Abstract

Long-period fiber gratings (LPFGs) are useful for environmental sensing under conditions of high corrosiveness and electromagnetic interference. Most LPFGs are fabricated by coherent or high-power UV illumination of an optical fiber under an amplitude mask, resulting in narrow and environmentally-dependent band rejection. We present a hybrid LPFG waveguide fabricated without an amplitude mask through polymer self-assembly under low-power incoherent UV illumination, which demonstrates high-temperature sensitivity in its transmission spectrum compared to LPFG sensors based purely on silica waveguides. A sensitivity of 1.5 nm °C −1 is obtained experimentally for attenuation near 1180 nm, and a sensitivity of 4.5 nm °C −1 with a low random error was obtained with a composite of attenuation bands. Finite element method simulations and coupling mode theory reveal this to be due to a thermo-optic coefficient one order of magnitude greater than that of fused silica. The device has potential for a simple and inexpensive transmission intensity based temperature sensor consisting of an infrared light source, the LPFG, a bandpass filter, and a photodiode.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation

Yi-Ping Wang, Dong Ning Wang, and Wei Jin
Appl. Opt. 45(31) 7966-7970 (2006)

All-optical switching in long-period fiber grating with highly nonlinear chalcogenide fibers

Leilei Wang, Jianghui Zeng, Liang Zhu, Dandan Yang, Qian Zhang, Peiqing Zhang, Xunsi Wang, and Shixun Dai
Appl. Opt. 57(34) 10044-10050 (2018)

Measurement of refractive-index variation with temperature by use of long-period fiber gratings

Young-Jae Kim, Un-Chul Paek, and Byeong Ha Lee
Opt. Lett. 27(15) 1297-1299 (2002)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  2. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [Crossref]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  4. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
    [Crossref]
  5. C.-Y. Lin, L. A. Wang, and G.-W. Chern, “Corrugated Long-Period Fiber Gratings as Strain, Torsion, and Bending Sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
    [Crossref]
  6. W. Ha, K. Oh, Y. Jung, J. K. Kim, W. Shin, I.-B. Sohn, D.-K. Ko, and J. Lee, “Fabrication and characterization of a broadband long-period-grating on a hollow optical fiber with femtosecond laser pulses,” J. Korean Phys. Soc. 53(9(6)), 3814–3817 (2008).
    [Crossref]
  7. A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, “Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211 nm,” J. Lightwave Technol. 23(8), 2568–2578 (2005).
    [Crossref]
  8. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  9. A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Opt. - Int. J. Light Electron Opt. 125(1), 457–460 (2014).
    [Crossref]
  10. Z. Li, H. Y. Tam, L. Xu, and Q. Zhang, “Fabrication of long-period gratings in poly(methyl methacrylate-co-methyl vinyl ketone-co-benzyl methacrylate)-core polymer optical fiber by use of a mercury lamp,” Opt. Lett. 30(10), 1117–1119 (2005).
    [Crossref] [PubMed]
  11. M.-S. Kwon and S.-Y. Shin, “Tunable polymer waveguide notch filter using a thermooptic long-period grating,” IEEE Photonics Technol. Lett. 17(1), 145–147 (2005).
    [Crossref]
  12. L. H. Chen, C. C. Chan, and J. Sun, High resolution long-period grating temperature sensor (ACM Press, 2008), pp. 1–4.
  13. S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
    [Crossref]
  14. S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
    [Crossref]
  15. H. Jung, Y. G. Seo, W. Ha, D.-K. Kim, S. H. Park, and K. Oh, “Mask-free hybrid long-period fiber grating fabrication by self-assembled periodic polymerization in silica hollow optical fiber,” Opt. Lett. 34(18), 2745–2747 (2009).
    [Crossref] [PubMed]
  16. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  17. X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photonics Technol. Lett. 13(8), 818–820 (2001).
    [Crossref]
  18. S. W. James, S. Khaliq, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” in 2002 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002(Cat. No.02EX533) (IEEE, 2002), Vol. 1, pp. 139–142.
    [Crossref]
  19. D. Kowal, G. Statkiewicz-Barabach, P. Mergo, and W. Urbanczyk, “Microstructured polymer optical fiber for long period gratings fabrication using an ultraviolet laser beam,” Opt. Lett. 39(8), 2242–2245 (2014).
    [Crossref] [PubMed]
  20. D.-J. Kim, J.-U. Shin, Y.-T. Han, S.-H. Park, Y.-J. Park, H.-K. Sung, and D.-K. Kim, “Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide,” ETRI J. 26(6), 661–664 (2004).
    [Crossref]
  21. J. W. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]
  22. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” in Optomechanical Technologies for Astronomy (International Society for Optics and Photonics, 2006), Vol. 6273, p. 62732J.
  23. S. T. Gulati and J. D. Helfinstine, “Fatigue Behavior of GeO2-SiO2 Glasses,” MRS Proc. 531, 133 (1998).
    [Crossref]
  24. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. SPIEE. Atad-Ettedgui, J. Antebi, and D. Lemke, (2006), Vol. 6273, p. 62732K.
    [Crossref]
  25. J. M. Jewell, “Thermooptic Coefficients of Some Standard Reference Material Glasses,” J. Am. Ceram. Soc. 74(7), 1689–1691 (1991).
    [Crossref]
  26. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  27. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters: errata,” J. Opt. Soc. Am. A 17(11), 2113 (2000).
    [Crossref]
  28. S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided Wave Analysis of Hollow Optical Fiber for Mode-Coupling Device Applications,” J. Lightwave Technol. 27(22), 4919–4926 (2009).
    [Crossref]
  29. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005).
    [Crossref]
  30. R. Mittra and, J. R. Pace, “Generalized scattering matrix analysis of waveguide discontinuity problems,” in Quasi-Optics XIV (Polytechnic Inst. Brooklyn, 1964).
  31. G. W. Chern and L. A. Wang, “Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings,” J. Opt. Soc. Am. A 16(11), 2675 (1999).
    [Crossref]
  32. R. Kashyap, Fiber Bragg Gratings (Academic, 2009).
  33. T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
    [Crossref]
  34. F. Shen, C. Wang, Z. Sun, K. Zhou, L. Zhang, and X. Shu, “Small-period long-period fiber grating with improved refractive index sensitivity and dual-parameter sensing ability,” Opt. Lett. 42(2), 199–202 (2017).
    [Crossref] [PubMed]
  35. F. Shen, K. Zhou, N. Gordon, L. Zhang, and X. Shu, “Compact eccentric long period grating with improved sensitivity in low refractive index region,” Opt. Express 25(14), 15729–15736 (2017).
    [Crossref] [PubMed]
  36. P. Wang, H. Zhao, G. Brambilla, G. Farrell, and L. Yuan, “Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing,” in Proc. SPIEH. J. Kalinowski, J. L. Fabris, and W. J. Bock, (2015), Vol. 9634, p. 96346A.

