Abstract

A simple Fresnel-type self-interference incoherent digital holographic recording system is proposed. The main part of the system consists of the two linear polarizers and geometric phase lens. The geometric phase lens is employed as a polarization selective common-path interferometer. One of the polarizers is rotated by the motor and serves as a phase-shifter with the geometric phase lens, to eliminate the bias and twin image noise. A topological phase is obtained by the relative angle between the polarizer and geometric phase lens. Since this phase shifting method does not depend on the change of the optical path length, the phase shifting performance is almost constant in the broad spectral range. Using the proposed achromatic phase shifting method, a simultaneous three-color phase shifting digital hologram recording under the incoherent light source is demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Self-interference digital holography with a geometric-phase hologram lens

KiHong Choi, Junkyu Yim, Seunghwi Yoo, and Sung-Wook Min
Opt. Lett. 42(19) 3940-3943 (2017)

Spatially incoherent common-path off-axis color digital holography

Cuong M. Nguyen, Dilband Muhammad, and Hyuk-Sang Kwon
Appl. Opt. 57(6) 1504-1509 (2018)

Coded aperture correlation holography–a new type of incoherent digital holograms

A. Vijayakumar, Yuval Kashter, Roy Kelner, and Joseph Rosen
Opt. Express 24(11) 12430-12441 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref] [PubMed]
  2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” JOSA 52, 1123–1130 (1962).
    [Crossref]
  3. M. K. Kim, “Applications of Digital Holography in Biomedical Microscopy,” J. Opt. Soc. Korea 14, 77–89 (2010).
    [Crossref]
  4. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
    [Crossref] [PubMed]
  5. G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a mach–zehnder setup,” Opt. Lett. 37, 713–715 (2012).
    [Crossref] [PubMed]
  6. M. K. Kim, “Incoherent digital holographic adaptive optics,” Appl. Opt. 52, A117–A130 (2013).
    [Crossref] [PubMed]
  7. M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21, 9636–9642 (2013).
    [Crossref] [PubMed]
  8. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref] [PubMed]
  9. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
    [Crossref]
  10. G. Brooker, N. Siegel, J. Rosen, N. Hashimoto, M. Kurihara, and A. Tanabe, “In-line finch super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal grin lens,” Opt. Lett. 38, 5264–5267 (2013).
    [Crossref] [PubMed]
  11. J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38, 5196–5199 (2013).
    [Crossref] [PubMed]
  12. C. Jang, J. Kim, D. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20, 20208 (2015).
    [Crossref]
  13. K. Choi, J. Yim, S. Yoo, and S.-W. Min, “Self-interference digital holography with a geometric-phase hologram lens,” Opt. Lett. 42, 3940–3943 (2017).
    [Crossref] [PubMed]
  14. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. - Sect. A 44, 247–262 (1956).
  15. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 392, 45–57 (1984).
    [Crossref]
  16. E. Wolf, Progress in Optics, no. V. 48 in Progress in Optics (Elsevier Science, 2005).
  17. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length - new generation in optics,” Opt. Express 23, 25783–25794 (2015).
    [Crossref] [PubMed]
  18. K. Gao, H.-H. Cheng, A. K. Bhowmik, and P. J. Bos, “Thin-film pancharatnam lens with low f-number and high quality,” Opt. Express 23, 26086–26094 (2015).
    [Crossref] [PubMed]
  19. K. Gao, H.-H. Cheng, A. K. Bhowmik, C. McGinty, and P. J. Bos, “Nonmechanical zoom lens based on the pancharatnam phase effect,” Appl. Opt. 55, 1145–1150 (2016).
    [Crossref] [PubMed]
  20. Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Optical properties of polarization-dependent geometric phase elements with partially polarized light,” Opt. Commun. 266, 365–375 (2006).
    [Crossref]
  21. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica. 2, 958–964 (2015).
    [Crossref]
  22. Y. Aharonov and J. Anandan, “Phase change during a cyclic quantum evolution,” Phys. Rev. Lett. 58, 1593–1596 (1987).
    [Crossref] [PubMed]
  23. P. Hariharan and P. Ciddor, “An achromatic phase-shifter operating on the geometric phase,” Opt. Commun. 110, 13–17 (1994).
    [Crossref]
  24. S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
    [Crossref]
  25. J. ichi Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27, 1403–1405 (2002).
    [Crossref]
  26. B. J. Jackin, C. S. Narayanamurthy, and T. Yatagai, “Geometric phase shifting digital holography,” Opt. Lett. 41, 2648–2651 (2016).
    [Crossref] [PubMed]
  27. T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
    [Crossref]
  28. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
    [Crossref]
  29. C. Yousefzadeh, A. Jamali, C. McGinty, and P. J. Bos, ““achromatic limits” of pancharatnam phase lenses,” Appl. Opt. 57, 1151–1158 (2018).
    [Crossref] [PubMed]
  30. P. Ferraro, S. D. Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
    [Crossref] [PubMed]
  31. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. D. Nicola, A. Finizio, and B. Javidi, “Full color 3-d imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).
    [Crossref]
  32. F. J. Harris, “On the use of windows for harmonic analysis with the discrete fourier transform,” Proc. IEEE 66, 51–83 (1978).
    [Crossref]

