Abstract

We theoretically and numerically investigate the effects of high-order dispersion (HOD) on microcavity solitons, both in time and frequency domain with an extended normalized Lugiato–Lefever equation (LLE). The observed temporal drift of bright and dark solitons is shown to originate from high-odd-order dispersion, while the sign determines the direction of soliton movement and the amplitude decides the drift speed. HOD can also be introduced to stabilize the breathing bright and dark cavity solitons. In spectral domain, the nonlinear symmetry breaking is mainly introduced by third-order dispersion, whereas both third- and fourth-order dispersion can introduce dispersive wave accompanied by soliton tail oscillation. This work could give insight for exploring detailed intracavity pulse dynamics and spectral characteristics of Kerr combs influenced by HOD, as well as provide a viable route to delicate control of Kerr comb generation through tailoring the dispersion parameters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of inhomogeneities and drift on the dynamics of temporal solitons in fiber cavities and microresonators

P. Parra-Rivas, D. Gomila, M. A. Matías, P. Colet, and L. Gelens
Opt. Express 22(25) 30943-30954 (2014)

Universal mechanism for the binding of temporal cavity solitons

Yadong Wang, François Leo, Julien Fatome, Miro Erkintalo, Stuart G. Murdoch, and Stéphane Coen
Optica 4(8) 855-863 (2017)

Spatiotemporal evolution of a cosine-modulated stationary field and Kerr frequency comb generation in a microresonator

