Abstract

We report a multifunctional metamaterial composite structure that not only provides the broadband radar and thermal infrared bi-stealth function but also possesses an in-band microwave transmission window and high optical transparency. It is composed of four metasurface layers made of indium tin oxide (ITO) films with different surface resistances, which are specifically designed to sequentially control the infrared emission, microwave absorption and transmission. The fabricated sample exhibits a low reflectivity less than 10% in 1.5-9 GHz and a transmission peak of 50% around 3.8 GHz up to the incident angle of 30 degrees. In the infrared atmosphere window, a low thermal emissivity of about 0.52 is achieved. Meanwhile, it keeps good optical transparency by the use of the ITO films. The optically transparent, low-infrared-emissivity, radar-reflectionless and frequency-selective-transmission properties will enable the promising application of communication-compatible multispectral stealth technology.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transparent broadband metamaterial absorber enhanced by water-substrate incorporation

Yang Shen, Jieqiu Zhang, Yongqiang Pang, Jiafu Wang, Hua Ma, and Shaobo Qu
Opt. Express 26(12) 15665-15674 (2018)

All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth

Lei Zhao, Han Liu, Zhihong He, and Shikui Dong
Appl. Opt. 57(8) 1757-1764 (2018)

Hybrid metasurfaces for microwave reflection and infrared emission reduction

Yongqiang Pang, Yongfeng Li, Mingbao Yan, Dongqing Liu, Jiafu Wang, Zhuo Xu, and Shaobo Qu
Opt. Express 26(9) 11950-11958 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd ed. (Scitech Publishing Inc., 2004).
  2. D. Qi, X. Wang, Y. Z. Cheng, R. Z. Gong, and B. W. Li, “Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications,” Opt. Mater. 62, 52–56 (2016).
    [Crossref]
  3. Z. P. Mao, W. Wang, Y. Liu, L. P. Zhang, H. Xu, and Y. Zhong, “Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics,” Thin Solid Films 558, 208–214 (2014).
    [Crossref]
  4. Q. Fu, W. W. Wang, D. L. Li, and J. J. Pan, “Research on surface modification and infrared emissivity of In2O3:W thin films,” Thin Solid Films 570, 68–74 (2014).
    [Crossref]
  5. L. Phan, W. G. Walkup, D. D. Ordinario, E. Karshalev, J. M. Jocson, A. M. Burke, and A. A. Gorodetsky, “Reconfigurable infrared camouflage coatings from a cephalopod protein,” Adv. Mater. 25(39), 5621–5625 (2013).
    [Crossref] [PubMed]
  6. L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
    [Crossref] [PubMed]
  7. T. Wang, J. P. He, J. H. Zhou, X. C. Ding, J. Q. Zhao, S. C. Wu, and Y. X. Guo, “Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites,” Microporous Mesoporous Mater. 134(1-3), 58–64 (2010).
    [Crossref]
  8. J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
    [Crossref]
  9. L. Chen, C. H. Lu, Z. G. Fang, Y. Lu, Y. R. Ni, and Z. Z. Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Mater. Lett. 93, 308–311 (2013).
    [Crossref]
  10. H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and D. Youwei, “Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method,” J. Magn. Magn. Mater. 374, 225–229 (2015).
    [Crossref]
  11. H. Tian, H. T. Liu, and H. F. Cheng, “A thin radar-infrared stealth-compatible structure: design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
    [Crossref]
  12. S. M. Zhong, W. Jiang, P. P. Xu, T. J. Liu, J. F. Huang, and Y. G. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
    [Crossref]
  13. F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
    [Crossref] [PubMed]
  14. S. M. Zhong, Y. G. Ma, and S. L. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
    [Crossref]
  15. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  16. S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
    [Crossref] [PubMed]
  17. J. F. Zhu, Z. F. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  18. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  19. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
    [Crossref]
  20. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
    [Crossref]
  21. Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
    [Crossref]
  22. V. Asadchy, I. Faniayeu, Y. Ra’di, S. Khakhomov, I. Semchenko, and S. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
    [Crossref]
  23. Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
    [Crossref]
  24. E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
    [Crossref] [PubMed]
  25. M. Juhl, C. Mendoza, J. P. B. Mueller, F. Capasso, and K. Leosson, “Performance characteristics of 4-port in-plane and out-of-plane in-line metasurface polarimeters,” Opt. Express 25(23), 28697–28709 (2017).
    [Crossref]
  26. B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas,” Opt. Express 26(3), 2613–2624 (2018).
    [Crossref] [PubMed]
  27. A. Pors, F. Ding, Y. Chen, I. P. Radko, and S. I. Bozhevolnyi, “Random-phase metasurfaces at optical wavelengths,” Sci. Rep. 6(1), 28448 (2016).
    [Crossref] [PubMed]
  28. B. A. Munk, Frequency selective surfaces: theory and design (Wiley, 2000).
  29. D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).
  30. S. Kitagawa, R. Suga, K. Araki, and O. Hashimoto, “Active absorption/transmission FSS using diodes,” in IEEE International Symposium on Electromagnetic Compatibility (2015).
    [Crossref]

