Abstract

This work presents a method that can automatically estimate and remove varying continuous background emission for low-cost laser-induced breakdown spectroscopy (LIBS) without intensified CCD. The algorithm finds all third-order minima points in spectra and uses these points to partition the spectra into multiple subintervals. The mean value is then used as a threshold to select the effective points for the second-order minima in each subinterval. Finally, a linear interpolation method is used to realize extension of these effective points and complete fitting of the background using polynomials. Using simulated and real LIBS spectra with different complexities examine the validity of proposed algorithm. Additionally, five elements of five standard cast iron alloy samples are calibrated and improved very well after background removal. The results successfully prove the validity of the background correction algorithm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Background removal in soil analysis using laser- induced breakdown spectroscopy combined with standard addition method

R. X. Yi, L. B. Guo, X. H. Zou, J. M. Li, Z. Q. Hao, X. Y. Yang, X. Y. Li, X. Y. Zeng, and Y. F. Lu
Opt. Express 24(3) 2607-2618 (2016)

Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng
Opt. Express 22(9) 10233-10238 (2014)

Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy

Jorge E. Carranza, Emily Gibb, Ben W. Smith, David W. Hahn, and James D. Winefordner
Appl. Opt. 42(30) 6016-6021 (2003)

References

  • View by:
  • |
  • |
  • |

  1. C. Li, Z. Hao, Z. Zou, R. Zhou, J. Li, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence,” Opt. Express 24(8), 7850–7857 (2016).
    [Crossref] [PubMed]
  2. D. Diaz, D. W. Hahn, and A. Molina, “Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 136, 106–115 (2017).
    [Crossref]
  3. J. N. Kunz, D. V. Voronine, H. W. H. Lee, A. V. Sokolov, and M. O. Scully, “Rapid detection of drought stress in plants using femtosecond laser-induced breakdown spectroscopy,” Opt. Express 25(7), 7251–7262 (2017).
    [Crossref] [PubMed]
  4. S. Chen, X. Lin, C. Yuen, S. Padmanabhan, R. W. Beuerman, and Q. Liu, “Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation,” Opt. Express 22(10), 12102–12114 (2014).
    [Crossref] [PubMed]
  5. P. Gans and J. B. Gill, “Examination of the convolution method for numerical smoothing and differentiation of spectroscopic data in theory and in practice,” Appl. Spectrosc. 37(6), 515–520 (1983).
    [Crossref]
  6. T. M. Rossi and I. M. Warner, “Fourier transform filtering of two-dimensional fluorescence data,” Appl. Spectrosc. 38(3), 422–429 (1984).
    [Crossref]
  7. R. J. Berry and Y. Ozaki, “Comparision of wavelets and smoothing for denoising spectra for two-dimensional correlation spectroscopy,” Appl. Spectrosc. 56(11), 1462–1469 (2002).
    [Crossref]
  8. J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
    [Crossref] [PubMed]
  9. Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
    [Crossref] [PubMed]
  10. J. C. Cobas, M. A. Bernstein, M. Martín-Pastor, and P. G. Tahoces, “A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data,” J. Magn. Reson. 183(1), 145–151 (2006).
    [Crossref] [PubMed]
  11. L. Shao and P. R. Griffiths, “Automatic baseline correction by wavelet transform for quantitative open-path Fourier transform infrared spectroscopy,” Environ. Sci. Technol. 41(20), 7054–7059 (2007).
    [Crossref] [PubMed]
  12. X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
    [Crossref] [PubMed]
  13. M. S. Friedrichs, “A model-free algorithm for the removal of baseline artifacts,” J. Biomol. NMR 5(2), 147–153 (1995).
    [Crossref] [PubMed]
  14. F. Gan, G. Ruan, and J. Mo, “Baseline correction by improved polynomial fitting with automatic threshold,” Chemom. Intell. Lab. Syst. 82(1), 59–65 (2006).
    [Crossref]
  15. Z. Wang, M. Zhang, and P. B. Harrington, “Comparison of three algorithms for the baseline correction of hyphenated data objects,” Anal. Chem. 86(18), 9050–9057 (2014).
    [Crossref] [PubMed]
  16. W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and precise automatic baseline correction of one- and two-dimensional NMR spectra,” J. Magn. Reson. 91(1), 1–11 (1991).
  17. S. Wartewig, IR and Raman Spectroscopy-Fundamental Processing (Wiley-VCH GmbH & Co. KGaA, 2013).
  18. Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
    [Crossref] [PubMed]
  19. M. D. Dyar, S. Giguere, C. J. Carey, and T. Boucher, “Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples,” Spectrochim. Acta B At. Spectrosc. 126, 53–64 (2016).
    [Crossref]
  20. I. B. Gornushkin, P. E. Eagan, A. B. Novikov, B. W. Smith, and J. D. Winefordner, “Automatic Correction of Continuum Background in Laser-induced Breakdown and Raman Spectrometry,” Appl. Spectrosc. 57(2), 197–207 (2003).
    [Crossref] [PubMed]
  21. L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(3), 278–287 (2009).
    [Crossref]
  22. P. Yaroshchyk and J. E. Eberhardt, “Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm,” Spectrochim. Acta B At. Spectrosc. 99(9), 138–149 (2014).
    [Crossref]

