Abstract

Studies of high-power ultrashort laser pulse interaction with matter are not only of fundamental scientific interest, but are also highly relevant to applications in the domain of remote sensing. Here, we investigate the effect of laser wavelength on coupling of femtosecond laser filaments to solid targets. Three central wavelengths have been used to produce filaments: 0.4, 0.8, and 2.0 µm. We find that, unlike the case of conventional tight focusing, use of shorter wavelengths does not necessarily produce more efficient ablation. This is explained by increased multi-photon absorption arising in near-UV filamentation. Investigations of filament-induced plasma dynamics and its thermodynamic parameters provide the foundation for unveiling the interplay between wavelength-dependent filament ablation mechanisms. In this way, strategies to increase the sensitivity of material detection via this technique may be better understood, thereby improving the analytical performance in this class of applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

S. S. Harilal, J. Yeak, and M. C. Phillips
Opt. Express 23(21) 27113-27122 (2015)

Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips
Opt. Express 24(16) 17941-17949 (2016)

Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime

L. A. Finney, P. J. Skrodzki, M. Burger, X. Xiao, J. Nees, and I. Jovanovic
Opt. Express 26(22) 29110-29122 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
    [Crossref] [PubMed]
  2. M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
    [Crossref] [PubMed]
  3. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
    [Crossref] [PubMed]
  4. J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4(9), 627–631 (2010).
    [Crossref]
  5. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
    [Crossref]
  6. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
    [Crossref]
  7. S. L. Chin, Femtosecond Laser Filamentation (Springer, 2010).
    [Crossref]
  8. P. Panagiotopoulos, P. Whalen, M. Kolesik, and J.V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photon. 9(8), 543–548 (2015).
    [Crossref]
  9. J. K. Gruetzner, R. J. Law, T. R. Nelson, N. L. Bruner, and I. T. Kohl, “Filamentation in Air at 1550 nm,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuD84.
  10. S. Tzortzakis, D. Anglos, and D. Gray, “Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring,” Opt. Lett. 31(8), 1139–1141 (2006).
    [Crossref] [PubMed]
  11. D. Mirell, O. Chalus, K. Peterson, and J-C. Diels, “Remote sensing of explosives using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B,  25(7), B108–B111 (2008).
    [Crossref]
  12. A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
    [Crossref]
  13. S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
    [Crossref]
  14. J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
    [Crossref]
  15. H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
    [Crossref]
  16. M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
    [Crossref]
  17. S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015)
    [Crossref] [PubMed]
  18. I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263–5276 (2016).
    [Crossref] [PubMed]
  19. P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Reports 7(1), 12740 (2017).
    [Crossref]
  20. Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-Induced Self-Compression of Tightly Focused Femtosecond Laser Pulses,” Phys. Rev. Lett. 113, 263904 (2014).
    [Crossref]
  21. K. H. Hong, B. Hou, J. A. Nees, E. Power, and G. Mourou, “Generation and measurement of > 108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser,” Appl. Phys. B 81, 447–457 (2005).
    [Crossref]
  22. A. V. Smith and M. S. Bowers, “Phase distortions in sum-and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12(1), 49–57 (1995).
    [Crossref]
  23. G. Xu, S. Wandel, and I. Jovanovic, “Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-µm pulses using a mixed phase matching scheme,” Rev. Sci. Instr. 85(2), 023102 (2014).
    [Crossref]
  24. H. R. Griem, Principles of Plasma Spectroscopy, Cambridge Monographs on Plasma Physics, (Cambridge, 1997).
    [Crossref]
  25. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25(5), 335–337 (2000).
    [Crossref]
  26. P. Polynkin and M. Kolesik, “Critical power for self-focusing in the case of ultrashort laser pulses,” Phys. Rev. A 87(5), 053829 (2013).
    [Crossref]
  27. Yu. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99,18 (2011).
    [Crossref]
  28. A. Couairon and L. Bergé, “Light Filaments in Air for Ultraviolet and Infrared Wavelengths,” Phys. Rev. Lett. 88, 135003 (2002).
    [Crossref] [PubMed]
  29. S. I. Mitryukovskiy, Y. Liu, A. Houard, and A. Mysyrowicz, “Re-evaluation of the peak intensity inside a femtosecond laser filament in air,” J. Phys. B: At. Mol. Opt. Phys. 48, 094003 (2015).
    [Crossref]
  30. J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
    [Crossref]
  31. D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Phys. Rev. Lett. 75(2), 252–255 (2010).
    [Crossref]
  32. S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Yu. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B 79(14), 144120 (2009).
    [Crossref]
  33. H.R. Griem, Plasma spectroscopy (McGraw-Hill, 1964).
  34. H.R. Griem, Spectral line broadening by plasmas (Academic, 1974).
  35. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, National Institute of Standards and Technology, Gaithersburg, MD (2018), http://physics.nist.gov/asd
  36. N. Konjević and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 19(6), 1307–1385 (1990).
    [Crossref]
  37. T. Fujimoto and R. W. P. McWhirter, “Validity criteria for local thermodynamic equilibrium in plasma spectroscopy,” Phys. Rev. A 42, 6588 (1990).
    [Crossref] [PubMed]
  38. M. Baudelet, C. C. C. Willis, L. Shah, and M. Richardson, “Laser-induced breakdown spectroscopy of copper with a 2 µm thulium fiber laser,” Opt. Express 18(8), 7905–7910 (2010).
    [Crossref] [PubMed]
  39. K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” Appl. Phys. 118(4), 043107 (2015).
    [Crossref]
  40. N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein, and P. Kulkarni, “The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry,” Appl. Phys. 114, 023103 (2013).
    [Crossref]
  41. J. Odhner, D. Romanov, and R. Levis, “Self shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
    [Crossref]
  42. S. C. Wilks and W. L. Kruer, “Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas,” IEEE J. Quantum Electron. 33 (11), 1954–1968 (1997).
    [Crossref]