2017 (2)

2014 (2)

D. Kowal, G. Statkiewicz-Barabach, P. Mergo, and W. Urbanczyk, “Microstructured polymer optical fiber for long period gratings fabrication using an ultraviolet laser beam,” Opt. Lett. 39(8), 2242–2245 (2014).
[Crossref] [PubMed]

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Opt. - Int. J. Light Electron Opt. 125(1), 457–460 (2014).
[Crossref]

2009 (2)

2008 (1)

W. Ha, K. Oh, Y. Jung, J. K. Kim, W. Shin, I.-B. Sohn, D.-K. Ko, and J. Lee, “Fabrication and characterization of a broadband long-period-grating on a hollow optical fiber with femtosecond laser pulses,” J. Korean Phys. Soc. 53(9(6)), 3814–3817 (2008).
[Crossref]

2005 (4)

2004 (1)

D.-J. Kim, J.-U. Shin, Y.-T. Han, S.-H. Park, Y.-J. Park, H.-K. Sung, and D.-K. Kim, “Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide,” ETRI J. 26(6), 661–664 (2004).
[Crossref]

2003 (2)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

2002 (2)

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
[Crossref]

X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

2001 (3)

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photonics Technol. Lett. 13(8), 818–820 (2001).
[Crossref]

S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
[Crossref]

C.-Y. Lin, L. A. Wang, and G.-W. Chern, “Corrugated Long-Period Fiber Gratings as Strain, Torsion, and Bending Sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (2)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
[Crossref]

1996 (1)

1991 (1)

J. M. Jewell, “Thermooptic Coefficients of Some Standard Reference Material Glasses,” J. Am. Ceram. Soc. 74(7), 1689–1691 (1991).
[Crossref]

1984 (1)

Allsop, T.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photonics Technol. Lett. 13(8), 818–820 (2001).
[Crossref]

Antebi, J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. SPIEE. Atad-Ettedgui, J. Antebi, and D. Lemke, (2006), Vol. 6273, p. 62732K.
[Crossref]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Atad-Ettedgui, E.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. SPIEE. Atad-Ettedgui, J. Antebi, and D. Lemke, (2006), Vol. 6273, p. 62732K.
[Crossref]

Bennion, I.

