossref]

H. Kim, “Cross-Phase-Modulation-Induced Nonlinear Phase Noise in WDM Direct-Detection DPSK Systems,” J. Lightwave Technol. 21(8), 1770–1774 (2003).
[Crossref]

A. Mecozzi, “Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers,” J. Lightwave Technol. 12(11), 1993–2000 (1994).
[Crossref]

J. Lightwave Technol. Lett. (1)

D. Marcuse, A. Chraplyvy, and R. Tkach, “Dependence of cross-phase modulation on channel number in fiber WDM systems,” J. Lightwave Technol. Lett. 12(5), 885–890 (1994).
[Crossref]

J. Opt. Soc. Am. B (7)

J. Opt. Soc. Amer. B (1)

M. Guasoni, E. Assemat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, “Line of polarization attraction in highly birefringent optical fibers,” J. Opt. Soc. Amer. B 31(3), 572–580 (2014).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

H. Prakash and D. K. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. At. Mol. Opt. Phys. 41(4), 1–5 (2008).
[Crossref]

Nat. Commun. (1)

P.-Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, and J. Fatome, “Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass,” Nat. Commun. 5(4678), 4678 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Opt. Express (11)

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref] [PubMed]

C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
[Crossref] [PubMed]

T. Kurosu, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Signal phase regeneration through multiple wave coherent addition enabled by hybrid optical phase squeezer,” Opt. Express 23(21), 27920–27930 (2015).
[Crossref] [PubMed]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[Crossref] [PubMed]

J.-W. Goossens, M. I. Yousefi, Y. Jaouën, and H. Hafermann, “Polarization-division multiplexing based on the nonlinear Fourier transform,” Opt. Express 25(22), 26437–26452 (2017).
[Crossref] [PubMed]

C. Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref] [PubMed]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
[Crossref] [PubMed]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010).
[Crossref] [PubMed]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19(18), 17158–17166 (2011).
[Crossref] [PubMed]

A. DeLong, W. Astar, T. Mahmood, and G. M. Carter, “Polarization attraction of 10-Gb/s NRZ-BPSK signal in a highly nonlinear fiber,” Opt. Express 25(21), 25625–25636 (2017).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[Crossref]

Opt. Lett. (9)

A. Almaiman, Y. Cao, M. Ziyadi, A. Mohajerin-Ariaei, P. Liao, C. Bao, F. Alishahi, A. Fallahpour, B. Shamee, N. Ahmed, A. J. Willner, Y. Akasaka, T. Ikeuchi, S. Takasaka, R. Sugizaki, S. Wilkinson, J. D. Touch, M. Tur, and A. E. Willner, “Experimental demonstration of phase-sensitive regeneration of a binary phase-shift keying channel without a phase-locked loop using Brillouin amplification,” Opt. Lett. 41(23), 5434–5437 (2016).
[Crossref] [PubMed]

L. F. Mollenauer, J. P. Gordon, and F. Heismann, “Polarization scattering by soliton-soliton collisions,” Opt. Lett. 20(20), 2060–2062 (1995).
[Crossref] [PubMed]

K.-P. Ho, “Asymptotic probability density of nonlinear phase noise,” Opt. Lett. 28(15), 1350–1352 (2003).
[Crossref] [PubMed]

J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
[Crossref] [PubMed]

E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35(12), 2025–2027 (2010).
[Crossref] [PubMed]

A. Picozzi, “Entropy and degree of polarization for nonlinear optical waves,” Opt. Lett. 29(14), 1653–1655 (2004).
[Crossref] [PubMed]

V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high-birefringence and spun fibers,” Opt. Lett. 35(23), 3949–3951 (2010).
[Crossref] [PubMed]

E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36(20), 4038–4040 (2011).
[Crossref] [PubMed]

J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25(4), 257–259 (2000).
[Crossref] [PubMed]

Photon. Res. (1)

Proc. SPIE (1)

M. Barozzi, A. Vannucci, and G. Picchi, “All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer,” Proc. SPIE 9450, 94501G (2015).

Signal Process. (1)

Y. C. Eldar, A. V. Oppenheim, and D. Egnor, “Orthogonal and projected orthogonal matched filter detection,” Signal Process. 84(4), 677–693 (2004).
[Crossref]

Other (8)

K.-P. Ho, “Statistical properties of nonlinear phase noise,” https://arxiv.org/pdf/physics/0303090 .