2017 (1)

P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Reports 7(1), 12740 (2017).
[Crossref]

2016 (2)

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263–5276 (2016).
[Crossref] [PubMed]

2015 (4)

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015)
[Crossref] [PubMed]

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J.V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photon. 9(8), 543–548 (2015).
[Crossref]

S. I. Mitryukovskiy, Y. Liu, A. Houard, and A. Mysyrowicz, “Re-evaluation of the peak intensity inside a femtosecond laser filament in air,” J. Phys. B: At. Mol. Opt. Phys. 48, 094003 (2015).
[Crossref]

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” Appl. Phys. 118(4), 043107 (2015).
[Crossref]

2014 (3)

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-Induced Self-Compression of Tightly Focused Femtosecond Laser Pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

G. Xu, S. Wandel, and I. Jovanovic, “Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-µm pulses using a mixed phase matching scheme,” Rev. Sci. Instr. 85(2), 023102 (2014).
[Crossref]

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

2013 (3)

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

P. Polynkin and M. Kolesik, “Critical power for self-focusing in the case of ultrashort laser pulses,” Phys. Rev. A 87(5), 053829 (2013).
[Crossref]

N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein, and P. Kulkarni, “The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry,” Appl. Phys. 114, 023103 (2013).
[Crossref]

2012 (2)

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

2011 (1)

Yu. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99,18 (2011).
[Crossref]

2010 (5)

J. Odhner, D. Romanov, and R. Levis, “Self shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
[Crossref]

J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
[Crossref]

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Phys. Rev. Lett. 75(2), 252–255 (2010).
[Crossref]

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4(9), 627–631 (2010).
[Crossref]

M. Baudelet, C. C. C. Willis, L. Shah, and M. Richardson, “Laser-induced breakdown spectroscopy of copper with a 2 µm thulium fiber laser,” Opt. Express 18(8), 7905–7910 (2010).
[Crossref] [PubMed]

2009 (1)

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Yu. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B 79(14), 144120 (2009).
[Crossref]

2008 (1)

2007 (2)

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

2006 (1)

2005 (1)

K. H. Hong, B. Hou, J. A. Nees, E. Power, and G. Mourou, “Generation and measurement of > 108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser,” Appl. Phys. B 81, 447–457 (2005).
[Crossref]

2004 (1)

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

2003 (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

2002 (1)