2017 (2)

D. Diaz, D. W. Hahn, and A. Molina, “Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 136, 106–115 (2017).
[Crossref]

J. N. Kunz, D. V. Voronine, H. W. H. Lee, A. V. Sokolov, and M. O. Scully, “Rapid detection of drought stress in plants using femtosecond laser-induced breakdown spectroscopy,” Opt. Express 25(7), 7251–7262 (2017).
[Crossref] [PubMed]

2016 (2)

C. Li, Z. Hao, Z. Zou, R. Zhou, J. Li, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence,” Opt. Express 24(8), 7850–7857 (2016).
[Crossref] [PubMed]

M. D. Dyar, S. Giguere, C. J. Carey, and T. Boucher, “Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples,” Spectrochim. Acta B At. Spectrosc. 126, 53–64 (2016).
[Crossref]

2014 (4)

P. Yaroshchyk and J. E. Eberhardt, “Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm,” Spectrochim. Acta B At. Spectrosc. 99(9), 138–149 (2014).
[Crossref]

Z. Wang, M. Zhang, and P. B. Harrington, “Comparison of three algorithms for the baseline correction of hyphenated data objects,” Anal. Chem. 86(18), 9050–9057 (2014).
[Crossref] [PubMed]

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
[Crossref] [PubMed]

S. Chen, X. Lin, C. Yuen, S. Padmanabhan, R. W. Beuerman, and Q. Liu, “Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation,” Opt. Express 22(10), 12102–12114 (2014).
[Crossref] [PubMed]

2013 (1)

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

2010 (2)

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

2009 (1)

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(3), 278–287 (2009).
[Crossref]

2007 (1)

L. Shao and P. R. Griffiths, “Automatic baseline correction by wavelet transform for quantitative open-path Fourier transform infrared spectroscopy,” Environ. Sci. Technol. 41(20), 7054–7059 (2007).
[Crossref] [PubMed]

2006 (2)

J. C. Cobas, M. A. Bernstein, M. Martín-Pastor, and P. G. Tahoces, “A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data,” J. Magn. Reson. 183(1), 145–151 (2006).
[Crossref] [PubMed]

F. Gan, G. Ruan, and J. Mo, “Baseline correction by improved polynomial fitting with automatic threshold,” Chemom. Intell. Lab. Syst. 82(1), 59–65 (2006).
[Crossref]

2003 (1)

2002 (1)

1995 (1)

M. S. Friedrichs, “A model-free algorithm for the removal of baseline artifacts,” J. Biomol. NMR 5(2), 147–153 (1995).
[Crossref] [PubMed]

1991 (1)

W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and precise automatic baseline correction of one- and two-dimensional NMR spectra,” J. Magn. Reson. 91(1), 1–11 (1991).

1984 (1)

1983 (1)

Bernstein, M. A.

J. C. Cobas, M. A. Bernstein, M. Martín-Pastor, and P. G. Tahoces, “A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data,” J. Magn. Reson. 183(1), 145–151 (2006).
[Crossref] [PubMed]

Berry, R. J.

Beuerman, R. W.

Boucher, T.

M. D. Dyar, S. Giguere, C. J. Carey, and T. Boucher, “Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples,” Spectrochim. Acta B At. Spectrosc. 126, 53–64 (2016).
[Crossref]

Carey, C. J.

M. D. Dyar, S. Giguere, C. J. Carey, and T. Boucher, “Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples,” Spectrochim. Acta B At. Spectrosc. 126, 53–64 (2016).
[Crossref]

Chen, S.

S. Chen, X. Lin, C. Yuen, S. Padmanabhan, R. W. Beuerman, and Q. Liu, “Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation,” Opt. Express 22(10), 12102–12114 (2014).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Cobas, J. C.

J. C. Cobas, M. A. Bernstein, M. Martín-Pastor, and P. G. Tahoces, “A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data,” J. Magn. Reson. 183(1), 145–151 (2006).
[Crossref] [PubMed]

Diaz, D.

D. Diaz, D. W. Hahn, and A. Molina, “Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 136, 106–115 (2017).
[Crossref]

Dietrich, W.