Xiaohong Hu, Yuanshan Liu, Xin Xu, Ye Feng, Wenfu Zhang, Weiqiang Wang, Jiazheng Song, Yishan Wang, and Wei Zhao
Appl. Opt. 54(29) 8751-8757 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  3. C. Bao, Y. Xuan, D. E. Leaird, S. Wabnitz, M. Qi, and A. M. Weiner, “Spatial mode-interaction induced single soliton generation in microresonators,” Optica 4(9), 1011–1015 (2017).
    [Crossref]
  4. M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
    [Crossref] [PubMed]
  5. Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4(2), 193–203 (2017).
    [Crossref] [PubMed]
  6. M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
    [Crossref] [PubMed]
  7. M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3(8), 854–860 (2016).
    [Crossref]
  8. A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, and L. Maleki, “Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers,” Opt. Lett. 40(15), 3468–3471 (2015).
    [Crossref] [PubMed]
  9. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
    [Crossref] [PubMed]
  10. H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
    [Crossref]
  11. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
    [Crossref]
  12. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
    [Crossref]
  13. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
    [Crossref] [PubMed]
  14. A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
    [Crossref] [PubMed]
  15. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
    [Crossref] [PubMed]
  16. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
    [Crossref]
  17. X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
    [Crossref]
  18. C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41(11), 2565–2568 (2016).
    [Crossref] [PubMed]
  19. A. B. Matsko, W. Liang, A. A. Savchenkov, and L. Maleki, “Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators,” Opt. Lett. 38(4), 525–527 (2013).
    [Crossref] [PubMed]
  20. Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: case of anomalous dispersion,” arXiv:1308.2542 (2013).
  21. M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39(2), 283–286 (2014).
    [Crossref] [PubMed]
  22. M. Tlidi and L. Gelens, “High-order dispersion stabilizes dark dissipative solitons in all-fiber cavities,” Opt. Lett. 35(3), 306–308 (2010).
    [Crossref] [PubMed]
  23. M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki, “Control and removal of modulational instabilities in low-dispersion photonic crystal fiber cavities,” Opt. Lett. 32(6), 662–664 (2007).
    [Crossref] [PubMed]
  24. M. Tlidi, L. Bahloul, L. Cherbi, A. Hariz, and S. Coulibaly, “Drift of dark cavity solitons in a photonic-crystal fiber resonator,” Phys. Rev. A 88(3), 035802 (2013).
    [Crossref]
  25. L. Bahloul, L. Cherbi, A. Hariz, and M. Tlidi, “Temporal localized structures in photonic crystal fibre resonators and their spontaneous symmetry-breaking instability,” Philos Trans A Math Phys Eng Sci 372(2027), 20140020 (2014).
    [Crossref] [PubMed]
  26. P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39(10), 2971–2974 (2014).
    [Crossref] [PubMed]
  27. S. Wang, H. Guo, X. Bai, and X. Zeng, “Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion,” Opt. Lett. 39(10), 2880–2883 (2014).
    [Crossref] [PubMed]
  28. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
    [Crossref] [PubMed]
  29. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
    [Crossref] [PubMed]
  30. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
    [Crossref]
  31. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
    [Crossref] [PubMed]
  32. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
    [Crossref] [PubMed]
  33. C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
    [Crossref]
  34. P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93(6), 063839 (2016).
    [Crossref]
  35. Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87(5), 053852 (2013).
    [Crossref]
  36. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1–6), 413–420 (2003).
  37. S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, “Averaged description of wave beams in linear and nonlinear media (the method of moments),” Radiophys. Quantum Electron. 14(9), 1062–1070 (1971).
    [Crossref]
  38. C. J. McKinstrie, J. Santhanam, and G. P. Agrawal, “Gordon–Haus timing jitter in dispersion-managed systems with lumped amplification: analytical approach,” J. Opt. Soc. Am. B 19(4), 640–649 (2002).
    [Crossref]
  39. J. Santhanam, C. J. McKinstrie, T. I. Lakoba, and G. P. Agrawal, “Effects of precompensation and postcompensation on timing jitter in dispersion-managed systems,” Opt. Lett. 26(15), 1131–1133 (2001).
    [Crossref] [PubMed]
  40. I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
    [Crossref]
  41. C. Milián and D. V. Skryabin, “Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion,” Opt. Express 22(3), 3732–3739 (2014).
    [Crossref] [PubMed]
  42. S. Malaguti, M. Conforti, and S. Trillo, “Dispersive radiation induced by shock waves in passive resonators,” Opt. Lett. 39(19), 5626–5629 (2014).
    [Crossref] [PubMed]
  43. A. G. Vladimirov, S. V. Gurevich, and M. Tlidi, “Effect of Cherenkov radiation on localized-state interaction,” Phys. Rev. A 97(1), 013816 (2018).
    [Crossref]
  44. F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and M. Taki, “Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities,” Phys. Rev. Lett. 110(10), 104103 (2013).
    [Crossref] [PubMed]
  45. Y. Okawachi, M. R. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39(12), 3535–3538 (2014).
    [Crossref] [PubMed]
  46. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Effects of higher-order dispersion on resonant dispersive waves emitted by solitons,” Opt. Lett. 34(13), 2072–2074 (2009).
    [Crossref] [PubMed]

2018 (3)

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref] [PubMed]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref] [PubMed]

A. G. Vladimirov, S. V. Gurevich, and M. Tlidi, “Effect of Cherenkov radiation on localized-state interaction,” Phys. Rev. A 97(1), 013816 (2018).
[Crossref]

2017 (3)

2016 (6)

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41(11), 2565–2568 (2016).
[Crossref] [PubMed]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3(8), 854–860 (2016).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
[Crossref] [PubMed]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93(6), 063839 (2016).
[Crossref]

2015 (2)

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, and L. Maleki, “Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers,” Opt. Lett. 40(15), 3468–3471 (2015).
[Crossref] [PubMed]

2014 (11)

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

L. Bahloul, L. Cherbi, A. Hariz, and M. Tlidi, “Temporal localized structures in photonic crystal fibre resonators and their spontaneous symmetry-breaking instability,” Philos Trans A Math Phys Eng Sci 372(2027), 20140020 (2014).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39(2), 283–286 (2014).
[Crossref] [PubMed]

C. Milián and D. V. Skryabin, “Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion,” Opt. Express 22(3), 3732–3739 (2014).
[Crossref] [PubMed]

S. Wang, H. Guo, X. Bai, and X. Zeng, “Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion,” Opt. Lett. 39(10), 2880–2883 (2014).
[Crossref] [PubMed]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39(10), 2971–2974 (2014).
[Crossref] [PubMed]