A. Couairon and L. Bergé, “Light Filaments in Air for Ultraviolet and Infrared Wavelengths,” Phys. Rev. Lett. 88, 135003 (2002).
[Crossref] [PubMed]

2000 (1)

1997 (1)

S. C. Wilks and W. L. Kruer, “Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas,” IEEE J. Quantum Electron. 33 (11), 1954–1968 (1997).
[Crossref]

1995 (2)

1990 (2)

N. Konjević and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 19(6), 1307–1385 (1990).
[Crossref]

T. Fujimoto and R. W. P. McWhirter, “Validity criteria for local thermodynamic equilibrium in plasma spectroscopy,” Phys. Rev. A 42, 6588 (1990).
[Crossref] [PubMed]

Ackermann, R.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

André, Y.-B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Anglos, D.

Azarm, A.

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Barefield, J. E.

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” Appl. Phys. 118(4), 043107 (2015).
[Crossref]

Baudelet, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

M. Baudelet, C. C. C. Willis, L. Shah, and M. Richardson, “Laser-induced breakdown spectroscopy of copper with a 2 µm thulium fiber laser,” Opt. Express 18(8), 7905–7910 (2010).
[Crossref] [PubMed]

Becker, A.

J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
[Crossref]

Bergé, L.

A. Couairon and L. Bergé, “Light Filaments in Air for Ultraviolet and Infrared Wavelengths,” Phys. Rev. Lett. 88, 135003 (2002).
[Crossref] [PubMed]

Bernhardt, J.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Borchert, H.

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Bowers, M. S.

Brantov, A. V.

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Yu. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B 79(14), 144120 (2009).
[Crossref]

Braun, A.

Brumfield, B. E.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

Bruner, N. L.

J. K. Gruetzner, R. J. Law, T. R. Nelson, N. L. Bruner, and I. T. Kohl, “Filamentation in Air at 1550 nm,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuD84.

Bukin, O. A.

Yu. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99,18 (2011).
[Crossref]

Burger, M.

P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Reports 7(1), 12740 (2017).
[Crossref]

Bychenkov, V. Yu.

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Yu. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B 79(14), 144120 (2009).
[Crossref]

Bykova, E. E.

Yu. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99,18 (2011).
[Crossref]

Chalus, O.

Chateauneuf, M.

Châteauneuf, M.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

Chin, S. L.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4(9), 627–631 (2010).
[Crossref]

J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
[Crossref]

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

S. L. Chin, Femtosecond Laser Filamentation (Springer, 2010).
[Crossref]

Colgan, J.

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” Appl. Phys. 118(4), 043107 (2015).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

A. Couairon and L. Bergé, “Light Filaments in Air for Ultraviolet and Infrared Wavelengths,” Phys. Rev. Lett. 88, 135003 (2002).
[Crossref] [PubMed]

Dai, J. M.

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4(9), 627–631 (2010).
[Crossref]

Daigle, J.-F.

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
[Crossref]

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Diels, J-C.

Diener, K.

Diwakar, P. K.

N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein, and P. Kulkarni, “The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry,” Appl. Phys. 114, 023103 (2013).
[Crossref]

Du, D.

Dubois, J.

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

Durand, M.

Durécu, A.

Fedosejevs, R.

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Yu. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B 79(14), 144120 (2009).
[Crossref]

Fibich, G.

Fleury, D.

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Fujimoto, T.

T. Fujimoto and R. W. P. McWhirter, “Validity criteria for local thermodynamic equilibrium in plasma spectroscopy,” Phys. Rev. A 42, 6588 (1990).
[Crossref] [PubMed]

Gaeta, A. L.

Geints, Yu. E.

Yu. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99,18 (2011).
[Crossref]

Ghebregziabher, I.

Golik, S. S.

Yu. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99,18 (2011).
[Crossref]

Gray, D.

Griem, H. R.

H. R. Griem, Principles of Plasma Spectroscopy, Cambridge Monographs on Plasma Physics, (Cambridge, 1997).
[Crossref]

Griem, H.R.

H.R. Griem, Plasma spectroscopy (McGraw-Hill, 1964).