2018 (1)

2017 (2)

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

K. Choi, J. Yim, S. Yoo, and S.-W. Min, “Self-interference digital holography with a geometric-phase hologram lens,” Opt. Lett. 42, 3940–3943 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (4)

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica. 2, 958–964 (2015).
[Crossref]

C. Jang, J. Kim, D. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20, 20208 (2015).
[Crossref]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length - new generation in optics,” Opt. Express 23, 25783–25794 (2015).
[Crossref] [PubMed]

K. Gao, H.-H. Cheng, A. K. Bhowmik, and P. J. Bos, “Thin-film pancharatnam lens with low f-number and high quality,” Opt. Express 23, 26086–26094 (2015).
[Crossref] [PubMed]

2013 (4)

2012 (1)

2010 (1)

2008 (2)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[Crossref]

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. D. Nicola, A. Finizio, and B. Javidi, “Full color 3-d imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).
[Crossref]

2007 (1)

2006 (1)

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Optical properties of polarization-dependent geometric phase elements with partially polarized light,” Opt. Commun. 266, 365–375 (2006).
[Crossref]

2004 (2)

2002 (1)

1998 (1)

S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
[Crossref]

1997 (1)

1994 (1)

P. Hariharan and P. Ciddor, “An achromatic phase-shifter operating on the geometric phase,” Opt. Commun. 110, 13–17 (1994).
[Crossref]

1987 (1)

Y. Aharonov and J. Anandan, “Phase change during a cyclic quantum evolution,” Phys. Rev. Lett. 58, 1593–1596 (1987).
[Crossref] [PubMed]

1984 (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 392, 45–57 (1984).
[Crossref]

1978 (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete fourier transform,” Proc. IEEE 66, 51–83 (1978).
[Crossref]

1962 (1)

E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” JOSA 52, 1123–1130 (1962).
[Crossref]

1956 (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. - Sect. A 44, 247–262 (1956).

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Aharonov, Y.

Y. Aharonov and J. Anandan, “Phase change during a cyclic quantum evolution,” Phys. Rev. Lett. 58, 1593–1596 (1987).
[Crossref] [PubMed]

Alfieri, D.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. D. Nicola, A. Finizio, and B. Javidi, “Full color 3-d imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).
[Crossref]

P. Ferraro, S. D. Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref] [PubMed]

Anandan, J.

Y. Aharonov and J. Anandan, “Phase change during a cyclic quantum evolution,” Phys. Rev. Lett. 58, 1593–1596 (1987).
[Crossref] [PubMed]

Arai, Y.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Awatsuji, Y.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

Berry, M. V.

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 392, 45–57 (1984).
[Crossref]

Bhowmik, A. K.

Biener, G.

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Optical properties of polarization-dependent geometric phase elements with partially polarized light,” Opt. Commun. 266, 365–375 (2006).
[Crossref]

Bos, P. J.

Brooker, G.

Cheng, H.-H.

Choi, K.

Ciddor, P.