S. Kumar and M. J. Deen, Fiber Optic Communications, Fundamentals and Applications (John Wiley & Sons, 2014), Chap. 10.

R. Jopson, A. Gnauck, L. Nelson, L. Garrett, and C. Wolf, “Evaluation of return-to-zero modulation for wavelength-division-multiplexed transmission over conventional single-mode fiber,” in Proceedings of Optical Fiber Communication Conference Technical Digest, 1998 (IEEE 1998), pp. 406–407.
[Crossref]

G. M. Carter, H. Xu, H. Jiao, Y. Sun, B. S. Marks, and L. Yan, “Effects of polarization dependent loss and polarization mode dispersion in recirculating loops,” in Proceedings of Lasers and Electro-Optics Society, 2003 (IEEE 2003), pp. 322–323.

G. M. Carter and Y. Sun, “Making the Q distribution in a recirculating loop resemble a straight line distribution,” in Proceedings of Optical Fiber Communication Conference and Exhibit, 2002 (IEEE 2002), pp. 509–510.
[Crossref]

G. P. Agrawal, Nonlinear Optics (Academic, 2001), Chaps. 5, 1.

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200 km transmission of 448-GBs ETDM 56-GBaud PDM 16-QAM using a single IQ modulator,” in Proceedings of Optical Communication (ECOC), 2010 36th European Conference and Exhibition on (IEEE 2010), pp. 1–3.

S. Pitois and M. Haelterman, “Optical fiber polarization funnel,” in Nonlinear Guided Waves and Their Applications, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper MC79.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1 Block diagram for the first experiment, in which polarization attraction is attempted for a signal, ASE-loaded after the transmitter. The polarization attraction module was described in [29]. (ASE: amplified spontaneous emission, HNLF: highly nonlinear fiber, CW: continuous-wave).
Fig. 2
Fig. 2 Block diagram for the second experiment, in which polarization attraction was attempted post-transmission. The Gaussian passband −3-dB-bandwidth of the 100-GHz AWG was ≈ 0.45 nm. (DWDM: dense wavelength-division multiplexing, AWG: arrayed waveguide grating, CW: continuous-wave).
Fig. 3
Fig. 3 Experimental setup for the observation of polarization attraction by propagating a scrambled ASE-loaded 10.7 GBaud NRZ-BPSK signal through a HNLF. The counter-propagating CW laser enabled polarization attraction, when required (OBPF: optical band-pass filter, MPC: mechanical polarization controller, Δα: variable optical attenuator (VOA), LNF-EDFA: low-noise-figure EDFA, HP-EDFA: high-power EDFA, HNLF: highly non-linear fiber, OSNR: optical signal-to-noise ratio measurement, DOP: degree of polarization).
Fig. 4
Fig. 4 The Keysight Technologies coherent receiver used in all the experiments. The inbound signal is represented symbolically as ħω.
Fig. 5
Fig. 5 NRZ-BPSK constellations at the output of the HNLF, captured on a coherent receiver, and as a function of average launched signal power Adaptive equalization was used and optimized for each of the four cases. The signal at the HNLF input had an OSNR of ≈ 16 dB/0.1 nm. The received OSNR was close to 16 dB/0.1 nm and the received power was approximately 0 dBm. The average launch power into the HNLF was (a) 0.1 W, (b) 0.2 W, (c) 0.32 W, and (d) 0.4 W.
Fig. 6
Fig. 6 NRZ-BPSK constellations captured on a coherent receiver, at the input (1st row), and the output (2nd row) of the HNLF, and as a function of OSNR. Adaptive equalization was used and optimized for each case, and the HNLF signal launch power was 0.32 W. (a) HNLF input at the highest OSNR, (b) HNLF input at an OSNR of 16 dB/0.1 nm, (c) HNLF output when the input was at the highest OSNR, (d) HNLF output when the input OSNR was 16 dB/0.1 nm.
Fig. 7