X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photonics Technol. Lett. 13(8), 818–820 (2001).
[Crossref]

Bhatia, V.

Bock, W. J.

P. Wang, H. Zhao, G. Brambilla, G. Farrell, and L. Yuan, “Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing,” in Proc. SPIEH. J. Kalinowski, J. L. Fabris, and W. J. Bock, (2015), Vol. 9634, p. 96346A.

Brambilla, G.

A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, “Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211 nm,” J. Lightwave Technol. 23(8), 2568–2578 (2005).
[Crossref]

P. Wang, H. Zhao, G. Brambilla, G. Farrell, and L. Yuan, “Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing,” in Proc. SPIEH. J. Kalinowski, J. L. Fabris, and W. J. Bock, (2015), Vol. 9634, p. 96346A.

Chern, G. W.

Chern, G.-W.

Choi, S.

Chung, K.-W.

S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
[Crossref]

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Engles, D.

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Opt. - Int. J. Light Electron Opt. 125(1), 457–460 (2014).
[Crossref]

Erdogan, T.

Fabris, J. L.

P. Wang, H. Zhao, G. Brambilla, G. Farrell, and L. Yuan, “Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing,” in Proc. SPIEH. J. Kalinowski, J. L. Fabris, and W. J. Bock, (2015), Vol. 9634, p. 96346A.

Farrell, G.

P. Wang, H. Zhao, G. Brambilla, G. Farrell, and L. Yuan, “Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing,” in Proc. SPIEH. J. Kalinowski, J. L. Fabris, and W. J. Bock, (2015), Vol. 9634, p. 96346A.

Fleming, J. W.

Frey, B. J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. SPIEE. Atad-Ettedgui, J. Antebi, and D. Lemke, (2006), Vol. 6273, p. 62732K.
[Crossref]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Gordon, N.

Gwandu, B.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photonics Technol. Lett. 13(8), 818–820 (2001).
[Crossref]

Ha, W.

H. Jung, Y. G. Seo, W. Ha, D.-K. Kim, S. H. Park, and K. Oh, “Mask-free hybrid long-period fiber grating fabrication by self-assembled periodic polymerization in silica hollow optical fiber,” Opt. Lett. 34(18), 2745–2747 (2009).
[Crossref] [PubMed]

W. Ha, K. Oh, Y. Jung, J. K. Kim, W. Shin, I.-B. Sohn, D.-K. Ko, and J. Lee, “Fabrication and characterization of a broadband long-period-grating on a hollow optical fiber with femtosecond laser pulses,” J. Korean Phys. Soc. 53(9(6)), 3814–3817 (2008).
[Crossref]

Haggans, C. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Han, Y.-T.

D.-J. Kim, J.-U. Shin, Y.-T. Han, S.-H. Park, Y.-J. Park, H.-K. Sung, and D.-K. Kim, “Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide,” ETRI J. 26(6), 661–664 (2004).
[Crossref]

Jackson, M. A.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
[Crossref]

Jeong, Y.

Jewell, J. M.

J. M. Jewell, “Thermooptic Coefficients of Some Standard Reference Material Glasses,” J. Am. Ceram. Soc. 74(7), 1689–1691 (1991).
[Crossref]

Jung, H.

Jung, Y.

W. Ha, K. Oh, Y. Jung, J. K. Kim, W. Shin, I.-B. Sohn, D.-K. Ko, and J. Lee, “Fabrication and characterization of a broadband long-period-grating on a hollow optical fiber with femtosecond laser pulses,” J. Korean Phys. Soc. 53(9(6)), 3814–3817 (2008).
[Crossref]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005).
[Crossref]

Kalachev, A. I.

Kalinowski, H. J.

P. Wang, H. Zhao, G. Brambilla, G. Farrell, and L. Yuan, “Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing,” in Proc. SPIEH. J. Kalinowski, J. L. Fabris, and W. J. Bock, (2015), Vol. 9634, p. 96346A.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Khaliq, S.

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
[Crossref]

Kim, D.-J.