H.R. Griem, Spectral line broadening by plasmas (Academic, 1974).

Gruetzner, J. K.

J. K. Gruetzner, R. J. Law, T. R. Nelson, N. L. Bruner, and I. T. Kohl, “Filamentation in Air at 1550 nm,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuD84.

Guethlein, G.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Phys. Rev. Lett. 75(2), 252–255 (2010).
[Crossref]

Harilal, S. S.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015)
[Crossref] [PubMed]

N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein, and P. Kulkarni, “The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry,” Appl. Phys. 114, 023103 (2013).
[Crossref]

Hartig, K. C.

I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263–5276 (2016).
[Crossref] [PubMed]

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” Appl. Phys. 118(4), 043107 (2015).
[Crossref]

Hassanein, A.

N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein, and P. Kulkarni, “The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry,” Appl. Phys. 114, 023103 (2013).
[Crossref]

He, Z.-H.

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-Induced Self-Compression of Tightly Focused Femtosecond Laser Pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

Hong, K. H.

K. H. Hong, B. Hou, J. A. Nees, E. Power, and G. Mourou, “Generation and measurement of > 108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser,” Appl. Phys. B 81, 447–457 (2005).
[Crossref]

Hosseini, S.

J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
[Crossref]

Hou, B.

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-Induced Self-Compression of Tightly Focused Femtosecond Laser Pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

K. H. Hong, B. Hou, J. A. Nees, E. Power, and G. Mourou, “Generation and measurement of > 108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser,” Appl. Phys. B 81, 447–457 (2005).
[Crossref]

Houard, A.

Jaron-Becker, A.

J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
[Crossref]

Jovanovic, I.

P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Reports 7(1), 12740 (2017).
[Crossref]

I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263–5276 (2016).
[Crossref] [PubMed]

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” Appl. Phys. 118(4), 043107 (2015).
[Crossref]

G. Xu, S. Wandel, and I. Jovanovic, “Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-µm pulses using a mixed phase matching scheme,” Rev. Sci. Instr. 85(2), 023102 (2014).
[Crossref]

Kabanov, A. M.

Yu. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99,18 (2011).
[Crossref]

Kamali, Y.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
[Crossref]

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Kasparian, J.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Kilcrease, D. P.

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” Appl. Phys. 118(4), 043107 (2015).
[Crossref]

Kirkwood, S. E.

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Yu. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B 79(14), 144120 (2009).
[Crossref]

Kohl, I. T.

J. K. Gruetzner, R. J. Law, T. R. Nelson, N. L. Bruner, and I. T. Kohl, “Filamentation in Air at 1550 nm,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuD84.

Kolesik, M.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J.V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photon. 9(8), 543–548 (2015).
[Crossref]

P. Polynkin and M. Kolesik, “Critical power for self-focusing in the case of ultrashort laser pulses,” Phys. Rev. A 87(5), 053829 (2013).
[Crossref]

Konjevic, N.

N. Konjević and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 19(6), 1307–1385 (1990).
[Crossref]

Korn, G.

Kruer, W. L.

S. C. Wilks and W. L. Kruer, “Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas,” IEEE J. Quantum Electron. 33 (11), 1954–1968 (1997).
[Crossref]

Krushelnick, K.

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-Induced Self-Compression of Tightly Focused Femtosecond Laser Pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

Kulkarni, P.

N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein, and P. Kulkarni, “The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry,” Appl. Phys. 114, 023103 (2013).
[Crossref]

LaHaye, N. L.

N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein, and P. Kulkarni, “The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry,” Appl. Phys. 114, 023103 (2013).
[Crossref]

Law, R. J.

J. K. Gruetzner, R. J. Law, T. R. Nelson, N. L. Bruner, and I. T. Kohl, “Filamentation in Air at 1550 nm,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuD84.

Levis, R.

J. Odhner, D. Romanov, and R. Levis, “Self shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
[Crossref]

Lim, K.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

Liu, J. L.

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4(9), 627–631 (2010).
[Crossref]

Liu, W.

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Liu, X.

Liu, Y.