Y. Okawachi, M. R. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39(12), 3535–3538 (2014).
[Crossref] [PubMed]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

S. Malaguti, M. Conforti, and S. Trillo, “Dispersive radiation induced by shock waves in passive resonators,” Opt. Lett. 39(19), 5626–5629 (2014).
[Crossref] [PubMed]

2013 (7)

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87(5), 053852 (2013).
[Crossref]

F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and M. Taki, “Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities,” Phys. Rev. Lett. 110(10), 104103 (2013).
[Crossref] [PubMed]

I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

M. Tlidi, L. Bahloul, L. Cherbi, A. Hariz, and S. Coulibaly, “Drift of dark cavity solitons in a photonic-crystal fiber resonator,” Phys. Rev. A 88(3), 035802 (2013).
[Crossref]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
[Crossref] [PubMed]

A. B. Matsko, W. Liang, A. A. Savchenkov, and L. Maleki, “Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators,” Opt. Lett. 38(4), 525–527 (2013).
[Crossref] [PubMed]

2012 (1)

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

2011 (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

2010 (2)

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[Crossref]

M. Tlidi and L. Gelens, “High-order dispersion stabilizes dark dissipative solitons in all-fiber cavities,” Opt. Lett. 35(3), 306–308 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (2)

M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki, “Control and removal of modulational instabilities in low-dispersion photonic crystal fiber cavities,” Opt. Lett. 32(6), 662–664 (2007).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

2003 (1)

Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1–6), 413–420 (2003).

2002 (1)

2001 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

1986 (1)

1971 (1)

S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, “Averaged description of wave beams in linear and nonlinear media (the method of moments),” Radiophys. Quantum Electron. 14(9), 1062–1070 (1971).
[Crossref]

Agrawal, G. P.

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Bahloul, L.

L. Bahloul, L. Cherbi, A. Hariz, and M. Tlidi, “Temporal localized structures in photonic crystal fibre resonators and their spontaneous symmetry-breaking instability,” Philos Trans A Math Phys Eng Sci 372(2027), 20140020 (2014).
[Crossref] [PubMed]

M. Tlidi, L. Bahloul, L. Cherbi, A. Hariz, and S. Coulibaly, “Drift of dark cavity solitons in a photonic-crystal fiber resonator,” Phys. Rev. A 88(3), 035802 (2013).
[Crossref]

Bai, X.

Balakireva, I.

I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
[Crossref]

Balakireva, I. V.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Bao, C.

Beha, K.

Belden, P. M.

Bhadra, S. K.

Brasch, V.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
[Crossref] [PubMed]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Briles, T. C.

Cardenas, J.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref] [PubMed]

Carvalho, D. O.

Chembo, Y. K.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87(5), 053852 (2013).
[Crossref]

I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
[Crossref]

Chen, H. H.

Chen, S.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Cherbi, L.

L. Bahloul, L. Cherbi, A. Hariz, and M. Tlidi, “Temporal localized structures in photonic crystal fibre resonators and their spontaneous symmetry-breaking instability,” Philos Trans A Math Phys Eng Sci 372(2027), 20140020 (2014).
[Crossref] [PubMed]

M. Tlidi, L. Bahloul, L. Cherbi, A. Hariz, and S. Coulibaly, “Drift of dark cavity solitons in a photonic-crystal fiber resonator,” Phys. Rev. A 88(3), 035802 (2013).
[Crossref]

Coen, S.

Coillet, A.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Coillet, I.

I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
[Crossref]

Conforti, M.

Coulibaly, S.

M. Tlidi, L. Bahloul, L. Cherbi, A. Hariz, and S. Coulibaly, “Drift of dark cavity solitons in a photonic-crystal fiber resonator,” Phys. Rev. A 88(3), 035802 (2013).
[Crossref]

Del’Haye, P.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Di Teodoro, F.

Diddams, S. A.

Drake, T. E.

Dudley, J. M.

I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
[Crossref]

Dutt, A.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref] [PubMed]

Emplit, P.