W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and precise automatic baseline correction of one- and two-dimensional NMR spectra,” J. Magn. Reson. 91(1), 1–11 (1991).

Dyar, M. D.

M. D. Dyar, S. Giguere, C. J. Carey, and T. Boucher, “Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples,” Spectrochim. Acta B At. Spectrosc. 126, 53–64 (2016).
[Crossref]

Eagan, P. E.

Eberhardt, J. E.

P. Yaroshchyk and J. E. Eberhardt, “Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm,” Spectrochim. Acta B At. Spectrosc. 99(9), 138–149 (2014).
[Crossref]

Friedrichs, M. S.

M. S. Friedrichs, “A model-free algorithm for the removal of baseline artifacts,” J. Biomol. NMR 5(2), 147–153 (1995).
[Crossref] [PubMed]

Gan, F.

F. Gan, G. Ruan, and J. Mo, “Baseline correction by improved polynomial fitting with automatic threshold,” Chemom. Intell. Lab. Syst. 82(1), 59–65 (2006).
[Crossref]

Gans, P.

Giguere, S.

M. D. Dyar, S. Giguere, C. J. Carey, and T. Boucher, “Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples,” Spectrochim. Acta B At. Spectrosc. 126, 53–64 (2016).
[Crossref]

Gill, J. B.

Gornushkin, I. B.

Griffiths, P. R.

L. Shao and P. R. Griffiths, “Automatic baseline correction by wavelet transform for quantitative open-path Fourier transform infrared spectroscopy,” Environ. Sci. Technol. 41(20), 7054–7059 (2007).
[Crossref] [PubMed]

Guo, L.

Guo, L. B.

Hahn, D. W.

D. Diaz, D. W. Hahn, and A. Molina, “Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 136, 106–115 (2017).
[Crossref]

Hao, Z.

Hao, Z. Q.

Harrington, P. B.

Z. Wang, M. Zhang, and P. B. Harrington, “Comparison of three algorithms for the baseline correction of hyphenated data objects,” Anal. Chem. 86(18), 9050–9057 (2014).
[Crossref] [PubMed]

Huang, J.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Jiang, A.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Kunz, J. N.

Lee, H. W. H.

Li, C.

Li, J.

Li, X.

Li, X. Y.

Li, Z.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Liang, Y. Z.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Lin, X.

Liu, Q.

Lu, Y.

Lu, Y. F.

Martín-Pastor, M.

J. C. Cobas, M. A. Bernstein, M. Martín-Pastor, and P. G. Tahoces, “A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data,” J. Magn. Reson. 183(1), 145–151 (2006).
[Crossref] [PubMed]

Mo, J.

F. Gan, G. Ruan, and J. Mo, “Baseline correction by improved polynomial fitting with automatic threshold,” Chemom. Intell. Lab. Syst. 82(1), 59–65 (2006).
[Crossref]

Molina, A.

D. Diaz, D. W. Hahn, and A. Molina, “Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 136, 106–115 (2017).
[Crossref]

Neumann, M.

W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and precise automatic baseline correction of one- and two-dimensional NMR spectra,” J. Magn. Reson. 91(1), 1–11 (1991).

Novikov, A. B.

Ozaki, Y.

Padmanabhan, S.

Peng, J.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Peng, S.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Rossi, T. M.

Ruan, G.

F. Gan, G. Ruan, and J. Mo, “Baseline correction by improved polynomial fitting with automatic threshold,” Chemom. Intell. Lab. Syst. 82(1), 59–65 (2006).
[Crossref]

Rudel, C. H.

W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and precise automatic baseline correction of one- and two-dimensional NMR spectra,” J. Magn. Reson. 91(1), 1–11 (1991).

Scully, M. O.

Shao, L.

L. Shao and P. R. Griffiths, “Automatic baseline correction by wavelet transform for quantitative open-path Fourier transform infrared spectroscopy,” Environ. Sci. Technol. 41(20), 7054–7059 (2007).
[Crossref] [PubMed]

Shen, M.

Smith, B. W.

Sokolov, A. V.

Sun, L. X.

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(3), 278–287 (2009).
[Crossref]

Tahoces, P. G.

J. C. Cobas, M. A. Bernstein, M. Martín-Pastor, and P. G. Tahoces, “A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data,” J. Magn. Reson. 183(1), 145–151 (2006).
[Crossref] [PubMed]

Tan, J.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Voronine, D. V.

Wang, H.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Wang, J. J.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, M. Zhang, and P. B. Harrington, “Comparison of three algorithms for the baseline correction of hyphenated data objects,” Anal. Chem. 86(18), 9050–9057 (2014).
[Crossref] [PubMed]

Wang, Z. M.

Warner, I. M.

Wei, J.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Winefordner, J. D.

