Abstract

Single-pixel imaging has the ability to generate images at nonvisible wavelengths and under low light conditions and thus has received increasing attention in recent years. Fourier single-pixel imaging (FSI) utilizes deterministic basis patterns for illumination to greatly improve the quality of image reconstruction. However, the original FSI based on grayscale Fourier basis illumination patterns is limited by the imaging speed as the digital micro-mirror devices (DMD) used to generate grayscale patterns operate at a low refresh rate. In this paper, a new approach is proposed to increase the imaging speed of DMD-based FSI without reducing the imaging spatial resolution. In this strategy, the grayscale Fourier basis patterns are split into a pair of grayscale patterns based on positive/negative pixel values, which are then decomposed into a cluster of binary basis patterns based on the principle of decimalization to binary. These binary patterns are used to illuminate the imaged object. The resulting detected light intensities multiply the corresponding weighted decomposed coefficients and are summed, and the results can be used to generate the Fourier spectrum for the imaged object. Finally, an inverse Fourier transform is applied to the Fourier spectrum to obtain the object image. The proposed technique is verified by a computational simulation and laboratory experiments. Both static and dynamic imaging experiments are carried out to demonstrate the proposed strategy. 128 × 128 pixels dynamic scenes at a speed of ~9 frames-per-second are captured under 22 KHz projection rate using a DMD. The reported technique accelerates the imaging speed for DMD-based FSI and provides an alternative approach to improve FSI efficiency.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hadamard single-pixel imaging versus Fourier single-pixel imaging

Zibang Zhang, Xueying Wang, Guoan Zheng, and Jingang Zhong
Opt. Express 25(16) 19619-19639 (2017)

Adaptive regional single-pixel imaging based on the Fourier slice theorem

Hongzhi Jiang, Shuguang Zhu, Huijie Zhao, Bingjie Xu, and Xudong Li
Opt. Express 25(13) 15118-15130 (2017)