F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and M. Taki, “Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities,” Phys. Rev. Lett. 110(10), 104103 (2013).
[Crossref] [PubMed]

Erkintalo, M.

Freude, W.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Gaeta, A. L.

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Geiselmann, M.

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
[Crossref] [PubMed]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

Gelens, L.

Godey, C.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Gomila, D.

P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93(6), 063839 (2016).
[Crossref]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39(10), 2971–2974 (2014).
[Crossref] [PubMed]

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[Crossref]

Gorodetsky, M. L.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Griffith, A. G.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref] [PubMed]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3(8), 854–860 (2016).
[Crossref]

Guo, H.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
[Crossref] [PubMed]

S. Wang, H. Guo, X. Bai, and X. Zeng, “Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion,” Opt. Lett. 39(10), 2880–2883 (2014).
[Crossref] [PubMed]

Gurevich, S. V.

A. G. Vladimirov, S. V. Gurevich, and M. Tlidi, “Effect of Cherenkov radiation on localized-state interaction,” Phys. Rev. A 97(1), 013816 (2018).
[Crossref]

Haelterman, M.

F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and M. Taki, “Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities,” Phys. Rev. Lett. 110(10), 104103 (2013).
[Crossref] [PubMed]

Hänsch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

Hariz, A.

L. Bahloul, L. Cherbi, A. Hariz, and M. Tlidi, “Temporal localized structures in photonic crystal fibre resonators and their spontaneous symmetry-breaking instability,” Philos Trans A Math Phys Eng Sci 372(2027), 20140020 (2014).
[Crossref] [PubMed]

M. Tlidi, L. Bahloul, L. Cherbi, A. Hariz, and S. Coulibaly, “Drift of dark cavity solitons in a photonic-crystal fiber resonator,” Phys. Rev. A 88(3), 035802 (2013).
[Crossref]

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Henriet, R.

I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
[Crossref]

Herr, T.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Ilchenko, V. S.

Ilic, B. R.

Jang, J. K.

Ji, X.

Joshi, C.

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

Karpov, M.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
[Crossref] [PubMed]

Kippenberg, T. J.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
[Crossref] [PubMed]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Klenner, A.

Knobloch, E.

P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93(6), 063839 (2016).
[Crossref]

Kockaert, P.

F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and M. Taki, “Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities,” Phys. Rev. Lett. 110(10), 104103 (2013).
[Crossref] [PubMed]

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Koos, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Kordts, A.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
[Crossref] [PubMed]

Kozyreff, G.

Lakoba, T. I.

Lamont, M. R.

Larger, L.

I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
[Crossref]

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Leaird, D. E.

C. Bao, Y. Xuan, D. E. Leaird, S. Wabnitz, M. Qi, and A. M. Weiner, “Spatial mode-interaction induced single soliton generation in microresonators,” Optica 4(9), 1011–1015 (2017).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Lee, H.

Lee, Y. C.

Leo, F.

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39(10), 2971–2974 (2014).
[Crossref] [PubMed]

F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and M. Taki, “Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities,” Phys. Rev. Lett. 110(10), 104103 (2013).
[Crossref] [PubMed]

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Li, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Li, Q.

Liang, W.

Lihachev, G.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

Lipson, M.

Liu, Y.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Lobanov, V. E.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

Lotshaw, W. T.

Louvergneaux, E.

Lucas, E.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

Luke, K.

Malaguti, S.

Maleki, L.

Matsko, A. B.

McKinstrie, C. J.

Menyuk, C. R.

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87(5), 053852 (2013).
[Crossref]

I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
[Crossref]

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
[Crossref] [PubMed]

Milián, C.

Miller, S. A.

Mussot, A.

F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and M. Taki, “Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities,” Phys. Rev. Lett. 110(10), 104103 (2013).
[Crossref] [PubMed]

M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki, “Control and removal of modulational instabilities in low-dispersion photonic crystal fiber cavities,” Opt. Lett. 32(6), 662–664 (2007).
[Crossref] [PubMed]

Okawachi, Y.