2018 (2)

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

B. Ratni, A. de Lustrac, G.-P. Piau, and S. N. Burokur, “Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas,” Opt. Express 26(3), 2613–2624 (2018).
[Crossref] [PubMed]

2017 (4)

M. Juhl, C. Mendoza, J. P. B. Mueller, F. Capasso, and K. Leosson, “Performance characteristics of 4-port in-plane and out-of-plane in-line metasurface polarimeters,” Opt. Express 25(23), 28697–28709 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

S. M. Zhong, W. Jiang, P. P. Xu, T. J. Liu, J. F. Huang, and Y. G. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

2016 (3)

D. Qi, X. Wang, Y. Z. Cheng, R. Z. Gong, and B. W. Li, “Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications,” Opt. Mater. 62, 52–56 (2016).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

A. Pors, F. Ding, Y. Chen, I. P. Radko, and S. I. Bozhevolnyi, “Random-phase metasurfaces at optical wavelengths,” Sci. Rep. 6(1), 28448 (2016).
[Crossref] [PubMed]

2015 (3)

V. Asadchy, I. Faniayeu, Y. Ra’di, S. Khakhomov, I. Semchenko, and S. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and D. Youwei, “Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method,” J. Magn. Magn. Mater. 374, 225–229 (2015).
[Crossref]

2014 (7)

H. Tian, H. T. Liu, and H. F. Cheng, “A thin radar-infrared stealth-compatible structure: design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
[Crossref]

Z. P. Mao, W. Wang, Y. Liu, L. P. Zhang, H. Xu, and Y. Zhong, “Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics,” Thin Solid Films 558, 208–214 (2014).
[Crossref]

Q. Fu, W. W. Wang, D. L. Li, and J. J. Pan, “Research on surface modification and infrared emissivity of In2O3:W thin films,” Thin Solid Films 570, 68–74 (2014).
[Crossref]

S. M. Zhong, Y. G. Ma, and S. L. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

J. F. Zhu, Z. F. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

2013 (3)

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref] [PubMed]

L. Chen, C. H. Lu, Z. G. Fang, Y. Lu, Y. R. Ni, and Z. Z. Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Mater. Lett. 93, 308–311 (2013).
[Crossref]

L. Phan, W. G. Walkup, D. D. Ordinario, E. Karshalev, J. M. Jocson, A. M. Burke, and A. A. Gorodetsky, “Reconfigurable infrared camouflage coatings from a cephalopod protein,” Adv. Mater. 25(39), 5621–5625 (2013).
[Crossref] [PubMed]

2012 (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

2011 (1)

2010 (2)

T. Wang, J. P. He, J. H. Zhou, X. C. Ding, J. Q. Zhao, S. C. Wu, and Y. X. Guo, “Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites,” Microporous Mesoporous Mater. 134(1-3), 58–64 (2010).
[Crossref]

J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
[Crossref]

Araki, K.

S. Kitagawa, R. Suga, K. Araki, and O. Hashimoto, “Active absorption/transmission FSS using diodes,” in IEEE International Symposium on Electromagnetic Compatibility (2015).
[Crossref]

Asadchy, V.

V. Asadchy, I. Faniayeu, Y. Ra’di, S. Khakhomov, I. Semchenko, and S. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Bozhevolnyi, S. I.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

A. Pors, F. Ding, Y. Chen, I. P. Radko, and S. I. Bozhevolnyi, “Random-phase metasurfaces at optical wavelengths,” Sci. Rep. 6(1), 28448 (2016).
[Crossref] [PubMed]

Brongersma, M. L.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Burke, A. M.