S. I. Mitryukovskiy, Y. Liu, A. Houard, and A. Mysyrowicz, “Re-evaluation of the peak intensity inside a femtosecond laser filament in air,” J. Phys. B: At. Mol. Opt. Phys. 48, 094003 (2015).
[Crossref]

Marceau, C.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

Mathieu, P.

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

McWhirter, R. W. P.

T. Fujimoto and R. W. P. McWhirter, “Validity criteria for local thermodynamic equilibrium in plasma spectroscopy,” Phys. Rev. A 42, 6588 (1990).
[Crossref] [PubMed]

Méjean, G.

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Mirell, D.

Mitryukovskiy, S. I.

S. I. Mitryukovskiy, Y. Liu, A. Houard, and A. Mysyrowicz, “Re-evaluation of the peak intensity inside a femtosecond laser filament in air,” J. Phys. B: At. Mol. Opt. Phys. 48, 094003 (2015).
[Crossref]

Moloney, J.V.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J.V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photon. 9(8), 543–548 (2015).
[Crossref]

More, R. M.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Phys. Rev. Lett. 75(2), 252–255 (2010).
[Crossref]

Moreau, B.

Mourou, G.

K. H. Hong, B. Hou, J. A. Nees, E. Power, and G. Mourou, “Generation and measurement of > 108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser,” Appl. Phys. B 81, 447–457 (2005).
[Crossref]

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
[Crossref] [PubMed]

Munson, C.

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

Mysyrowicz, A.

S. I. Mitryukovskiy, Y. Liu, A. Houard, and A. Mysyrowicz, “Re-evaluation of the peak intensity inside a femtosecond laser filament in air,” J. Phys. B: At. Mol. Opt. Phys. 48, 094003 (2015).
[Crossref]

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Nees, J. A.

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-Induced Self-Compression of Tightly Focused Femtosecond Laser Pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

K. H. Hong, B. Hou, J. A. Nees, E. Power, and G. Mourou, “Generation and measurement of > 108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser,” Appl. Phys. B 81, 447–457 (2005).
[Crossref]

Nelson, T. R.

J. K. Gruetzner, R. J. Law, T. R. Nelson, N. L. Bruner, and I. T. Kohl, “Filamentation in Air at 1550 nm,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuD84.

Odhner, J.

J. Odhner, D. Romanov, and R. Levis, “Self shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
[Crossref]

Panagiotopoulos, P.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J.V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photon. 9(8), 543–548 (2015).
[Crossref]

Peterson, K.

Phillips, M. C.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015)
[Crossref] [PubMed]

Polynkin, P.

P. Polynkin and M. Kolesik, “Critical power for self-focusing in the case of ultrashort laser pulses,” Phys. Rev. A 87(5), 053829 (2013).
[Crossref]

Porwitzky, A.

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

Power, E.

K. H. Hong, B. Hou, J. A. Nees, E. Power, and G. Mourou, “Generation and measurement of > 108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser,” Appl. Phys. B 81, 447–457 (2005).
[Crossref]

Prade, B.

Price, D. F.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Phys. Rev. Lett. 75(2), 252–255 (2010).
[Crossref]

Ramme, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

Richardson, M.

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

M. Baudelet, C. C. C. Willis, L. Shah, and M. Richardson, “Laser-induced breakdown spectroscopy of copper with a 2 µm thulium fiber laser,” Opt. Express 18(8), 7905–7910 (2010).
[Crossref] [PubMed]

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Rohwetter, P.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Romanov, D.

J. Odhner, D. Romanov, and R. Levis, “Self shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
[Crossref]

Roy, G.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
[Crossref]

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Salmon, E.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Sauerbrey, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Schmitt, R.

Shah, L.

Shepherd, R. L.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Phys. Rev. Lett. 75(2), 252–255 (2010).
[Crossref]

Simard, J. R.

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Simard, P. T.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

Skrodzki, P. J.

P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Reports 7(1), 12740 (2017).
[Crossref]

Smith, A. V.

Squier, J.

Stelmaszczyk, K.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Stewart, R. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Phys. Rev. Lett. 75(2), 252–255 (2010).
[Crossref]

Sun, Q.

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Suter, J. D.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

Théberge, F.

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Thomas, A. G. R.