Papp, S. B.

Parra-Rivas, P.

P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93(6), 063839 (2016).
[Crossref]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39(10), 2971–2974 (2014).
[Crossref] [PubMed]

Petrishchev, V. A.

S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, “Averaged description of wave beams in linear and nonlinear media (the method of moments),” Radiophys. Quantum Electron. 14(9), 1062–1070 (1971).
[Crossref]

Pfeiffer, M. H. P.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
[Crossref] [PubMed]

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Picqué, N.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

Qi, M.

C. Bao, Y. Xuan, D. E. Leaird, S. Wabnitz, M. Qi, and A. M. Weiner, “Spatial mode-interaction induced single soliton generation in microresonators,” Optica 4(9), 1011–1015 (2017).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Quinlan, F.

Randle, H. G.

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Roy, S.

Saleh, K.

I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
[Crossref]

Santhanam,

Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1–6), 413–420 (2003).

Santhanam, J.

Savchenkov, A. A.

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Skryabin, D. V.

C. Milián and D. V. Skryabin, “Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion,” Opt. Express 22(3), 3732–3739 (2014).
[Crossref] [PubMed]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[Crossref]

Srinivasan, K.

Stone, J. R.

Suh, M.-G.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Sylvestre, T.

Taki, M.

F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and M. Taki, “Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities,” Phys. Rev. Lett. 110(10), 104103 (2013).
[Crossref] [PubMed]

M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki, “Control and removal of modulational instabilities in low-dispersion photonic crystal fiber cavities,” Opt. Lett. 32(6), 662–664 (2007).
[Crossref] [PubMed]

Talanov, V. I.

S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, “Averaged description of wave beams in linear and nonlinear media (the method of moments),” Radiophys. Quantum Electron. 14(9), 1062–1070 (1971).
[Crossref]

Tlidi, M.

A. G. Vladimirov, S. V. Gurevich, and M. Tlidi, “Effect of Cherenkov radiation on localized-state interaction,” Phys. Rev. A 97(1), 013816 (2018).
[Crossref]

L. Bahloul, L. Cherbi, A. Hariz, and M. Tlidi, “Temporal localized structures in photonic crystal fibre resonators and their spontaneous symmetry-breaking instability,” Philos Trans A Math Phys Eng Sci 372(2027), 20140020 (2014).
[Crossref] [PubMed]

M. Tlidi, L. Bahloul, L. Cherbi, A. Hariz, and S. Coulibaly, “Drift of dark cavity solitons in a photonic-crystal fiber resonator,” Phys. Rev. A 88(3), 035802 (2013).
[Crossref]

M. Tlidi and L. Gelens, “High-order dispersion stabilizes dark dissipative solitons in all-fiber cavities,” Opt. Lett. 35(3), 306–308 (2010).
[Crossref] [PubMed]

M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki, “Control and removal of modulational instabilities in low-dispersion photonic crystal fiber cavities,” Opt. Lett. 32(6), 662–664 (2007).
[Crossref] [PubMed]

Trillo, S.

Vahala, K. J.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

Vladimirov, A. G.

Vlasov, S. N.

S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, “Averaged description of wave beams in linear and nonlinear media (the method of moments),” Radiophys. Quantum Electron. 14(9), 1062–1070 (1971).
[Crossref]

Wabnitz, S.

Wai, P. K. A.

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Wang, J.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Wang, P.-H.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Wang, S.

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Weimann, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Weiner, A. M.

C. Bao, Y. Xuan, D. E. Leaird, S. Wabnitz, M. Qi, and A. M. Weiner, “Spatial mode-interaction induced single soliton generation in microresonators,” Optica 4(9), 1011–1015 (2017).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Westly, D. A.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Xuan, Y.

C. Bao, Y. Xuan, D. E. Leaird, S. Wabnitz, M. Qi, and A. M. Weiner, “Spatial mode-interaction induced single soliton generation in microresonators,” Optica 4(9), 1011–1015 (2017).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Xue, X.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Yang, K. Y.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Yang, Q.-F.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Yi, X.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Yu, M.