L. Phan, W. G. Walkup, D. D. Ordinario, E. Karshalev, J. M. Jocson, A. M. Burke, and A. A. Gorodetsky, “Reconfigurable infrared camouflage coatings from a cephalopod protein,” Adv. Mater. 25(39), 5621–5625 (2013).
[Crossref] [PubMed]

Burokur, S. N.

Capasso, F.

Chang, X.

H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and D. Youwei, “Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method,” J. Magn. Magn. Mater. 374, 225–229 (2015).
[Crossref]

Chen, L.

L. Chen, C. H. Lu, Z. G. Fang, Y. Lu, Y. R. Ni, and Z. Z. Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Mater. Lett. 93, 308–311 (2013).
[Crossref]

Chen, Y.

A. Pors, F. Ding, Y. Chen, I. P. Radko, and S. I. Bozhevolnyi, “Random-phase metasurfaces at optical wavelengths,” Sci. Rep. 6(1), 28448 (2016).
[Crossref] [PubMed]

Cheng, H. F.

H. Tian, H. T. Liu, and H. F. Cheng, “A thin radar-infrared stealth-compatible structure: design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
[Crossref]

Cheng, Q.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Cheng, Y. Z.

D. Qi, X. Wang, Y. Z. Cheng, R. Z. Gong, and B. W. Li, “Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications,” Opt. Mater. 62, 52–56 (2016).
[Crossref]

Cui, T. J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

de Lustrac, A.

Ding, F.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

A. Pors, F. Ding, Y. Chen, I. P. Radko, and S. I. Bozhevolnyi, “Random-phase metasurfaces at optical wavelengths,” Sci. Rep. 6(1), 28448 (2016).
[Crossref] [PubMed]

J. F. Zhu, Z. F. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ding, X. C.

T. Wang, J. P. He, J. H. Zhou, X. C. Ding, J. Q. Zhao, S. C. Wu, and Y. X. Guo, “Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites,” Microporous Mesoporous Mater. 134(1-3), 58–64 (2010).
[Crossref]

J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
[Crossref]

Fan, S.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Fang, Z. G.

L. Chen, C. H. Lu, Z. G. Fang, Y. Lu, Y. R. Ni, and Z. Z. Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Mater. Lett. 93, 308–311 (2013).
[Crossref]

Faniayeu, I.

V. Asadchy, I. Faniayeu, Y. Ra’di, S. Khakhomov, I. Semchenko, and S. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Fu, Q.

Q. Fu, W. W. Wang, D. L. Li, and J. J. Pan, “Research on surface modification and infrared emissivity of In2O3:W thin films,” Thin Solid Films 570, 68–74 (2014).
[Crossref]

Gong, R. Z.

D. Qi, X. Wang, Y. Z. Cheng, R. Z. Gong, and B. W. Li, “Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications,” Opt. Mater. 62, 52–56 (2016).
[Crossref]

Gorodetsky, A. A.

L. Phan, W. G. Walkup, D. D. Ordinario, E. Karshalev, J. M. Jocson, A. M. Burke, and A. A. Gorodetsky, “Reconfigurable infrared camouflage coatings from a cephalopod protein,” Adv. Mater. 25(39), 5621–5625 (2013).
[Crossref] [PubMed]

Guo, L. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Guo, Y. X.

T. Wang, J. P. He, J. H. Zhou, X. C. Ding, J. Q. Zhao, S. C. Wu, and Y. X. Guo, “Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites,” Microporous Mesoporous Mater. 134(1-3), 58–64 (2010).
[Crossref]

Hashimoto, O.

S. Kitagawa, R. Suga, K. Araki, and O. Hashimoto, “Active absorption/transmission FSS using diodes,” in IEEE International Symposium on Electromagnetic Compatibility (2015).
[Crossref]

Hasman, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

He, J. P.

J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
[Crossref]

T. Wang, J. P. He, J. H. Zhou, X. C. Ding, J. Q. Zhao, S. C. Wu, and Y. X. Guo, “Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites,” Microporous Mesoporous Mater. 134(1-3), 58–64 (2010).
[Crossref]

He, Q.

J. F. Zhu, Z. F. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S.

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref] [PubMed]

He, S. L.