D.-J. Kim, J.-U. Shin, Y.-T. Han, S.-H. Park, Y.-J. Park, H.-K. Sung, and D.-K. Kim, “Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide,” ETRI J. 26(6), 661–664 (2004).
[Crossref]

Kim, D.-K.

H. Jung, Y. G. Seo, W. Ha, D.-K. Kim, S. H. Park, and K. Oh, “Mask-free hybrid long-period fiber grating fabrication by self-assembled periodic polymerization in silica hollow optical fiber,” Opt. Lett. 34(18), 2745–2747 (2009).
[Crossref] [PubMed]

D.-J. Kim, J.-U. Shin, Y.-T. Han, S.-H. Park, Y.-J. Park, H.-K. Sung, and D.-K. Kim, “Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide,” ETRI J. 26(6), 661–664 (2004).
[Crossref]

Kim, J. K.

W. Ha, K. Oh, Y. Jung, J. K. Kim, W. Shin, I.-B. Sohn, D.-K. Ko, and J. Lee, “Fabrication and characterization of a broadband long-period-grating on a hollow optical fiber with femtosecond laser pulses,” J. Korean Phys. Soc. 53(9(6)), 3814–3817 (2008).
[Crossref]

Ko, D.-K.

W. Ha, K. Oh, Y. Jung, J. K. Kim, W. Shin, I.-B. Sohn, D.-K. Ko, and J. Lee, “Fabrication and characterization of a broadband long-period-grating on a hollow optical fiber with femtosecond laser pulses,” J. Korean Phys. Soc. 53(9(6)), 3814–3817 (2008).
[Crossref]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Kowal, D.

Kwon, M.-S.

M.-S. Kwon and S.-Y. Shin, “Tunable polymer waveguide notch filter using a thermooptic long-period grating,” IEEE Photonics Technol. Lett. 17(1), 145–147 (2005).
[Crossref]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Lee, J.

W. Ha, K. Oh, Y. Jung, J. K. Kim, W. Shin, I.-B. Sohn, D.-K. Ko, and J. Lee, “Fabrication and characterization of a broadband long-period-grating on a hollow optical fiber with femtosecond laser pulses,” J. Korean Phys. Soc. 53(9(6)), 3814–3817 (2008).
[Crossref]

Lee, J. W.

Lee, S.

Lemke, D.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. SPIEE. Atad-Ettedgui, J. Antebi, and D. Lemke, (2006), Vol. 6273, p. 62732K.
[Crossref]

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. SPIEE. Atad-Ettedgui, J. Antebi, and D. Lemke, (2006), Vol. 6273, p. 62732K.
[Crossref]

Li, Z.

Lin, C.-Y.

MacDougall, T. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Mergo, P.

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Nikogosyan, D. N.

Oh, K.

Park, J.

Park, S. H.

Park, S.-H.

D.-J. Kim, J.-U. Shin, Y.-T. Han, S.-H. Park, Y.-J. Park, H.-K. Sung, and D.-K. Kim, “Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide,” ETRI J. 26(6), 661–664 (2004).
[Crossref]

Park, Y.-J.

D.-J. Kim, J.-U. Shin, Y.-T. Han, S.-H. Park, Y.-J. Park, H.-K. Sung, and D.-K. Kim, “Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide,” ETRI J. 26(6), 661–664 (2004).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Pilevar, S.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Seo, Y. G.

Sharma, A.

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Opt. - Int. J. Light Electron Opt. 125(1), 457–460 (2014).
[Crossref]

Shen, F.

Shin, J.-U.

D.-J. Kim, J.-U. Shin, Y.-T. Han, S.-H. Park, Y.-J. Park, H.-K. Sung, and D.-K. Kim, “Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide,” ETRI J. 26(6), 661–664 (2004).
[Crossref]

Shin, S.-Y.

M.-S. Kwon and S.-Y. Shin, “Tunable polymer waveguide notch filter using a thermooptic long-period grating,” IEEE Photonics Technol. Lett. 17(1), 145–147 (2005).
[Crossref]

Shin, W.

W. Ha, K. Oh, Y. Jung, J. K. Kim, W. Shin, I.-B. Sohn, D.-K. Ko, and J. Lee, “Fabrication and characterization of a broadband long-period-grating on a hollow optical fiber with femtosecond laser pulses,” J. Korean Phys. Soc. 53(9(6)), 3814–3817 (2008).
[Crossref]

Shu, X.

Singh, A.