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-Induced Self-Compression of Tightly Focused Femtosecond Laser Pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

Tsui, Y. Y.

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Yu. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B 79(14), 144120 (2009).
[Crossref]

Tzortzakis, S.

Valenzuela, A.

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

Vasseur, O.

Walling, R. S.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Phys. Rev. Lett. 75(2), 252–255 (2010).
[Crossref]

Wandel, S.

G. Xu, S. Wandel, and I. Jovanovic, “Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-µm pulses using a mixed phase matching scheme,” Rev. Sci. Instr. 85(2), 023102 (2014).
[Crossref]

Wang, T.-J.

J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
[Crossref]

Weidman, M.

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

Whalen, P.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J.V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photon. 9(8), 543–548 (2015).
[Crossref]

White, W. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Phys. Rev. Lett. 75(2), 252–255 (2010).
[Crossref]

Wiese, W. L.

N. Konjević and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 19(6), 1307–1385 (1990).
[Crossref]

Wilks, S. C.

S. C. Wilks and W. L. Kruer, “Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas,” IEEE J. Quantum Electron. 33 (11), 1954–1968 (1997).
[Crossref]

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Willis, C. C. C.

Wolf, J. P.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Wolf, J.-P.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Wöste, L.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Xu, G.

G. Xu, S. Wandel, and I. Jovanovic, “Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-µm pulses using a mixed phase matching scheme,” Rev. Sci. Instr. 85(2), 023102 (2014).
[Crossref]

Xu, H. L.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Yeak, J.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015)
[Crossref] [PubMed]

Yu, J.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Zemlyanov, A. A.

Yu. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99,18 (2011).
[Crossref]

Zhang, X. C.

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4(9), 627–631 (2010).
[Crossref]

Appl. Phys. (2)

K. C. Hartig, J. Colgan, D. P. Kilcrease, J. E. Barefield, and I. Jovanovic, “Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses,” Appl. Phys. 118(4), 043107 (2015).
[Crossref]

N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein, and P. Kulkarni, “The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry,” Appl. Phys. 114, 023103 (2013).
[Crossref]

Appl. Phys. B (3)

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

K. H. Hong, B. Hou, J. A. Nees, E. Power, and G. Mourou, “Generation and measurement of > 108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser,” Appl. Phys. B 81, 447–457 (2005).
[Crossref]

J.-F. Daigle, G. Méjean, W. Liu, F. Théberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, “Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy,” Appl. Phys. B 87(4), 749–754 (2007).
[Crossref]

Appl. Phys. Lett. (3)

Yu. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99,18 (2011).
[Crossref]

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

S. C. Wilks and W. L. Kruer, “Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas,” IEEE J. Quantum Electron. 33 (11), 1954–1968 (1997).
[Crossref]

J. Anal. At. Spectrom. (1)

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B: At. Mol. Opt. Phys. (1)

S. I. Mitryukovskiy, Y. Liu, A. Houard, and A. Mysyrowicz, “Re-evaluation of the peak intensity inside a femtosecond laser filament in air,” J. Phys. B: At. Mol. Opt. Phys. 48, 094003 (2015).
[Crossref]

J. Phys. Chem. Ref. Data (1)

N. Konjević and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 19(6), 1307–1385 (1990).
[Crossref]

Laser Phys. (1)

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 11(12), 1767–1770 (2012).
[Crossref]

Nat. Photon. (2)

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J.V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photon. 9(8), 543–548 (2015).
[Crossref]

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4(9), 627–631 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

Phys. Rev. A (3)

P. Polynkin and M. Kolesik, “Critical power for self-focusing in the case of ultrashort laser pulses,” Phys. Rev. A 87(5), 053829 (2013).
[Crossref]

J.-F. Daigle, A. Jaroń-Becker, S. Hosseini, T.-J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A 82(2), 023405 (2010).
[Crossref]

T. Fujimoto and R. W. P. McWhirter, “Validity criteria for local thermodynamic equilibrium in plasma spectroscopy,” Phys. Rev. A 42, 6588 (1990).
[Crossref] [PubMed]

Phys. Rev. B (1)

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Yu. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B 79(14), 144120 (2009).
[Crossref]