S. M. Zhong, Y. G. Ma, and S. L. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Huang, J. F.

S. M. Zhong, W. Jiang, P. P. Xu, T. J. Liu, J. F. Huang, and Y. G. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Ji, G.

H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and D. Youwei, “Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method,” J. Magn. Magn. Mater. 374, 225–229 (2015).
[Crossref]

Jia, Y.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Jiang, K.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Jiang, W.

S. M. Zhong, W. Jiang, P. P. Xu, T. J. Liu, J. F. Huang, and Y. G. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Jiang, W. X.

Jocson, J. M.

L. Phan, W. G. Walkup, D. D. Ordinario, E. Karshalev, J. M. Jocson, A. M. Burke, and A. A. Gorodetsky, “Reconfigurable infrared camouflage coatings from a cephalopod protein,” Adv. Mater. 25(39), 5621–5625 (2013).
[Crossref] [PubMed]

Juhl, M.

Karshalev, E.

L. Phan, W. G. Walkup, D. D. Ordinario, E. Karshalev, J. M. Jocson, A. M. Burke, and A. A. Gorodetsky, “Reconfigurable infrared camouflage coatings from a cephalopod protein,” Adv. Mater. 25(39), 5621–5625 (2013).
[Crossref] [PubMed]

Khakhomov, S.

V. Asadchy, I. Faniayeu, Y. Ra’di, S. Khakhomov, I. Semchenko, and S. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Kitagawa, S.

S. Kitagawa, R. Suga, K. Araki, and O. Hashimoto, “Active absorption/transmission FSS using diodes,” in IEEE International Symposium on Electromagnetic Compatibility (2015).
[Crossref]

Kleiner, V.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Leosson, K.

Li, B. W.

D. Qi, X. Wang, Y. Z. Cheng, R. Z. Gong, and B. W. Li, “Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications,” Opt. Mater. 62, 52–56 (2016).
[Crossref]

Li, D. L.

Q. Fu, W. W. Wang, D. L. Li, and J. J. Pan, “Research on surface modification and infrared emissivity of In2O3:W thin films,” Thin Solid Films 570, 68–74 (2014).
[Crossref]

Li, G. X.

J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
[Crossref]

Li, H.

Li, X.

H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and D. Youwei, “Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method,” J. Magn. Magn. Mater. 374, 225–229 (2015).
[Crossref]

Li, Y. F.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Liu, H. T.

H. Tian, H. T. Liu, and H. F. Cheng, “A thin radar-infrared stealth-compatible structure: design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
[Crossref]

Liu, J.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Liu, K.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Liu, T. J.

S. M. Zhong, W. Jiang, P. P. Xu, T. J. Liu, J. F. Huang, and Y. G. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Liu, Y.

Z. P. Mao, W. Wang, Y. Liu, L. P. Zhang, H. Xu, and Y. Zhong, “Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics,” Thin Solid Films 558, 208–214 (2014).
[Crossref]

Lu, C. H.

L. Chen, C. H. Lu, Z. G. Fang, Y. Lu, Y. R. Ni, and Z. Z. Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Mater. Lett. 93, 308–311 (2013).
[Crossref]

Lu, Y.

L. Chen, C. H. Lu, Z. G. Fang, Y. Lu, Y. R. Ni, and Z. Z. Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Mater. Lett. 93, 308–311 (2013).
[Crossref]

Lv, H.

H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and D. Youwei, “Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method,” J. Magn. Magn. Mater. 374, 225–229 (2015).
[Crossref]

Ma, H.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Ma, H. F.

Ma, Y. G.

S. M. Zhong, W. Jiang, P. P. Xu, T. J. Liu, J. F. Huang, and Y. G. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

S. M. Zhong, Y. G. Ma, and S. L. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

J. F. Zhu, Z. F. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ma, Z. F.

J. F. Zhu, Z. F. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Maguid, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Mao, Z. P.

Z. P. Mao, W. Wang, Y. Liu, L. P. Zhang, H. Xu, and Y. Zhong, “Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics,” Thin Solid Films 558, 208–214 (2014).
[Crossref]

Mendoza, C.

Mueller, J. P. B.

Ni, Y. R.

L. Chen, C. H. Lu, Z. G. Fang, Y. Lu, Y. R. Ni, and Z. Z. Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Mater. Lett. 93, 308–311 (2013).
[Crossref]

Ordinario, D. D.