Projector-defocusing rectification for Fourier single-pixel imaging

Bingjie Xu, Hongzhi Jiang, Huijie Zhao, Xudong Li, and Shuguang Zhu
Opt. Express 26(4) 5005-5017 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical Imaging by Means of two-Photon Quantum Entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref] [PubMed]
  2. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
    [Crossref] [PubMed]
  3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
    [Crossref] [PubMed]
  4. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]
  5. S. M. M. Khamoushi, Y. Nosrati, and S. H. Tavassoli, “Sinusoidal ghost imaging,” Opt. Lett. 40(15), 3452–3455 (2015).
    [Crossref] [PubMed]
  6. R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2(12), 1049–1052 (2015).
    [Crossref]
  7. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
    [Crossref]
  8. M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  9. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
    [Crossref] [PubMed]
  10. N. Tian, Q. Guo, A. Wang, D. Xu, and L. Fu, “Fluorescence ghost imaging with pseudothermal light,” Opt. Lett. 36(16), 3302–3304 (2011).
    [Crossref] [PubMed]
  11. G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
    [Crossref] [PubMed]
  12. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential Ghost Imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
    [Crossref] [PubMed]
  13. B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
    [Crossref]
  14. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
    [Crossref] [PubMed]
  15. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
    [Crossref]
  16. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).
    [Crossref] [PubMed]
  17. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref] [PubMed]
  18. T. Vasile, V. Damian, D. Coltuc, and M. Petrovici, “Single pixel sensing for THz laser beam profiler based on Hadamard Transform,” Opt. Laser Technol. 79, 173–178 (2016).
    [Crossref]
  19. M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
    [Crossref] [PubMed]
  20. M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
    [Crossref] [PubMed]
  21. Z. Zhang, S. Liu, J. Peng, M. Yao, G. Zheng, and J. Zhong, “Simultaneous spatial, spectruml, and 3D compressive imaging via efficient Fourier single-pixel measurements,” Optica 5(3), 315–319 (2018).
    [Crossref]
  22. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
    [Crossref] [PubMed]
  23. B. Xu, H. Jiang, H. Zhao, X. Li, and S. Zhu, “Projector-defocusing rectification for Fourier single-pixel imaging,” Opt. Express 26(4), 5005–5017 (2018).
    [Crossref] [PubMed]
  24. H. Jiang, S. Zhu, H. Zhao, B. Xu, and X. Li, “Adaptive regional single-pixel imaging based on the Fourier slice theorem,” Opt. Express 25(13), 15118–15130 (2017).
    [Crossref] [PubMed]
  25. H. Ren, S. Zhao, and J. Gruska, “Edge detection based on single-pixel imaging,” Opt. Express 26(5), 5501–5511 (2018).
    [Crossref] [PubMed]
  26. Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Hadamard single-pixel imaging versus Fourier single-pixel imaging,” Opt. Express 25(16), 19619–19639 (2017).
    [Crossref] [PubMed]
  27. Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast Fourier single-pixel imaging via binary illumination,” Sci. Rep. 7(1), 12029 (2017).
    [Crossref] [PubMed]
  28. D. G. Winters and R. A. Bartels, “Two-dimensional single-pixel imaging by cascaded orthogonal line spatial modulation,” Opt. Lett. 40(12), 2774–2777 (2015).
    [Crossref] [PubMed]
  29. F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3(7), 698–701 (2016).
    [Crossref]
  30. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
    [Crossref]
  31. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
    [Crossref] [PubMed]
  32. N. Huynh, E. Zhang, M. Betcke, S. Arridge, P. Beard, and B. Cox, “Single-pixel optical camera for video rate ultrasonic imaging,” Optica 3(1), 26–29 (2016).
    [Crossref]
  33. B. Lochocki, A. Gambin, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3(10), 1056–1059 (2016).
    [Crossref]
  34. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
    [Crossref] [PubMed]
  35. J. Huang and D. F. Shi, “Multispectruml computational ghost imaging with multiplexed illumination,” J. Optics-Uk. 19(7), 075701 (2017).
    [Crossref]
  36. D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
    [Crossref]
  37. D. Shi, S. Hu, and Y. Wang, “Polarimetric ghost imaging,” Opt. Lett. 39(5), 1231–1234 (2014).
    [Crossref] [PubMed]
  38. D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Efficient Space-Time Sampling with Pixel-Wise Coded Exposure for High-Speed Imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 248–260 (2014).
    [Crossref] [PubMed]
  39. J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24(25), 28549–28560 (2016).
    [Crossref] [PubMed]

2018 (4)

2017 (6)

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

H. Jiang, S. Zhu, H. Zhao, B. Xu, and X. Li, “Adaptive regional single-pixel imaging based on the Fourier slice theorem,” Opt. Express 25(13), 15118–15130 (2017).
[Crossref] [PubMed]

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Hadamard single-pixel imaging versus Fourier single-pixel imaging,” Opt. Express 25(16), 19619–19639 (2017).
[Crossref] [PubMed]

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref] [PubMed]

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast Fourier single-pixel imaging via binary illumination,” Sci. Rep. 7(1), 12029 (2017).
[Crossref] [PubMed]

J. Huang and D. F. Shi, “Multispectruml computational ghost imaging with multiplexed illumination,” J. Optics-Uk. 19(7), 075701 (2017).
[Crossref]

2016 (7)

2015 (6)

D. G. Winters and R. A. Bartels, “Two-dimensional single-pixel imaging by cascaded orthogonal line spatial modulation,” Opt. Lett. 40(12), 2774–2777 (2015).
[Crossref] [PubMed]

S. M. M. Khamoushi, Y. Nosrati, and S. H. Tavassoli, “Sinusoidal ghost imaging,” Opt. Lett. 40(15), 3452–3455 (2015).
[Crossref] [PubMed]

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2(12), 1049–1052 (2015).
[Crossref]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

2014 (4)

2013 (2)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

2012 (2)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

2011 (1)

2010 (1)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential Ghost Imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

2009 (2)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

2008 (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

2005 (1)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

2004 (1)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical Imaging by Means of two-Photon Quantum Entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Arridge, S.