Phys. Rev. Lett. (4)

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Phys. Rev. Lett. 75(2), 252–255 (2010).
[Crossref]

A. Couairon and L. Bergé, “Light Filaments in Air for Ultraviolet and Infrared Wavelengths,” Phys. Rev. Lett. 88, 135003 (2002).
[Crossref] [PubMed]

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-Induced Self-Compression of Tightly Focused Femtosecond Laser Pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

J. Odhner, D. Romanov, and R. Levis, “Self shortening dynamics measured along a femtosecond laser filament in air,” Phys. Rev. Lett. 105, 125001 (2010).
[Crossref]

Rev. Sci. Instr. (1)

G. Xu, S. Wandel, and I. Jovanovic, “Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-µm pulses using a mixed phase matching scheme,” Rev. Sci. Instr. 85(2), 023102 (2014).
[Crossref]

Sci. Reports (1)

P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Reports 7(1), 12740 (2017).
[Crossref]

Science (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Other (6)

S. L. Chin, Femtosecond Laser Filamentation (Springer, 2010).
[Crossref]

J. K. Gruetzner, R. J. Law, T. R. Nelson, N. L. Bruner, and I. T. Kohl, “Filamentation in Air at 1550 nm,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuD84.

H. R. Griem, Principles of Plasma Spectroscopy, Cambridge Monographs on Plasma Physics, (Cambridge, 1997).
[Crossref]

H.R. Griem, Plasma spectroscopy (McGraw-Hill, 1964).

H.R. Griem, Spectral line broadening by plasmas (Academic, 1974).

A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, National Institute of Standards and Technology, Gaithersburg, MD (2018), http://physics.nist.gov/asd

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the setup: OPA - optical parametric amplification system; M - mirror; SM - spherical mirror; DM - dichroic mirror; L - achromatic lens; BBO - β-Ba(BO2)2 crystal; ICCD - intensified CCD; S - spectrograph; C - light collector/collimator.
Fig. 2
Fig. 2 Normalized plasma emission images produced by 0.4, 0.8, and 2.0 µm filaments at 2 Pcr and 4 Pcr recorded with 5 ns gate width at three different delays (0.6, 3.6, and 6.6 µs) after the incidence of the laser pulse.
Fig. 3
Fig. 3 (a) Axial and (b) radial expansion of the copper plasma at 2 Pcr and 4 Pcr.
Fig. 4
Fig. 4 (a) Time dependence of 0.8 µm filament fluorescence in the 400–750 nm range. Inset shows typical filament image recorded using ICCD; (b) Spatially integrated emission intensity from the plasma produced at three different filament wavelengths at 200-ns delay and 5-ns gate width.
Fig. 5
Fig. 5 Filament-induced copper spectra obtained at (a) 0.4 µm, (b) 0.8 µm, and (c) 2.0 µm at 2 mJ pulse energy.
Fig. 6
Fig. 6 Temporal evolution of (a) excitation temperature, and (b) electron density of copper plasma at near-UV and near-IR laser wavelengths and 4 mJ pulse energy. (c) Energy transmission of 0.4- and 0.8-µm filaments.

Tables (2)

Tables Icon

Table 1 Spectral lines used to estimate excitation temperature. Calculation parameters [35]: λul–spectral line wavelength, Aul–transition probability, gu–statistical weight of upper level. El and Eu are the lower and upper level energy, respectively.

Tables Icon

Table 2 Filament-induced plasma parameters obtained at different wavelengths: λ–central wavelength of the pulse before filamentation, Texc–excitation temperature, Ne–electron density, N e m i n–LTE limit.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P c r ( λ ) = 3.79 λ 2 8 π n 0 n 2 ( λ ) ,
I u l λ u l = N A u l g u U ( T ) exp ( E u k T e x c ) ,
Δ λ S = 2 a N e 10 16 + 3.5 A ( N e 10 16 ) 1 / 4 ( 1 3 4 N D 1 / 3 ) a N e 10 16 ,
I ( λ , τ p ) ~ [ 0.76 n 2 ( λ ) N c r ( λ ) σ K τ p N a t m ] 1 / ( K 1 ) ,

Metrics