L. Phan, W. G. Walkup, D. D. Ordinario, E. Karshalev, J. M. Jocson, A. M. Burke, and A. A. Gorodetsky, “Reconfigurable infrared camouflage coatings from a cephalopod protein,” Adv. Mater. 25(39), 5621–5625 (2013).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Pan, J. J.

Q. Fu, W. W. Wang, D. L. Li, and J. J. Pan, “Research on surface modification and infrared emissivity of In2O3:W thin films,” Thin Solid Films 570, 68–74 (2014).
[Crossref]

Pang, Y. Q.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Phan, L.

L. Phan, W. G. Walkup, D. D. Ordinario, E. Karshalev, J. M. Jocson, A. M. Burke, and A. A. Gorodetsky, “Reconfigurable infrared camouflage coatings from a cephalopod protein,” Adv. Mater. 25(39), 5621–5625 (2013).
[Crossref] [PubMed]

Piau, G.-P.

Pors, A.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

A. Pors, F. Ding, Y. Chen, I. P. Radko, and S. I. Bozhevolnyi, “Random-phase metasurfaces at optical wavelengths,” Sci. Rep. 6(1), 28448 (2016).
[Crossref] [PubMed]

Qi, D.

D. Qi, X. Wang, Y. Z. Cheng, R. Z. Gong, and B. W. Li, “Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications,” Opt. Mater. 62, 52–56 (2016).
[Crossref]

Qu, S. B.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Ra’di, Y.

V. Asadchy, I. Faniayeu, Y. Ra’di, S. Khakhomov, I. Semchenko, and S. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Radko, I. P.

A. Pors, F. Ding, Y. Chen, I. P. Radko, and S. I. Bozhevolnyi, “Random-phase metasurfaces at optical wavelengths,” Sci. Rep. 6(1), 28448 (2016).
[Crossref] [PubMed]

Ratni, B.

Semchenko, I.

V. Asadchy, I. Faniayeu, Y. Ra’di, S. Khakhomov, I. Semchenko, and S. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Shang, Y. P.

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

Shen, X.

Shen, Y.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Shen, Z. X.

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Suga, R.

S. Kitagawa, R. Suga, K. Araki, and O. Hashimoto, “Active absorption/transmission FSS using diodes,” in IEEE International Symposium on Electromagnetic Compatibility (2015).
[Crossref]

Sun, D.

J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
[Crossref]

Sun, W.

J. F. Zhu, Z. F. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Tian, H.

H. Tian, H. T. Liu, and H. F. Cheng, “A thin radar-infrared stealth-compatible structure: design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
[Crossref]

Tretyakov, S.

V. Asadchy, I. Faniayeu, Y. Ra’di, S. Khakhomov, I. Semchenko, and S. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Veksler, D.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Walkup, W. G.

L. Phan, W. G. Walkup, D. D. Ordinario, E. Karshalev, J. M. Jocson, A. M. Burke, and A. A. Gorodetsky, “Reconfigurable infrared camouflage coatings from a cephalopod protein,” Adv. Mater. 25(39), 5621–5625 (2013).
[Crossref] [PubMed]

Wang, J. F.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Wang, M.

H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and D. Youwei, “Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method,” J. Magn. Magn. Mater. 374, 225–229 (2015).
[Crossref]

Wang, T.

J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
[Crossref]

T. Wang, J. P. He, J. H. Zhou, X. C. Ding, J. Q. Zhao, S. C. Wu, and Y. X. Guo, “Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites,” Microporous Mesoporous Mater. 134(1-3), 58–64 (2010).
[Crossref]

Wang, W.

Z. P. Mao, W. Wang, Y. Liu, L. P. Zhang, H. Xu, and Y. Zhong, “Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics,” Thin Solid Films 558, 208–214 (2014).
[Crossref]

Wang, W. W.

Q. Fu, W. W. Wang, D. L. Li, and J. J. Pan, “Research on surface modification and infrared emissivity of In2O3:W thin films,” Thin Solid Films 570, 68–74 (2014).
[Crossref]

Wang, X.

D. Qi, X. Wang, Y. Z. Cheng, R. Z. Gong, and B. W. Li, “Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications,” Opt. Mater. 62, 52–56 (2016).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Wei, Y.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Wu, S. C.