Artal, P.

Aspden, R. S.

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Bartels, R. A.

Beard, P.

Betcke, M.

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Bowman, R.

Bowman, R. W.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Boyd, R. W.

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Buller, G. S.

Cao, K. F.

D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
[Crossref]

Chan, K. W. C.

Cizmar, T.

M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Cižmár, T.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Coltuc, D.

T. Vasile, V. Damian, D. Coltuc, and M. Petrovici, “Single pixel sensing for THz laser beam profiler based on Hadamard Transform,” Opt. Laser Technol. 79, 173–178 (2016).
[Crossref]

Cox, B.

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

Damian, V.

T. Vasile, V. Damian, D. Coltuc, and M. Petrovici, “Single pixel sensing for THz laser beam profiler based on Hadamard Transform,” Opt. Laser Technol. 79, 173–178 (2016).
[Crossref]

Denis, S.

Devaux, F.

Dholakia, K.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Edgar, M. P.

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref] [PubMed]

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential Ghost Imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

Fu, L.

Gambin, A.

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential Ghost Imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Gemmell, N. R.

Gibson, G. M.

Gruska, J.

Gu, J.

D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Efficient Space-Time Sampling with Pixel-Wise Coded Exposure for High-Speed Imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 248–260 (2014).
[Crossref] [PubMed]

Guo, Q.

Gupta, M.

D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Efficient Space-Time Sampling with Pixel-Wise Coded Exposure for High-Speed Imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 248–260 (2014).
[Crossref] [PubMed]

Hadfield, R. H.

Hempler, N.

Hitomi, Y.

D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Efficient Space-Time Sampling with Pixel-Wise Coded Exposure for High-Speed Imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 248–260 (2014).
[Crossref] [PubMed]

Hu, S.

Huang, J.

D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
[Crossref]

J. Huang and D. F. Shi, “Multispectruml computational ghost imaging with multiplexed illumination,” J. Optics-Uk. 19(7), 075701 (2017).
[Crossref]

Huynh, N.

Irles, E.

Jiang, H.

Jonathan, P.

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Khamoushi, S. M. M.

Kirkwood, R. A.

Lamb, R.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Lancis, J.

Lantz, E.

Li, X.

Liu, D.

D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
[Crossref]

D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Efficient Space-Time Sampling with Pixel-Wise Coded Exposure for High-Speed Imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 248–260 (2014).
[Crossref] [PubMed]

Liu, S.

Lochocki, B.

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential Ghost Imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential Ghost Imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

Maker, G. T.

Malcolm, G. P. A.

Manzanera, S.

Meng, L. T.

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref] [PubMed]

Mertens, L.

Mitchell, K. J.

Mitsunaga, T.

D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Efficient Space-Time Sampling with Pixel-Wise Coded Exposure for High-Speed Imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 248–260 (2014).
[Crossref] [PubMed]

Moreau, P. A.

Morris, P. A.

Nayar, S. K.

D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Efficient Space-Time Sampling with Pixel-Wise Coded Exposure for High-Speed Imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 248–260 (2014).
[Crossref] [PubMed]

Nosrati, Y.

O’Sullivan, M. N.

Padgett, M. J.

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref] [PubMed]

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2(12), 1049–1052 (2015).
[Crossref]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

Peng, J.

Petrovici, M.

T. Vasile, V. Damian, D. Coltuc, and M. Petrovici, “Single pixel sensing for THz laser beam profiler based on Hadamard Transform,” Opt. Laser Technol. 79, 173–178 (2016).
[Crossref]

Phillips, D. B.

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical Imaging by Means of two-Photon Quantum Entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Ploschner, M.

M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Radwell, N.

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

Ren, H.

Ruggeri, A.

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical Imaging by Means of two-Photon Quantum Entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Shapiro, J. H.

Shi, D.

Shi, D. F.