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Opt. - Int. J. Light Electron Opt. 125(1), 457–460 (2014).
[Crossref]

Singh, M.

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Opt. - Int. J. Light Electron Opt. 125(1), 457–460 (2014).
[Crossref]

Sohn, I.-B.

W. Ha, K. Oh, Y. Jung, J. K. Kim, W. Shin, I.-B. Sohn, D.-K. Ko, and J. Lee, “Fabrication and characterization of a broadband long-period-grating on a hollow optical fiber with femtosecond laser pulses,” J. Korean Phys. Soc. 53(9(6)), 3814–3817 (2008).
[Crossref]

Statkiewicz-Barabach, G.

Sun, Z.

Sung, H.-K.

D.-J. Kim, J.-U. Shin, Y.-T. Han, S.-H. Park, Y.-J. Park, H.-K. Sung, and D.-K. Kim, “Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide,” ETRI J. 26(6), 661–664 (2004).
[Crossref]

Tam, H. Y.

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
[Crossref]

Urbanczyk, W.

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

Wang, C.

Wang, L. A.

Wang, P.

P. Wang, H. Zhao, G. Brambilla, G. Farrell, and L. Yuan, “Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing,” in Proc. SPIEH. J. Kalinowski, J. L. Fabris, and W. J. Bock, (2015), Vol. 9634, p. 96346A.

Xu, L.

Yin, S.

S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
[Crossref]

Yuan, L.

P. Wang, H. Zhao, G. Brambilla, G. Farrell, and L. Yuan, “Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing,” in Proc. SPIEH. J. Kalinowski, J. L. Fabris, and W. J. Bock, (2015), Vol. 9634, p. 96346A.

Zhang, L.

Zhang, Q.

Zhao, H.

P. Wang, H. Zhao, G. Brambilla, G. Farrell, and L. Yuan, “Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing,” in Proc. SPIEH. J. Kalinowski, J. L. Fabris, and W. J. Bock, (2015), Vol. 9634, p. 96346A.

Zhou, K.

Zhu, X.

S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

ETRI J. (1)

D.-J. Kim, J.-U. Shin, Y.-T. Han, S.-H. Park, Y.-J. Park, H.-K. Sung, and D.-K. Kim, “Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide,” ETRI J. 26(6), 661–664 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M.-S. Kwon and S.-Y. Shin, “Tunable polymer waveguide notch filter using a thermooptic long-period grating,” IEEE Photonics Technol. Lett. 17(1), 145–147 (2005).
[Crossref]

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photonics Technol. Lett. 13(8), 818–820 (2001).
[Crossref]

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

J. Am. Ceram. Soc. (1)

J. M. Jewell, “Thermooptic Coefficients of Some Standard Reference Material Glasses,” J. Am. Ceram. Soc. 74(7), 1689–1691 (1991).
[Crossref]

J. Korean Phys. Soc. (1)

W. Ha, K. Oh, Y. Jung, J. K. Kim, W. Shin, I.-B. Sohn, D.-K. Ko, and J. Lee, “Fabrication and characterization of a broadband long-period-grating on a hollow optical fiber with femtosecond laser pulses,” J. Korean Phys. Soc. 53(9(6)), 3814–3817 (2008).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. A (3)

Meas. Sci. Technol. (2)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13(5), 792–795 (2002).
[Crossref]

Opt. - Int. J. Light Electron Opt. (1)

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Opt. - Int. J. Light Electron Opt. 125(1), 457–460 (2014).
[Crossref]

Opt. Commun. (1)

S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Lett. (5)

Other (8)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” in Optomechanical Technologies for Astronomy (International Society for Optics and Photonics, 2006), Vol. 6273, p. 62732J.

S. T. Gulati and J. D. Helfinstine, “Fatigue Behavior of GeO2-SiO2 Glasses,” MRS Proc. 531, 133 (1998).
[Crossref]

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. SPIEE. Atad-Ettedgui, J. Antebi, and D. Lemke, (2006), Vol. 6273, p. 62732K.
[Crossref]

P. Wang, H. Zhao, G. Brambilla, G. Farrell, and L. Yuan, “Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing,” in Proc. SPIEH. J. Kalinowski, J. L. Fabris, and W. J. Bock, (2015), Vol. 9634, p. 96346A.

R. Kashyap, Fiber Bragg Gratings (Academic, 2009).

R. Mittra and, J. R. Pace, “Generalized scattering matrix analysis of waveguide discontinuity problems,” in Quasi-Optics XIV (Polytechnic Inst. Brooklyn, 1964).