T. Wang, J. P. He, J. H. Zhou, X. C. Ding, J. Q. Zhao, S. C. Wu, and Y. X. Guo, “Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites,” Microporous Mesoporous Mater. 134(1-3), 58–64 (2010).
[Crossref]

J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
[Crossref]

Wu, Y.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Xiao, L.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Xiao, S. Q.

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

Xu, H.

Z. P. Mao, W. Wang, Y. Liu, L. P. Zhang, H. Xu, and Y. Zhong, “Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics,” Thin Solid Films 558, 208–214 (2014).
[Crossref]

Xu, P. P.

S. M. Zhong, W. Jiang, P. P. Xu, T. J. Liu, J. F. Huang, and Y. G. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Xu, Z. Z.

L. Chen, C. H. Lu, Z. G. Fang, Y. Lu, Y. R. Ni, and Z. Z. Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Mater. Lett. 93, 308–311 (2013).
[Crossref]

Yang, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Youwei, D.

H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and D. Youwei, “Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method,” J. Magn. Magn. Mater. 374, 225–229 (2015).
[Crossref]

Yulevich, I.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhang, H.

H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and D. Youwei, “Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method,” J. Magn. Magn. Mater. 374, 225–229 (2015).
[Crossref]

Zhang, J. Q.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Zhang, L. P.

Z. P. Mao, W. Wang, Y. Liu, L. P. Zhang, H. Xu, and Y. Zhong, “Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics,” Thin Solid Films 558, 208–214 (2014).
[Crossref]

Zhao, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Zhao, J. Q.

J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
[Crossref]

T. Wang, J. P. He, J. H. Zhou, X. C. Ding, J. Q. Zhao, S. C. Wu, and Y. X. Guo, “Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites,” Microporous Mesoporous Mater. 134(1-3), 58–64 (2010).
[Crossref]

Zhao, Q.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Zhao, W.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Zheng, Q. Q.

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Zhong, S.

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref] [PubMed]

Zhong, S. M.

S. M. Zhong, W. Jiang, P. P. Xu, T. J. Liu, J. F. Huang, and Y. G. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

S. M. Zhong, Y. G. Ma, and S. L. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Zhong, Y.

Z. P. Mao, W. Wang, Y. Liu, L. P. Zhang, H. Xu, and Y. Zhong, “Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics,” Thin Solid Films 558, 208–214 (2014).
[Crossref]

Zhou, J. H.

T. Wang, J. P. He, J. H. Zhou, X. C. Ding, J. Q. Zhao, S. C. Wu, and Y. X. Guo, “Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites,” Microporous Mesoporous Mater. 134(1-3), 58–64 (2010).
[Crossref]

J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
[Crossref]

Zhou, L.

J. F. Zhu, Z. F. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, J. F.

J. F. Zhu, Z. F. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

ACS Photonics (1)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Adv. Mater. (2)

L. Phan, W. G. Walkup, D. D. Ordinario, E. Karshalev, J. M. Jocson, A. M. Burke, and A. A. Gorodetsky, “Reconfigurable infrared camouflage coatings from a cephalopod protein,” Adv. Mater. 25(39), 5621–5625 (2013).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Appl. Phys. Lett. (4)

J. F. Zhu, Z. F. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

S. M. Zhong, W. Jiang, P. P. Xu, T. J. Liu, J. F. Huang, and Y. G. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

S. M. Zhong, Y. G. Ma, and S. L. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Shen, J. Q. Zhang, Y. Q. Pang, Y. F. Li, Q. Q. Zheng, J. F. Wang, H. Ma, and S. B. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Chin. Phys. B (1)

H. Tian, H. T. Liu, and H. F. Cheng, “A thin radar-infrared stealth-compatible structure: design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-selective rasorber based on square-loop and cross-dipole arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

J. Magn. Magn. Mater. (1)

H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and D. Youwei, “Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method,” J. Magn. Magn. Mater. 374, 225–229 (2015).
[Crossref]

J. Phys. Chem. C (1)

J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao, and S. C. Wu, “Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers,” J. Phys. Chem. C 114(17), 7611–7617 (2010).
[Crossref]

Mater. Lett. (1)

L. Chen, C. H. Lu, Z. G. Fang, Y. Lu, Y. R. Ni, and Z. Z. Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Mater. Lett. 93, 308–311 (2013).
[Crossref]

Microporous Mesoporous Mater. (1)