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Zeng, X.

Zervas, M.

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
[Crossref] [PubMed]

IEEE Photonics J. (1)

I. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5(4), 6100409 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (2)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref] [PubMed]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref] [PubMed]

Nat. Photonics (4)

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Nat. Phys. (1)

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1–6), 413–420 (2003).

Opt. Express (1)

Opt. Lett. (14)

S. Wang, H. Guo, X. Bai, and X. Zeng, “Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion,” Opt. Lett. 39(10), 2880–2883 (2014).
[Crossref] [PubMed]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39(10), 2971–2974 (2014).
[Crossref] [PubMed]

Y. Okawachi, M. R. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39(12), 3535–3538 (2014).
[Crossref] [PubMed]

M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki, “Control and removal of modulational instabilities in low-dispersion photonic crystal fiber cavities,” Opt. Lett. 32(6), 662–664 (2007).
[Crossref] [PubMed]

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Effects of higher-order dispersion on resonant dispersive waves emitted by solitons,” Opt. Lett. 34(13), 2072–2074 (2009).
[Crossref] [PubMed]

M. Tlidi and L. Gelens, “High-order dispersion stabilizes dark dissipative solitons in all-fiber cavities,” Opt. Lett. 35(3), 306–308 (2010).
[Crossref] [PubMed]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
[Crossref] [PubMed]

A. B. Matsko, W. Liang, A. A. Savchenkov, and L. Maleki, “Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators,” Opt. Lett. 38(4), 525–527 (2013).
[Crossref] [PubMed]

M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39(2), 283–286 (2014).
[Crossref] [PubMed]

S. Malaguti, M. Conforti, and S. Trillo, “Dispersive radiation induced by shock waves in passive resonators,” Opt. Lett. 39(19), 5626–5629 (2014).
[Crossref] [PubMed]

A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, and L. Maleki, “Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers,” Opt. Lett. 40(15), 3468–3471 (2015).
[Crossref] [PubMed]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41(11), 2565–2568 (2016).
[Crossref] [PubMed]

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
[Crossref] [PubMed]

J. Santhanam, C. J. McKinstrie, T. I. Lakoba, and G. P. Agrawal, “Effects of precompensation and postcompensation on timing jitter in dispersion-managed systems,” Opt. Lett. 26(15), 1131–1133 (2001).
[Crossref] [PubMed]

Optica (4)

Philos Trans A Math Phys Eng Sci (1)

L. Bahloul, L. Cherbi, A. Hariz, and M. Tlidi, “Temporal localized structures in photonic crystal fibre resonators and their spontaneous symmetry-breaking instability,” Philos Trans A Math Phys Eng Sci 372(2027), 20140020 (2014).
[Crossref] [PubMed]

Phys. Rev. A (6)

M. Tlidi, L. Bahloul, L. Cherbi, A. Hariz, and S. Coulibaly, “Drift of dark cavity solitons in a photonic-crystal fiber resonator,” Phys. Rev. A 88(3), 035802 (2013).
[Crossref]

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93(6), 063839 (2016).
[Crossref]

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87(5), 053852 (2013).
[Crossref]

A. G. Vladimirov, S. V. Gurevich, and M. Tlidi, “Effect of Cherenkov radiation on localized-state interaction,” Phys. Rev. A 97(1), 013816 (2018).
[Crossref]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, and M. Taki, “Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities,” Phys. Rev. Lett. 110(10), 104103 (2013).
[Crossref] [PubMed]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116(10), 103902 (2016).
[Crossref] [PubMed]

Radiophys. Quantum Electron. (1)

S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, “Averaged description of wave beams in linear and nonlinear media (the method of moments),” Radiophys. Quantum Electron. 14(9), 1062–1070 (1971).
[Crossref]

Rev. Mod. Phys. (1)

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[Crossref]

Sci. Adv. (1)

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref] [PubMed]

Science (3)

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

Other (1)

Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: case of anomalous dispersion,” arXiv:1308.2542 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Temporal evolution of intracavity bright soliton with different dispersion parameters: (a) only β2 = −0.008, (b) β2 = −0.008 and β3 = −4 × 10−4, (c) β2 = −0.008 and β4 = −2 × 10−5, (d) β2 = −0.008 and β5 = −1 × 10−6. Each upper graph shows the corresponding temporal profile of stable evolution bright soliton.
Fig. 2
Fig. 2 Temporal evolution of intracavity dark soliton with different dispersion parameters: (a) β2 = 0.002, (b) β2 = 0.002 and β3 = 1.2 × 10−4, (c) β2 = 0.002 and β4 = 1.2 × 10−6, (d) β2 = 0.002 and β5 = 8 × 10−7. Each upper graph shows the corresponding temporal profile of stable evolution dark soliton.
Fig. 3
Fig. 3 Temporal evolution of intracavity bright solitons with HOD: (a) β2 = −0.008 and β3 = 8 × 10−4, (b) β2 = −0.008 and β3 = −8 × 10−4, (c) β2 = −0.008 and β3 = −8 × 10−5. (d) Soliton temporal drift velocity with different β3. Each upper graph shows the temporal profile (blue) and phase profile (orange) of bright soliton.
Fig. 4
Fig. 4 Temporal evolution of intracavity solitons: (a) Breathing bright soliton with only β2 = −0.04, (b) Stable bright soliton with β2 = −0.04 and β3 = −3.2 × 10−3, (c) Breathing dark soliton with only β2 = 0.005, (d) Stable dark soliton with β2 = 0.005 and β3 = 2.5 × 10−4.
Fig. 5
Fig. 5 Comb spectra of bright solitons with different HOD. (a) β2 = −0.008 and β3 = −4 × 10−4; (b) β2 = −0.008 and β4 = 2 × 10−5; (c) β2 = −0.008, β3 = −4 × 10−4 and β4 = 2 × 10−5; (d) β2 = −0.008, β3 = −4 × 10−4 and β4 = 3.2 × 10−5. The upper figures show DW curves with the blue and red curves corresponding to “+” and “–” branch of DW, respectively.
Fig. 6
Fig. 6 Comb spectra of dark solitons with HOD. (a) β2 = 0.005 and β3 = 2.5 × 10−4; (b) β2 = 0.002 and β3 = 1.2 × 10−4; (c) β2 = 0.002, β3 = 1.2 × 10−4 and β4 = 1.2 × 10−6; (d) β2 = 0.002, β3 = 1.2 × 10−4 and β4 = 6 × 10−6. The upper figures show DW curves with the blue and red curves correspond to “+” and “–” branch of DW, respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ψ τ =( 1+iα )ψ+i | ψ | 2 ψ n=2 N ( i ) n+1 β n n! n ψ θ n +F,
F= 8 g 0 Δ ω ext P Δ ω 0 3 Ω 0 ,
g 0 = n 2 c Ω 0 2 n 0 2 V 0 ,
E= π π | ψ | 2 dθ,
ϕ c = 1 E π π θ| ψ | 2 dθ,
μ c = i 2E π π ( ψ ψ θ ψ ψ θ ) dθ.
E τ = π π [ 2ψ ψ +F( ψ+ ψ ) ] dθ.
ϕ c τ = 1 E n1 π π β 2n+1 ( 2n )! | n ψ θ n | 2 dθ+ i E n1 π π β 2n ( 2n )! n( n ψ θ n n1 ψ θ n1 n ψ θ n n1 ψ θ n1 )dθ,
μ c τ =0.
F[ n ψ( τ,θ ) θ n ]= ( iμ ) n Ψ( τ,μ ),
ϕ c τ = 1 E n1 π π β 2n+1 ( 2n )! | n ψ θ n | 2 dθ.
ψ 0 ( 0,θ )=a±bexp[ ( θ/c ) 2 ],
DW( μ )= β 3 6 μ 3 Vμ± ( β 2 2 μ 2 + β 4 24 μ 4 +2Pα ) 2 P 0 2 ,