S. W. James, S. Khaliq, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” in 2002 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002(Cat. No.02EX533) (IEEE, 2002), Vol. 1, pp. 139–142.
[Crossref]

L. H. Chen, C. C. Chan, and J. Sun, High resolution long-period grating temperature sensor (ACM Press, 2008), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Grating fabrication and device concept. (a) Fabrication of the self-assembled fiber grating is mask-free and low power. (b) Temperature change results in changes in the core refractive index and grating pitch. (c) The periodic grating results in attenuation at a specific wavelength band. (d) The core refractive index changes with temperature, (e) resulting in shifting of the main attenuation band, (f) the band shift is linear in temperature.
Fig. 2
Fig. 2 Setup of the experiment, with device micrograph.
Fig. 3
Fig. 3 (a) Main attenuation band of the grating at the reference temperature of 25 °C. (b) Variation of transmission spectrum and specific attenuation peaks on a small temperature range from 25~28.6 °C demonstrates thermal behavior of the attenuation band.
Fig. 4
Fig. 4 (a) Attenuation band wavelength shift and (b) transmission shifts in the principal attenuation peak on the temperature range from 25~28.6 °C shows linear shifting behavior with device sensitivity of −1.5 nm °C−1 near 1180 nm.
Fig. 5
Fig. 5 (a) Transmission spectrum of the LPFG shows secondary attenuation bands near 1240 nm, 1370 nm, and 1460 nm for 26°C. (b) Thermal behavior of the 1240 nm attenuation band and (c) of the 1460 nm band show high temperature sensitivity.
Fig. 6
Fig. 6 (a) Attenuation band shifts in the secondary attenuation peaks on the temperature range from 25~28.6 °C show nearly linear shifting behavior with increasing device sensitivity at higher wavelengths. (b) Composite attenuation shift function attains repeatable and monotonic shifting behavior with 4 nm °C−1 sensitivity.
Fig. 7
Fig. 7 Select transverse modes of the polymer waveguide at 25 °C for the polynomial-filled cross section at a wavelength of 1180 nm. (a) HE11 fundamental mode of the gas pocket-containing core. b) HE11 fundamental mode of the polymer-filled core (c) HE1,3 cladding mode and (d) HE1,10 cladding modes couple differently to the core mode. Scale bars are 10 microns.
Fig. 8
Fig. 8 Self-coupling coefficients and cross-coupling coefficients for the HE1,m modes of the hybrid LPFG.
Fig. 9
Fig. 9 (a) General sensitivity coefficient γ for the HE1,m modes and temperature sensitivity coefficient Γ temp for the HE1,m modes. (b) Simulated temperature shift for the HE1,m modes at 1186 nm from the core and ring mode on the observed temperature range 25~28.6 °C.
Fig. 10
Fig. 10 Expected temperature sensitivities for simple temperature sensors based on an infrared light source, the hybrid polymer LPFG, a bandpass filter, and a semiconductor photodiode. (Blue dashes) measured transmission of the SMF-LPFG-SMF at the fixed sensor center wavelength. (Solid lines) expected transmission signal of the photodiode-based sensor. (Insets) Schema depicting the measurement and sensor function relative to the grating attenuation. Expected transmission from (a) a commercially available DFB LD at 1188 nm, (b) an IR LD with 10 nm FWHM at 1231 nm, (c) a generic IR LED with bandpass filter at 1450 nm.

Tables (3)

Tables Icon

Table 1 Refractive indices and thermo-optic coefficients of the hybrid LPFG waveguide

Tables Icon

Table 2 Coupling modes for grating formation with modulation depths

Tables Icon

Table 3 Predicted attenuation bands for the hybrid LPFG waveguide

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

κ ac = ω ε 0 4 + 2 nΔn(x,y) E core (x,y) E clad * (x,y)dA,
λ res = ( n core eff n clad eff )Λ 1+( κ clad κ core )Λ/2π
κ μ = ω ε 0 4 + 2 nΔn(x,y) E μ (x,y) E μ * (x,y)dA
d λ res dT =γ(α+ Γ temp ) λ res + [ α( κ core κ clad )+ d κ core dT d κ clad dT ] λ res 2π 1/Λ+ ( κ clad κ core ) 2π .
Γ temp = ξ core n core eff ξ clad n clad,m eff n core eff n clad,m eff ,

Metrics