Fig. 7 Constellations at the FEC BER threshold for (a) polarization-scrambled baseline NRZ-BPSK, and (b) ASE-loaded polarization attraction of polarization-scrambled NRZ-BPSK. Adaptive equalization was engaged for both cases.
Fig. 8
Fig. 8 Receiver sensitivity measurements when the signal was polarization-scrambled, ASE-loaded, and polarization attraction was employed (red squares), compared against the baseline, with the HNLF bypassed (solid circles). The “Theory” represents Eq. (1).
Fig. 9
Fig. 9 Polarization attraction at highest OSNR, in the absence of polarization recovery, and adaptive equalization. (a) Pump on, and (b) Pump off.
Fig. 10
Fig. 10 Receiver sensitivity measurements for ASE-loaded polarization attraction (circles), compared against HNLF propagation alone (squares). Also shown is the Gordon-Mollenauer theory or Eq. (3); and the Exact Theory or Eq. (4).
Fig. 11
Fig. 11 Experimental setup for the DWDM transmitter (LNF-EDFA: low-noise figure EDFA, BPG: bit pattern generator).
Fig. 12
Fig. 12 Experimental setup for the recirculating loop. (OSA: optical spectrum analyzer, Δα: variable optical attenuator (VOA), AOS: Acousto-optic switch, PS: polarization scrambler, WSS: wavelength-selective switch, SSMF: standard single-mode (G.652) fiber, DCF: dispersion-compensating fiber). The Transmitter is the DWDM transmitter shown in Fig. 11. The label “To LNF-EDFA” implies the direction of the center-channel towards the LNF-EDFA of Fig. 3.
Fig. 13
Fig. 13 Q2 vs. logarithmic scrambling speed of the polarization scrambler. Q2 values were measured after a transmission distance of > 5,000 km.
Fig. 14
Fig. 14 BER vs. per channel launch power, for the center-channel (1547.715 nm), measured after 7,321.5 km of transmission, where the FEC BER threshold is shown as a blue dashed line.
Fig. 15
Fig. 15 Approximate adaptive equalization tap optimization at −10.5 dBm launch power.
Fig. 16
Fig. 16 BER vs. distance for the center-channel (1547.715 nm), for a launch power ≈-10.5 dBm. Adaptive equalization was optimized at each distance.
Fig. 17
Fig. 17 Receiver sensitivity measurements for NRZ-BPSK after transmission in the recirculating loop (red squares), compared against the baseline (black squares). The “Theory” represents Eq. (1).
Fig. 18
Fig. 18 Poincare spheres for (a) ASE-loaded polarization attraction, and (b) long-haul transmission followed by polarization attraction. The traces were captured for the center-channel (1547.715 nm) using a trigger-capable polarization analyzer.
Fig. 19
Fig. 19 DOP as a function of recirculating loop transmission distance, when the DOP was measured after the polarization attraction module. One circulation is equivalent to 162.7 km. The data was captured using a trigger-capable polarization analyzer.
Fig. 20
Fig. 20 Received spectrum at a resolution bandwidth of 0.1 nm, prior to AWG filtering, and polarization attraction in the HNLF. The transmission distance in the recirculating loop was 2,340.8 km (14 circulations).
Fig. 21
Fig. 21 Receiver sensitivity measurements for post-transmission PA (red circles), compared against the ASE-loaded PA (blue circles), the baseline transmission (red squares), and the back-to-back (or baseline) configuration (black squares). The post-transmission PA data were taken after 8-15 circulations (1,301.6 – 2,440.5 km). The “Theory” represents Eq. (1).
Fig. 22
Fig. 22 Constellations at the FEC BER threshold for (a) baseline, (b) transmission, (c) ASE-loaded polarization attraction, and (d) polarization attraction post-transmission. The OSNR from (a) to (d) was ≈5.9 dB/0.1nm, 10 dB/0.1nm, 16.5 dB/0.1nm, and 17.7 dB/0.1nm.