P. Hariharan and P. Ciddor, “An achromatic phase-shifter operating on the geometric phase,” Opt. Commun. 110, 13–17 (1994).
[Crossref]

Clark, D.

C. Jang, J. Kim, D. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20, 20208 (2015).
[Crossref]

Coppola, G.

Escuti, M. J.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica. 2, 958–964 (2015).
[Crossref]

Faridian, A.

Ferraro, P.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. D. Nicola, A. Finizio, and B. Javidi, “Full color 3-d imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).
[Crossref]

P. Ferraro, S. D. Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref] [PubMed]

Finizio, A.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. D. Nicola, A. Finizio, and B. Javidi, “Full color 3-d imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).
[Crossref]

P. Ferraro, S. D. Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref] [PubMed]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Gao, K.

Gorodetski, Y.

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Optical properties of polarization-dependent geometric phase elements with partially polarized light,” Opt. Commun. 266, 365–375 (2006).
[Crossref]

Grilli, S.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. D. Nicola, A. Finizio, and B. Javidi, “Full color 3-d imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).
[Crossref]

Hariharan, P.

P. Hariharan and P. Ciddor, “An achromatic phase-shifter operating on the geometric phase,” Opt. Commun. 110, 13–17 (1994).
[Crossref]

Harris, F. J.

F. J. Harris, “On the use of windows for harmonic analysis with the discrete fourier transform,” Proc. IEEE 66, 51–83 (1978).
[Crossref]

Hashimoto, N.

Hasman, E.

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Optical properties of polarization-dependent geometric phase elements with partially polarized light,” Opt. Commun. 266, 365–375 (2006).
[Crossref]

Helen, S.

S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
[Crossref]

Hong, J.

ichi Kato, J.

Jackin, B. J.

Jamali, A.

Jang, C.

C. Jang, J. Kim, D. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20, 20208 (2015).
[Crossref]

Javidi, B.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. D. Nicola, A. Finizio, and B. Javidi, “Full color 3-d imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).
[Crossref]

Kanno, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Kim, J.

C. Jang, J. Kim, D. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20, 20208 (2015).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica. 2, 958–964 (2015).
[Crossref]

Kim, M. K.

Kimball, B. R.

Kleiner, V.

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Optical properties of polarization-dependent geometric phase elements with partially polarized light,” Opt. Commun. 266, 365–375 (2006).
[Crossref]

Kothiyal, M.

S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
[Crossref]

Kubota, T.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

Kudenov, M. W.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica. 2, 958–964 (2015).
[Crossref]

Kurihara, M.

Lee, B.

C. Jang, J. Kim, D. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20, 20208 (2015).
[Crossref]

Lee, S.

C. Jang, J. Kim, D. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20, 20208 (2015).
[Crossref]

Leith, E. N.

E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” JOSA 52, 1123–1130 (1962).
[Crossref]

Li, H.

Li, Y.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica. 2, 958–964 (2015).
[Crossref]

Matsumura, T.

McGinty, C.

Miccio, L.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. D. Nicola, A. Finizio, and B. Javidi, “Full color 3-d imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).
[Crossref]

Min, S.-W.

Miskiewicz, M. N.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica. 2, 958–964 (2015).
[Crossref]

Narayanamurthy, C. S.

Nicola, S. D.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. D. Nicola, A. Finizio, and B. Javidi, “Full color 3-d imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).
[Crossref]

P. Ferraro, S. D. Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref] [PubMed]

Niv, A.

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Optical properties of polarization-dependent geometric phase elements with partially polarized light,” Opt. Commun. 266, 365–375 (2006).
[Crossref]

Oh, C.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica. 2, 958–964 (2015).
[Crossref]

Osten, W.

Ozawa, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. - Sect. A 44, 247–262 (1956).

Pedrini, G.

Pierattini, G.

Roberts, D. E.

Rosen, J.

Sasada, M.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

Serak, S. V.

Siegel, N.

Sirohi, R.

S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
[Crossref]

Steeves, D. M.

Tabiryan, N. V.

Tahara, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Tanabe, A.

Upatnieks, J.

E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” JOSA 52, 1123–1130 (1962).
[Crossref]

Wolf, E.