T. Wang, J. P. He, J. H. Zhou, X. C. Ding, J. Q. Zhao, S. C. Wu, and Y. X. Guo, “Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon–alumina nanocomposites,” Microporous Mesoporous Mater. 134(1-3), 58–64 (2010).
[Crossref]

Nano Lett. (1)

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. (1)

D. Qi, X. Wang, Y. Z. Cheng, R. Z. Gong, and B. W. Li, “Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications,” Opt. Mater. 62, 52–56 (2016).
[Crossref]

Phys. Rev. X (1)

V. Asadchy, I. Faniayeu, Y. Ra’di, S. Khakhomov, I. Semchenko, and S. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Rep. Prog. Phys. (1)

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

Sci. Rep. (2)

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref] [PubMed]

A. Pors, F. Ding, Y. Chen, I. P. Radko, and S. I. Bozhevolnyi, “Random-phase metasurfaces at optical wavelengths,” Sci. Rep. 6(1), 28448 (2016).
[Crossref] [PubMed]

Science (1)

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Thin Solid Films (2)

Z. P. Mao, W. Wang, Y. Liu, L. P. Zhang, H. Xu, and Y. Zhong, “Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics,” Thin Solid Films 558, 208–214 (2014).
[Crossref]

Q. Fu, W. W. Wang, D. L. Li, and J. J. Pan, “Research on surface modification and infrared emissivity of In2O3:W thin films,” Thin Solid Films 570, 68–74 (2014).
[Crossref]

Other (4)

E. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd ed. (Scitech Publishing Inc., 2004).

B. A. Munk, Frequency selective surfaces: theory and design (Wiley, 2000).

D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).

S. Kitagawa, R. Suga, K. Araki, and O. Hashimoto, “Active absorption/transmission FSS using diodes,” in IEEE International Symposium on Electromagnetic Compatibility (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of the multifunctional structure. (b) (c) Photographs of the fabricated unit cell up on a logo with the four layers supported by plastic posts of different heights.
Fig. 2
Fig. 2 Simulated reflectivity, transmissivity and absorptivity of the structure (the inset) under the normal incidence.
Fig. 3
Fig. 3 (a) Simulated reflectivity and transmissivity of the structure without and with IRSL under normal incidence. (b) Simulated transmissivity and phase shift of the IRSL (the inset), and measured transmissivity (dashed line).
Fig. 4
Fig. 4 Simulated reflectivity, transmissivity and current distributions (3.5GHz) of the FSTL for the ITO (upper right) and ITO-with-copper (lower right) cases.
Fig. 5
Fig. 5 (a) Equivalent transmission-line model of the proposed structure. (b) The calculated RTA spectra of the structure with different separation t1 between IRSL and RAL1.
Fig. 6
Fig. 6 Simulated absorptions of the structure in the absence of RAL1 and RAL2, respectively.
Fig. 7
Fig. 7 Simulated surface currents (a)-(c) and power loss density (d)-(f) of the unit cell at 1.3 GHz, 3.5 GHz and 7.6 GHz for normal incidence.
Fig. 8
Fig. 8 Measurement setup of the (a) reflection and (b) transmission coefficients of the fabricated sample. (c) Measured RTAs for TE and TM polarizations at different incident angles of 10° and 30°.
Fig. 9
Fig. 9 The measured transmissivity and absorptivity of the PET substrate (black line), ITO (red line), and IRSL (blue line) in 8-14 μm IR range.
Fig. 10
Fig. 10 Measured transmittance of PET (black), PET + ITO (red) and IRSL (blue). The transmittance of FSTL (yellow dashed) and the total 4-layer structure (green dashed).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ A B C D ]=[ 1 0 1/ Z F1 1 ][ cos(β t 1 ) j Z 0 sin(β t 1 ) jsin(β t 1 )/ Z 0 cos(β t 1 ) ][ 1 0 1/ Z F2 1 ]× [ cos(β t 2 ) j Z 0 sin(β t 2 ) jsin(β t 2 )/ Z 0 cos(β t 2 ) ][ 1 0 1/ Z F3 1 ][ cos(β t 3 ) j Z 0 sin(β t 3 ) jsin(β t 3 )/ Z 0 cos(β t 3 ) ][ 1 0 1/ Z F4 1 ],
ε s = ε m t+ ε d (1t),

Metrics