Tables (2)

Tables Icon

Table 1 Recirculating loop SSMF-span characteristic parameters (L: physical length, D: dispersion, S: dispersion slope, α: propagation loss, and σT /L1/2: PMD)

Tables Icon

Table 2 Recirculating loop characteristic lengths (L: physical length, LW: walk-off length, LD: dispersion length). The table also shows the measured PMD (σT) for each span.

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

BER= 1 2 erfc( 2 B o R OSNR )
δ φ 2 2 3 φ NL 2 Q = R 3 B o φ NL 2 OSNR 0.037 rad 2
OSNR R 4 B o ( 1+4 Φ NL 2 ) ( erfc 1 ( 2BER ) ) 2 .
BER= 1 2 2 π n=0 (1) n 2n+1 e[ Ψ Φ r * (2n+1) e i( 2n+1 ) θ c ]
( z + α 2 + Δ β 1 2 J t +i β 2 2! 2 t 2 β 3 3! 3 t 3 )| Α k = i 8 9 γ[ Α k | Α k | Α k + n=1 N ( 1 δ nk )( Α n | Α n | Α k + Α n | Α k | Α n ) ]
s k (z,τ) z = 8 9 γ s k (z,τ)× n=1 N ( 1 δ nk ) P n (τ d nk z) s n (z,τ d nk z)
s(t)= k=0 K1 s k F k (t)
s k = s(t) F k * (t)dt
F m (t) F n * (t)dt= δ mn
n(t)= k=0 K1 N k F k (t),
N k = n(t) F k * (t)dt
N k =0
N k N k =0
N m N n * =ρ δ mn = n sp hν(G1) δ mn
s(t)= P 1/2 exp( iπ V π +2 V π ( a n rect( t n T ) 1 2 ) 2 V π )
s(t)= P 1/2 exp( iπ a n )rect( t n T )
s(t)= E 1/2 s n rect( t n T ) T 1/2 = E 1/2 s n F 0 (t)
s in (t)= G 1/2 s(t)+n(t)
n(t)=( N 0r +i N 0i ) F 0 (t)
s in (t)= G 1/2 E 1/2 s n F 0 (t)+n(t)= E 0 1/2 s n (t)+n(t)
s in (t)= ( | E 0 1/2 s n + N 0r | 2 + | N 0i | 2 ) 1/2 | F 0 (t) |exp( i tan 1 ( N 0i E 0 1/2 s n + N 0r ) )
( z + α 2 + Δ β 1 2 J t +i β 2 2! 2 t 2 β 2 3! 3 t 3 )Α= 8 9 iγ | Α | 2 Α
E( r,t )=( x A x (z,t)U(x,y)+y A y (z,t)V(x,y) )exp( i β ¯ ( ν 0 )z2iπ ν 0 t )
A(L,t)=A(0,t) e αL/2 exp( i 8 9 γ | A(0,t) | 2 0 L e αz dz )=A(0,t) e αL/2 exp( i 8 9 γ | A(0,t) | 2 L )
A(0,t)= s in (t)( x A x (0,t)+y A y (0,t) )
s out (t)= T 1/2 e αL/2 ( E 0 1/2 s n + N 0 ) F 0 (t) k=0 1 k! ( i 8 9 γL T ) k | E 0 1/2 s n + N 0 | 2k
r s = s out (t) F 0 * ( t )dt = T 1/2 e αL/2 ( E 0 1/2 s n + N 0 )exp( i 8 9 γL T | E 0 1/2 s n + N 0 | 2 )
SNR= | r s (T) | 2 | r N (T) | 2 = | s out (τ) h * ( tτ )dτ | 2 ρ | h * ( tτ )dτ | 2 = E 0 ρ
OSNR= R 2 B o SNR= R 2 B o Q
φ= tan 1 ( N 0i E 0 1/2 s n + N 0r )+ 8γL 9T ( ( E 0 1/2 s n + N 0r ) 2 + N 0i 2 )
tan 1 ( N 0i E 0 1/2 s n + N 0r ) N 0i E 0 1/2 s n
Φ 8γ L E 0 9T + N 0i E 0 1/2 s n + 8γ L 9T ( 2 N 0r E 0 1/2 s n + | N 0 | 2 )
Φ 8γ L E 0 9T + 8γ L ρ 9T = 8γL E 0 9T ( 1+ ρ E 0 )= Φ NL ( 1+ 1 Q )
δ Φ 2 N 0i 2 E 0 +2 N 0r 2 E 0 Φ NL 2 ( | N 0 | 2 E 0 Φ NL ) 2
δ Φ 2 ρ 2 E 0 +2 ( 8γL 9T ) 2 ρ E 0 ( 8γL 9T ) 2 ρ 2
Φ NL =0.5rad
δ Φ 2 min 1 Q MF 1 4 Q MF 2
φ NL 2 ( 2 1 Q ( 1 Q ) 2 )+ 1 2Q 1 Q MF 1 4 Q MF 2
Q 1 2 Q MF ( 1+4 φ NL 2 )
BER= 1 2 erfc( Q MF ).
OSNR R 4 B o ( 1+4 Φ NL 2 ) ( erfc 1 ( 2BER ) ) 2 ,
BER=1 π 2 θ c π 2 θ c p Φ r (θ)dθ= 1 2 2 π n=0 (1) n 2n+1 e[ Ψ Φ r * (2n+1) e i( 2n+1 ) θ c ]
Ψ Φ r * (2n+1)= π λ n 2 [ I n ( λ n 2 )+ I n+1 ( λ n 2 ) ] Ψ Φ ( ( 2n+1 ) Φ NL Φ ) e λ n /2
λ n = Q sinc[ 2 ( i( 2n+1 ) Φ NL Φ ) 1/2 ] ,
Φ =Q+ 1 2 η,
η=2 B F B o
Ψ Φ ( ν )=sec ( iν ) η/2 exp( Q ( iν ) 1/2 tan ( iν ) 1/2 )

Metrics