E. Wolf, Progress in Optics, no. V. 48 in Progress in Optics (Elsevier Science, 2005).

Yamaguchi, I.

Yatagai, T.

Yim, J.

Yoo, S.

Yousefzadeh, C.

Zhang, T.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

J. Biomed. Opt. (1)

C. Jang, J. Kim, D. Clark, S. Lee, B. Lee, and M. K. Kim, “Holographic fluorescence microscopy with incoherent digital holographic adaptive optics,” J. Biomed. Opt. 20, 20208 (2015).
[Crossref]

J. Disp. Technol. (1)

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. D. Nicola, A. Finizio, and B. Javidi, “Full color 3-d imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).
[Crossref]

J. Opt. (1)

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

J. Opt. Soc. Korea (1)

JOSA (1)

E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” JOSA 52, 1123–1130 (1962).
[Crossref]

Nat. Photonics (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[Crossref]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Opt. Commun. (3)

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Optical properties of polarization-dependent geometric phase elements with partially polarized light,” Opt. Commun. 266, 365–375 (2006).
[Crossref]

P. Hariharan and P. Ciddor, “An achromatic phase-shifter operating on the geometric phase,” Opt. Commun. 110, 13–17 (1994).
[Crossref]

S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
[Crossref]

Opt. Express (3)

Opt. Lett. (9)

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[Crossref] [PubMed]

G. Brooker, N. Siegel, J. Rosen, N. Hashimoto, M. Kurihara, and A. Tanabe, “In-line finch super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal grin lens,” Opt. Lett. 38, 5264–5267 (2013).
[Crossref] [PubMed]

J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38, 5196–5199 (2013).
[Crossref] [PubMed]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
[Crossref] [PubMed]

G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a mach–zehnder setup,” Opt. Lett. 37, 713–715 (2012).
[Crossref] [PubMed]

K. Choi, J. Yim, S. Yoo, and S.-W. Min, “Self-interference digital holography with a geometric-phase hologram lens,” Opt. Lett. 42, 3940–3943 (2017).
[Crossref] [PubMed]

J. ichi Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27, 1403–1405 (2002).
[Crossref]

B. J. Jackin, C. S. Narayanamurthy, and T. Yatagai, “Geometric phase shifting digital holography,” Opt. Lett. 41, 2648–2651 (2016).
[Crossref] [PubMed]

P. Ferraro, S. D. Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref] [PubMed]

Optica. (1)

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica. 2, 958–964 (2015).
[Crossref]

Phys. Rev. Lett. (1)

Y. Aharonov and J. Anandan, “Phase change during a cyclic quantum evolution,” Phys. Rev. Lett. 58, 1593–1596 (1987).
[Crossref] [PubMed]

Proc. IEEE (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete fourier transform,” Proc. IEEE 66, 51–83 (1978).
[Crossref]

Proc. Indian Acad. Sci. - Sect. A (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. - Sect. A 44, 247–262 (1956).

Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 392, 45–57 (1984).
[Crossref]

Other (1)

E. Wolf, Progress in Optics, no. V. 48 in Progress in Optics (Elsevier Science, 2005).

Supplementary Material (4)

