Abstract

A dual frequency Ti: sapphire laser is presented in which two lines operate simultaneously with the same intensity on two TM00 longitudinal modes. This operation is obtained by means of the 127I2 molecules contained in an intra-cavity cell, pumped by a low-power laser. Its properties are interesting: the two lines lase simultaneously, they overlap spatially, their spectral width could be very narrow, their frequency is automatically locked to molecular frequencies and can serve as a frequency reference, the frequency difference is adjustable over the thousands of rotational or vibrational molecular energy gaps in the 0.1-0.9 THz and 3-6 THz domains, and it is computable with high precision. THz wave production is demonstrated as a first application.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser

Cechan Tian, Thomas Walther, Remus Nicolaescu, X. J. Pan, Yan Liao, and Edward S. Fry
Opt. Lett. 24(21) 1496-1498 (1999)

High resolution molecular spectroscopic system assisted by an optical frequency comb

Akiko Nishiyama, Daiki Ishikawa, and Masatoshi Misono
J. Opt. Soc. Am. B 30(8) 2107-2112 (2013)

High-frequency-stability diode-pumped Nd:YAG lasers with the FM sidebands method and Doppler-free iodine lines at 532 nm

Gianluca Galzerano, Cesare Svelto, Elio Bava, and Fabrizio Bertinetto
Appl. Opt. 38(33) 6962-6966 (1999)

References

  • View by:
  • |
  • |
  • |

  1. M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
    [Crossref]
  2. Y. M. Aĭvazyan, V. M. Baev, V. V. Ivanov, S. A. Kovalenko, and É. A. Sviridenkov, “Kinetics of emission spectra of multimode lasers and its influence on the sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 17(2), 168–173 (1987).
    [Crossref]
  3. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
    [Crossref]
  4. D. Kim, S. Zhang, D. Kwon, R. Liao, Y. Cui, Z. Zhang, Y. Song, and J. Kim, “Intensity noise suppression in mode-locked fiber lasers by double optical bandpass filtering,” Opt. Lett. 42(20), 4095–4098 (2017).
    [Crossref] [PubMed]
  5. M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for Terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).
    [Crossref]
  6. F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
    [Crossref]
  7. J. P. Pique, “Bi-frequency laser emission system,” Patent WO 2016087124 A1.
  8. S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. (Paris) 14(8), 791–794 (1979).
    [Crossref]
  9. H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, and N. Fujita, Md. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, “Doppler-free high resolution spectral atlas of iodine molecule 15 000 to 19 000 cm−1,” (2000), http://web1.kcn.jp/kansha-kansha/AtlasofI2.html .
  10. F. Martin, R. Bacis, S. Churassy, and J. Vergès, “Laser-induced-fluorescence Fourier transform spectrometry of the XOg+ state of I2: Extensive analysis of the BOu+ → XOg+ fluorescence spectrum of 127I2,” J. Molec. Spectrosc. 116(1), 71–100 (1986).
    [Crossref]
  11. J. P. Pique and S. Farinotti, “Efficient modeless laser for a mesospheric sodium laser guide star,” J. Opt. Soc. Am. B 20(10), 2093–2101 (2003).
    [Crossref]
  12. J. P. Pique, V. Fesquet, and S. Jacob, “Pulsed frequency-shifted feedback laser for laser guide stars: intracavity preamplifier,” Appl. Opt. 50(33), 6294–6301 (2011).
    [Crossref] [PubMed]
  13. J. B. Koffend, F. J. Wodarczyk, and R. W. Field, “ CW optically pumped molecular iodine laser,” in High-Power Lasers and Applications, Springer Series in Optical Sciences 9, K. L. Kompa, and H. Walther, eds (Springer, 1978).
  14. V. R. Mironenko and V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34(3), 397–403 (1980).
    [Crossref]
  15. J. P. Pique, F. Stoeckel, and A. Campargue, “High sensitivity intracavity stimulated emission pumping,” Appl. Opt. 26(15), 3103–3107 (1987).
    [Crossref] [PubMed]
  16. H.-J. Song and T. Nagatsuma, Handbook of Terahertz Technologies: Devices and Applications (Pan Stanford, 2015), Chap. 1.4.2.
  17. J. L. Coutaz, Optoélectronique térahertz (EDP Sciences, 2008).
  18. J. P. Pique, “Pulsed frequency shifted feedback laser for accurate long distance measurements: Beat order determination,” Opt. Commun. 286, 233–238 (2013).
    [Crossref]

2017 (1)

2013 (1)

J. P. Pique, “Pulsed frequency shifted feedback laser for accurate long distance measurements: Beat order determination,” Opt. Commun. 286, 233–238 (2013).
[Crossref]

2011 (2)