Xu, Q. S.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Yaroshchyk, P.

P. Yaroshchyk and J. E. Eberhardt, “Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm,” Spectrochim. Acta B At. Spectrosc. 99(9), 138–149 (2014).
[Crossref]

Yu, H. B.

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(3), 278–287 (2009).
[Crossref]

Yuen, C.

Zeng, Q. D.

Zeng, X.

Zeng, X. Y.

Zhan, D. J.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Zhang, M.

Z. Wang, M. Zhang, and P. B. Harrington, “Comparison of three algorithms for the baseline correction of hyphenated data objects,” Anal. Chem. 86(18), 9050–9057 (2014).
[Crossref] [PubMed]

Zhang, Z. M.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Zheng, Y. B.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Zhou, R.

Zou, X. H.

Zou, Z.

Anal. Chem. (1)

Z. Wang, M. Zhang, and P. B. Harrington, “Comparison of three algorithms for the baseline correction of hyphenated data objects,” Anal. Chem. 86(18), 9050–9057 (2014).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Analyst (Lond.) (2)

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Appl. Spectrosc. (4)

Chemom. Intell. Lab. Syst. (1)

F. Gan, G. Ruan, and J. Mo, “Baseline correction by improved polynomial fitting with automatic threshold,” Chemom. Intell. Lab. Syst. 82(1), 59–65 (2006).
[Crossref]

Environ. Sci. Technol. (1)

L. Shao and P. R. Griffiths, “Automatic baseline correction by wavelet transform for quantitative open-path Fourier transform infrared spectroscopy,” Environ. Sci. Technol. 41(20), 7054–7059 (2007).
[Crossref] [PubMed]

J. Biomol. NMR (1)

M. S. Friedrichs, “A model-free algorithm for the removal of baseline artifacts,” J. Biomol. NMR 5(2), 147–153 (1995).
[Crossref] [PubMed]

J. Magn. Reson. (2)

W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and precise automatic baseline correction of one- and two-dimensional NMR spectra,” J. Magn. Reson. 91(1), 1–11 (1991).

J. C. Cobas, M. A. Bernstein, M. Martín-Pastor, and P. G. Tahoces, “A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data,” J. Magn. Reson. 183(1), 145–151 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Spectrochim. Acta B At. Spectrosc. (4)

M. D. Dyar, S. Giguere, C. J. Carey, and T. Boucher, “Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples,” Spectrochim. Acta B At. Spectrosc. 126, 53–64 (2016).
[Crossref]

D. Diaz, D. W. Hahn, and A. Molina, “Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 136, 106–115 (2017).
[Crossref]

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(3), 278–287 (2009).
[Crossref]

P. Yaroshchyk and J. E. Eberhardt, “Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm,” Spectrochim. Acta B At. Spectrosc. 99(9), 138–149 (2014).
[Crossref]

Other (1)

S. Wartewig, IR and Raman Spectroscopy-Fundamental Processing (Wiley-VCH GmbH & Co. KGaA, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Original spectrum and minimum points with different orders.
Fig. 2
Fig. 2 Flow diagram of the continuous background estimation procedure.
Fig. 3
Fig. 3 Results of use of effective points selected in the (a) first-order, (b) second-order, (c) third-order, and (d) fourth-order minima segments.
Fig. 4
Fig. 4 Experimental LIBS system setup.
Fig. 5
Fig. 5 Screening of effective points to fit the background (a) and the residuals (b) of the simple spectrum within the intervals of the different minimum points.
Fig. 6
Fig. 6 Screening of effective points to fit the background (a) and the residuals (b) of the complex spectrum within the intervals of the different minimum points.
Fig. 7
Fig. 7 Sparse spectral background fitted using effective points that were selected in the (a) second-, (b) third- and (c) fourth-order minima segments and the background-subtracted spectra.
Fig. 8
Fig. 8 Congested spectral backgrounds when fitted using effective points selected in the (a) second- (b) third- and (c) fourth-order minima segments and the background-subtracted spectra in each case.
Fig. 9
Fig. 9 Calibration curves of (a) the original data and the (b) second- (c) third- (d) fourth- order minima background subtraction data for Cu at 324.7 nm, respectively.
Fig. 10
Fig. 10 Calibration curves of (a) the original data and the (b) second- (c) third- (d) fourth- order minima background subtraction data for Cr at 520.6 nm, respectively.

Tables (2)

Tables Icon

Table 1 Elemental compositions of five standard iron alloy samples used in calibration study

Tables Icon

Table 2 Characteristics of linear calibration curves

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t h ( i ) = m 1 × j = 1 m A i j
I ( i ) = I p u r e ( i ) + B ( i ) + N ( i )

Metrics