D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
[Crossref]

J. Huang and D. F. Shi, “Multispectruml computational ghost imaging with multiplexed illumination,” J. Optics-Uk. 19(7), 075701 (2017).
[Crossref]

Shih, Y.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical Imaging by Means of two-Photon Quantum Entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical Imaging by Means of two-Photon Quantum Entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Su, X.

Sun, B.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

Sun, B. Q.

Sun, M. J.

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

Tajahuerce, E.

Tanner, M. G.

Tasca, D. S.

Tavassoli, S. H.

Tian, N.

Tosi, A.

Tyc, T.

M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

Vasile, T.

T. Vasile, V. Damian, D. Coltuc, and M. Petrovici, “Single pixel sensing for THz laser beam profiler based on Hadamard Transform,” Opt. Laser Technol. 79, 173–178 (2016).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Wang, A.

Wang, X.

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast Fourier single-pixel imaging via binary illumination,” Sci. Rep. 7(1), 12029 (2017).
[Crossref] [PubMed]

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Hadamard single-pixel imaging versus Fourier single-pixel imaging,” Opt. Express 25(16), 19619–19639 (2017).
[Crossref] [PubMed]

Wang, Y.

Wang, Y. J.

D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Welsh, S. S.

Winters, D. G.

Xie, C. B.

D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
[Crossref]

Xu, B.

Xu, D.

Yao, M.

You, Z.

Yuan, K.

D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
[Crossref]

Zhang, E.

Zhang, J. M.

D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
[Crossref]

Zhang, Z.

Zhao, H.

Zhao, S.

Zheng, G.

Zhong, J.

Zhou, P.

Zhu, J.

Zhu, S.

Zhu, W. Y.

D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
[Crossref]

Appl. Phys. Lett. (1)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Efficient Space-Time Sampling with Pixel-Wise Coded Exposure for High-Speed Imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 248–260 (2014).
[Crossref] [PubMed]

J. Optics-Uk. (1)

J. Huang and D. F. Shi, “Multispectruml computational ghost imaging with multiplexed illumination,” J. Optics-Uk. 19(7), 075701 (2017).
[Crossref]

Nat. Commun. (3)

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Opt. Express (9)

B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24(25), 28549–28560 (2016).
[Crossref] [PubMed]

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

H. Jiang, S. Zhu, H. Zhao, B. Xu, and X. Li, “Adaptive regional single-pixel imaging based on the Fourier slice theorem,” Opt. Express 25(13), 15118–15130 (2017).
[Crossref] [PubMed]

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Hadamard single-pixel imaging versus Fourier single-pixel imaging,” Opt. Express 25(16), 19619–19639 (2017).
[Crossref] [PubMed]

B. Xu, H. Jiang, H. Zhao, X. Li, and S. Zhu, “Projector-defocusing rectification for Fourier single-pixel imaging,” Opt. Express 26(4), 5005–5017 (2018).
[Crossref] [PubMed]

H. Ren, S. Zhao, and J. Gruska, “Edge detection based on single-pixel imaging,” Opt. Express 26(5), 5501–5511 (2018).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

T. Vasile, V. Damian, D. Coltuc, and M. Petrovici, “Single pixel sensing for THz laser beam profiler based on Hadamard Transform,” Opt. Laser Technol. 79, 173–178 (2016).
[Crossref]

Opt. Lasers Eng. (1)

D. F. Shi, J. M. Zhang, J. Huang, Y. J. Wang, K. Yuan, K. F. Cao, C. B. Xie, D. Liu, and W. Y. Zhu, “Polarization-multiplexing ghost imaging,” Opt. Lasers Eng. 102, 100–105 (2018).
[Crossref]

Opt. Lett. (5)

Optica (7)

Phys. Rev. A (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical Imaging by Means of two-Photon Quantum Entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential Ghost Imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

Sci. Rep. (3)

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7(1), 3464 (2017).
[Crossref] [PubMed]

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast Fourier single-pixel imaging via binary illumination,” Sci. Rep. 7(1), 12029 (2017).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1       dynamic ingaing of a moving hand
» Visualization 1       dynamic ingaing of a moving hand