J. P. Pique, V. Fesquet, and S. Jacob, “Pulsed frequency-shifted feedback laser for laser guide stars: intracavity preamplifier,” Appl. Opt. 50(33), 6294–6301 (2011).
[Crossref] [PubMed]

F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

2006 (1)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

2005 (1)

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

2003 (1)

1998 (1)

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for Terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).
[Crossref]

1987 (2)

Y. M. Aĭvazyan, V. M. Baev, V. V. Ivanov, S. A. Kovalenko, and É. A. Sviridenkov, “Kinetics of emission spectra of multimode lasers and its influence on the sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 17(2), 168–173 (1987).
[Crossref]

J. P. Pique, F. Stoeckel, and A. Campargue, “High sensitivity intracavity stimulated emission pumping,” Appl. Opt. 26(15), 3103–3107 (1987).
[Crossref] [PubMed]

1986 (1)

F. Martin, R. Bacis, S. Churassy, and J. Vergès, “Laser-induced-fluorescence Fourier transform spectrometry of the XOg+ state of I2: Extensive analysis of the BOu+ → XOg+ fluorescence spectrum of 127I2,” J. Molec. Spectrosc. 116(1), 71–100 (1986).
[Crossref]

1980 (1)

V. R. Mironenko and V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34(3), 397–403 (1980).
[Crossref]

1979 (1)

S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. (Paris) 14(8), 791–794 (1979).
[Crossref]

Aivazyan, Y. M.

Y. M. Aĭvazyan, V. M. Baev, V. V. Ivanov, S. A. Kovalenko, and É. A. Sviridenkov, “Kinetics of emission spectra of multimode lasers and its influence on the sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 17(2), 168–173 (1987).
[Crossref]

Alouini, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for Terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).
[Crossref]

Araki, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Bacis, R.

F. Martin, R. Bacis, S. Churassy, and J. Vergès, “Laser-induced-fluorescence Fourier transform spectrometry of the XOg+ state of I2: Extensive analysis of the BOu+ → XOg+ fluorescence spectrum of 127I2,” J. Molec. Spectrosc. 116(1), 71–100 (1986).
[Crossref]

Baev, V. M.

Y. M. Aĭvazyan, V. M. Baev, V. V. Ivanov, S. A. Kovalenko, and É. A. Sviridenkov, “Kinetics of emission spectra of multimode lasers and its influence on the sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 17(2), 168–173 (1987).
[Crossref]

Bretenaker, F.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for Terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).
[Crossref]

Brunel, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for Terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).
[Crossref]

Campargue, A.

Churassy, S.

F. Martin, R. Bacis, S. Churassy, and J. Vergès, “Laser-induced-fluorescence Fourier transform spectrometry of the XOg+ state of I2: Extensive analysis of the BOu+ → XOg+ fluorescence spectrum of 127I2,” J. Molec. Spectrosc. 116(1), 71–100 (1986).
[Crossref]

Cui, Y.

Farinotti, S.

Fesquet, V.

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. (Paris) 14(8), 791–794 (1979).
[Crossref]

Hangyo, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Herault, E.

F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

Ivanov, V. V.

Y. M. Aĭvazyan, V. M. Baev, V. V. Ivanov, S. A. Kovalenko, and É. A. Sviridenkov, “Kinetics of emission spectra of multimode lasers and its influence on the sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 17(2), 168–173 (1987).
[Crossref]

Jacob, S.

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Kim, D.

Kim, J.

Kovalenko, S. A.

Y. M. Aĭvazyan, V. M. Baev, V. V. Ivanov, S. A. Kovalenko, and É. A. Sviridenkov, “Kinetics of emission spectra of multimode lasers and its influence on the sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 17(2), 168–173 (1987).
[Crossref]

Kwon, D.

Le Floch, A.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for Terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).
[Crossref]

Liao, R.

Luc, P.

S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. (Paris) 14(8), 791–794 (1979).
[Crossref]

Martin, F.

F. Martin, R. Bacis, S. Churassy, and J. Vergès, “Laser-induced-fluorescence Fourier transform spectrometry of the XOg+ state of I2: Extensive analysis of the BOu+ → XOg+ fluorescence spectrum of 127I2,” J. Molec. Spectrosc. 116(1), 71–100 (1986).
[Crossref]

Matsuura, S.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Mironenko, V. R.

V. R. Mironenko and V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34(3), 397–403 (1980).
[Crossref]

Morikawa, O.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Pallas, F.

F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

Pique, J. P.

Roux, J.-F.

F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Song, Y.

Stoeckel, F.

Sviridenkov, É. A.

Y. M. Aĭvazyan, V. M. Baev, V. V. Ivanov, S. A. Kovalenko, and É. A. Sviridenkov, “Kinetics of emission spectra of multimode lasers and its influence on the sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 17(2), 168–173 (1987).
[Crossref]

Tani, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Vallet, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for Terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).
[Crossref]

Vergès, J.