NameDescription
» Visualization 1       Geometric phase shifting demonstration while rotating the linear polarizer
» Visualization 1       Geometric phase shifting demonstration while rotating the linear polarizer
» Visualization 2       Numerical reconstruction results of dice and flower objects.The hologram is obtained by the self-interference incoherent digital holographic system using the geometric phase lens, and the geometric phase shifter.
» Visualization 2       Numerical reconstruction results of dice and flower objects.The hologram is obtained by the self-interference incoherent digital holographic system using the geometric phase lens, and the geometric phase shifter.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The property of GP lens. Please check the details on the following text. RHCP LHCP refer the right-handed or left-handed circularly polarized lights, respectively. Pol/. is the polarization, and ± fgp is the positive and negative focal lengths of the GP lens.
Fig. 2
Fig. 2 Schematic diagram of the GP-SIDH system: P1′, rotating linear polarizer; P2, fixed linear polarizer.
Fig. 3
Fig. 3 Poincaré sphere representation of the geometric phase shifter in GP-SIDH system. A1, first state of linear polarizer; A2, second state of linear polarizer, rotated with angle Ω relative to the angle of A1; B, status of the fixed polarizer, which is rotated in δ relative to the angle of A1; R, L, RHCP and LHCP respectively, after passing the GP lens.
Fig. 4
Fig. 4 The photograph of the experimental apparatus.
Fig. 5
Fig. 5 (a) system illustration for measuring the phase shifting performance, and the captured full-color GP lens images with phase shifting from 0° to 90° ( Visualization 1); (b) the calibration data where dot-dashed red line is the initial curve, solid green line is the calibrated curve, and the dashed black line is the ideal sinusoidal curve; (c, d) phase modulation results from 425, 550, and 650 nm input illumination, where (c) is the proposed geometric phase shifter, and (d) is the same measurements for phase-only SLM calibrated to 633 nm. BPF: bandpass filter
Fig. 6
Fig. 6 The system parameters. zo is the object distance; zobjgp is a distance between the objective and GP lens; zgprl is a distance between the GP and relay lens (primary principal plane, PPP); zh is a distance between the relay lens (secondary principal plane, SPP) and the image sensor; d g p ± is a GP lens imaging distance; d r l ± is a relay lens imaging distance from SPP.
Fig. 7
Fig. 7 The reconstruction results of letter ’E’, illuminated by the white LED light source. (a) the superposed three-color images by the reconstruction with the same increment of zrec in Eq. (8); (b) the superposed three-color images by the reconstruction with the different increment of zrec using Eq. (7); (c) three-color reconstruction distance estimation from the object distance. The system parameters to calculate the graph (c) are same as the experimental setup. The distances below each images represent the actual input distances for reconstruction and object distance domain, respectively for (a) and (b).
Fig. 8
Fig. 8 The GP-SIDH demonstration system with various recorded targets, including both transmissive and reflective cases; BC is the Beam combiner.
Fig. 9
Fig. 9 Transmissive target object reconstruction result. (a–d) phase only holograms of red, green, blue channels, and superposed three-channel phase hologram, respectively; (e) best of focus at the NBS 1963 target (forward); (f) focus at the USAF 1952 target (500 mm backward).
Fig. 10
Fig. 10 Dice and flower objects as a reflective target object example. 20 complex holograms are averaged to reduce the noise; (a) phase-only full-color hologram (b, c) before and after applying the tapered cosine window, respectively on a red channel reconstructed image; (d–f) reconstruction results on different depth planes. cropped images, each of which shows the different focused plane. The white arrow indicates the focused object in each image. The contrast and color mixing ratio are manipulated manually by the general photo editing application to enhance the visibility of the results. ( Visualization 2)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ E x E y ] [ cos 2 Ω cos Ω sin Ω cos Ω sin Ω sin Ω ] ( [ 1 i ] exp ( i Φ ) + [ 1 i ] exp ( i Φ ) ) = cos ( Ω + Φ ) [ cos Ω sin Ω ]
I = | E x | 2 + | E y | 2 1 + cos ( 2 Ω + 2 Φ )
U H = ( I 3 I 1 ) i ( I 2 I 0 )
f g p ( λ ) = f r e f ( λ r e f λ )
d g p ± ( λ ) = ± z o b j g p f g p ( λ ) ( z o f o ) f o f g p ( λ ) z o ( z o b j g p f g p ( λ ) ) ( z o f o ) f o z o
d r l ± ( λ ) = f r l ( z g p r l d g p ± ( λ ) ) z g p r l d g p ± ( λ ) f r l
z r e c ± ( λ ) = ( z h d r l ( λ ) ) ( d r l ± ( λ ) z h ) ± Δ d r l
U R ( x , y , z r e c ; λ ) = U H ( ξ , η ; λ ) exp [ i 2 π λ ( ξ 2 + η 2 2 z r e c ( λ ) ) ]
w ( x ) = { 1 2 { 1 + cos ( 2 π r [ x r 2 ] ) } 0 x < r 2 1 , r 2 x < 1 r 2 1 2 { 1 + cos ( 2 π r [ x 1 + r 2 ] ) } 1 r 2 x 1

Metrics