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Traditional method used for generation grayscale Fourier basis illumination patterns by temporal dithering.B0, B1 ... B7 are successive binary illumination patterns that are decomposed from the grayscale Fourier pattern. T is the basis illumination time.
Fig. 2
Fig. 2 Splitting of original grayscale Fourier patterns into a pair of grayscale patterns.
Fig. 3
Fig. 3 Decomposition of the grayscale pattern into binary illumination patterns.
Fig. 4
Fig. 4 Entire process for decomposing the grayscale Fourier patterns to binary patterns. OGP: Original grayscale pattern; DGP: Decomposed grayscale patterns; and BIP: Binary illumination patterns.
Fig. 5
Fig. 5 Reconstructed Fourier spectrum and images for four different objects with a quantization parameter R ranging from 2 to 8. The resolution of the reconstructed images is 128 × 128 pixels. FS: Fourier spectrum (the absolute value of the Fourier spectrum in a logarithm scale), RI: Reconstructed image.
Fig. 6
Fig. 6 RMSEs and illumination time under different quantization levels.
Fig. 7
Fig. 7 Experimental setup.
Fig. 8
Fig. 8 Static imaging with spectrum coverage from 5% to 100% and the corresponding reconstructed images. (A–D): Density distributions for the Fourier spectrum acquired at 5%, 15%, 25%, and 100%, the corresponding reconstructed images, respectively. Scale bar: 1cm.
Fig. 9
Fig. 9 Dynamic imaging results. (a-h): eight of 35 reconstructed images. (See Visualization 1 for the complete video).

Tables (1)

Tables Icon

Table 1 Comparison among three methods

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

f(x,y)= 1 MN u=0,v=0 M1,N1 F(u,v)[cos( 2πxu M + 2πyv N )+jsin( 2πxu M + 2πyv N )] ,
F(u,v)= x=0,y=0 M1,N1 f(x,y)[cos( 2πxu M + 2πyv N )jsin( 2πxu M + 2πyv N )] .
I ϕ (u,v)= x,y P ϕ (x,y;u,v)f (x,y),
P ϕ (x,y;u,v )=(2 R -1)cos(2πx u M +2πy v N +ϕ),u=0,1,2...M1;v=0,1,2...N1.
P ϕ (x,y; u m , v n )= i=1 R 2 (i1) T B ϕ,i (x,y; u m , v n ).
I ϕ ( u m , v n )= x,y P ϕ (x,y; u m , v n )f (x,y).
I ϕ ( u m , v n )= x,y [ i=1 R 2 (i1) T B ϕ,i (x,y; u m , v n ) ]f (x,y) = x,y [ 2 0 T B ϕ,1 (x,y; u m , v n )+...+ 2 (R1) T B ϕ ,R (x,y; u m , v n ) ]f (x,y) = 2 0 x,y T B ϕ,1 (x,y; u m , v n )f(x,y) +...+ 2 (R1) x,y T B ϕ,R (x,y; u m , v n )f(x,y) , = 2 0 I ϕ,1 ( u m , v n )+...+ 2 (R1) I ϕ,R ( u m , v n )
P ϕ (x,y;u,v)= P ϕ + (x,y;u,v)- P ϕ - (x,y;u,v).
I ϕ + ( u m , v n )= 2 0 I ϕ + ,1 ( u m , v n )+ 2 1 I ϕ + ,2 ( u m , v n )+...+ 2 (R1) I ϕ + ,R ( u m , v n ).
I ϕ - ( u m , v n )= 2 0 I ϕ - ,1 ( u m , v n )+ 2 1 I ϕ - ,2 ( u m , v n )+...+ 2 (R1) I ϕ - ,R ( u m , v n ).
D 0 ( u m , v n )= I 0 + ( u m , v n ) I 0 - ( u m , v n )
D π/2 ( u m , v n )= I π/2 + ( u m , v n ) I π/2 - ( u m , v n ).
f(x,y)= F 1 [ D 0 ( u m , v n )+j D π/2 ( u m , v n )],
RMSE= x,y=1 M,N [ f r (x,y) f o (x,y)] 2 M×N ,