F. Martin, R. Bacis, S. Churassy, and J. Vergès, “Laser-induced-fluorescence Fourier transform spectrometry of the XOg+ state of I2: Extensive analysis of the BOu+ → XOg+ fluorescence spectrum of 127I2,” J. Molec. Spectrosc. 116(1), 71–100 (1986).
[Crossref]

Vitrant, G.

F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

Yasui, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Yokoyama, S.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Yudson, V. I.

V. R. Mironenko and V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34(3), 397–403 (1980).
[Crossref]

Zhang, S.

Zhang, Z.

Zhou, J.

F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for Terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).
[Crossref]

J. Molec. Spectrosc. (1)

F. Martin, R. Bacis, S. Churassy, and J. Vergès, “Laser-induced-fluorescence Fourier transform spectrometry of the XOg+ state of I2: Extensive analysis of the BOu+ → XOg+ fluorescence spectrum of 127I2,” J. Molec. Spectrosc. 116(1), 71–100 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

V. R. Mironenko and V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34(3), 397–403 (1980).
[Crossref]

J. P. Pique, “Pulsed frequency shifted feedback laser for accurate long distance measurements: Beat order determination,” Opt. Commun. 286, 233–238 (2013).
[Crossref]

Opt. Lett. (1)

Rev. Phys. Appl. (Paris) (1)

S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. (Paris) 14(8), 791–794 (1979).
[Crossref]

Semicond. Sci. Technol. (1)

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Sov. J. Quantum Electron. (1)

Y. M. Aĭvazyan, V. M. Baev, V. V. Ivanov, S. A. Kovalenko, and É. A. Sviridenkov, “Kinetics of emission spectra of multimode lasers and its influence on the sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 17(2), 168–173 (1987).
[Crossref]

Other (5)

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, and N. Fujita, Md. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, “Doppler-free high resolution spectral atlas of iodine molecule 15 000 to 19 000 cm−1,” (2000), http://web1.kcn.jp/kansha-kansha/AtlasofI2.html .

J. P. Pique, “Bi-frequency laser emission system,” Patent WO 2016087124 A1.

H.-J. Song and T. Nagatsuma, Handbook of Terahertz Technologies: Devices and Applications (Pan Stanford, 2015), Chap. 1.4.2.

J. L. Coutaz, Optoélectronique térahertz (EDP Sciences, 2008).

J. B. Koffend, F. J. Wodarczyk, and R. W. Field, “ CW optically pumped molecular iodine laser,” in High-Power Lasers and Applications, Springer Series in Optical Sciences 9, K. L. Kompa, and H. Walther, eds (Springer, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Iodine potential energy U versus inter nuclear distance R of I2 molecule and pump-dump transitions (see text).
Fig. 2
Fig. 2 Experimental setup.
Fig. 3
Fig. 3 Spectrum of the dual-frequency laser beam as a function of the rotational quantum number J of 127I2 molecule excitation.
Fig. 4
Fig. 4 “pump” laser pulse in blue and Ti:Sa dual-frequency laser pulse in red. The “pump” pulse starts in the Ti:Sa built-up.
Fig. 5
Fig. 5 Intensity fluctuation β: comparison of a Fabry-Pérot (blue) and an “iodine-gain-filter” (red) dual-frequency laser.
Fig. 6
Fig. 6 THz setup. The Ti:Sa dual-frequency beam is split: 10% in the receiver arm and 90% in the emitter arm. The laser repetition rate is 3 kHz and the chopper rate 80 Hz. The Lock-in amplifier output is averaged over several seconds for each delay line position.
Fig. 7
Fig. 7 Homodyne signal for two excitations of the iodine molecule: red curve P(101)16-1 (17182.7712 cm−1) and black curve P(25)16-1 (17293.8638 cm−1). The repetition rate of the Ti: Sa laser is 3 kHz and the chopper frequency is 80 Hz. To improve the signal to noise ratio, each point is an integral of 6000 pulses. Points correspond to the experiment and full-lines to the fit. The black dots are the excitation of the transition P(25)16-1 of I2 and the red dots that of the transition P(101)16-1. The PR doublet corresponds to the vibrational numbers v ' = 16 and v = 25 (see Fig. 1 and 3).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

v 2 v 1 = E v (J) E v (J2) E v (J)= E v + B v J(J+1)+ D v [ J(J+1) ] 2 + H v [ J(J+1) ] 3 +L [ J( J+1 ) ] v 4
ν 2 ν 1 2×(2J1)× B v
β= I 1 I 2 I 1 + I 2
I THz E THz cos(2π dz Λ ) Λ= c ν 2 ν 1

Metrics