Abstract

Microwave signals with broadband tunable frequencies and low phase noise can be widely used in communication systems and radar systems. Optoelectronic oscillators (OEOs) with high Q value have the potential to generate the signals meeting the above requirements. In this paper, we present a simple scheme to realize a widely tunable OEO with ultra-high tuning resolution based on stimulated Brillouin scattering (SBS), meanwhile maintaining the low phase noise for all the generated frequencies. By choosing different high-order sideband of the phase-modulated signal as the SBS pump, the frequency of the generated signal can be widely tuned. The accurate frequency tuning can be achieved by changing the drive signal frequency of the phase modulator. As a result, the obtained signal of the OEO with the frequency tuning range up to 40 GHz, and the tuning resolution as accurate as 10 MHz can be obtained. The influence of the SBS gain and the drive signal on the signal phase noise is analyzed theoretically. The effects of the drive signal and the electrical amplifier on the phase noise of the obtained signal are analyzed experimentally. The results show that the noise figure of the amplifier directly affects the phase noise quality of the acquired signal. And the phase noise of the generated signals is lower than −120 dBc/Hz at 100 kHz offset frequency, which has no relation with the drive signal, or the order of the modulation sideband.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering

Huanfa Peng, Yongchi Xu, Xiaofeng Peng, Xiaoqi Zhu, Rui Guo, Feiya Chen, Huayang Du, Yuanxiang Chen, Cheng Zhang, Lixin Zhu, Weiwei Hu, and Zhangyuan Chen
Opt. Express 25(9) 10287-10305 (2017)

Fourier domain mode locked optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering

Tengfei Hao, Jian Tang, Wei Li, Ninghua Zhu, and Ming Li
OSA Continuum 1(2) 408-415 (2018)

Widely tunable optoelectronic oscillator based on selective parity-time-symmetry breaking

Haitao Tang, Yuan Yu, and Xinliang Zhang
Optica 6(8) 944-950 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. E. Camargo, Design of FET Frequency Multipliers and Harmonic Oscillators (Artech House, 1998).
  3. X. S. Yao and L. Maleki, “Converting light into spectrally pure microwave oscillation,” Opt. Lett. 21(7), 483–485 (1996).
    [Crossref] [PubMed]
  4. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [Crossref]
  5. M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
    [Crossref] [PubMed]
  6. W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
    [Crossref] [PubMed]
  7. K. Balakier, M. J. Fice, L. Ponnampalam, A. J. Seeds, and C. C. Renaud, “Monolithically integrated optical phase lock loop for microwave photonics,” J. Lightwave Technol. 32(20), 3893–3900 (2014).
    [Crossref]
  8. X. S. Yao and L. Maleki, “Dual microwave and optical oscillator,” Opt. Lett. 22(24), 1867–1869 (1997).
    [Crossref] [PubMed]
  9. E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University, 2008).
  10. L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  11. Z. Xie, S. Li, H. Yan, X. Xiao, X. Zheng, and B. Zhou, “Tunable dual frequency optoelectronic oscillator with low intermodulation based on dual-parallel Mach-Zehnder modulator,” Opt. Express 24(26), 30282–30288 (2016).
    [Crossref] [PubMed]
  12. J. Zhang and J. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
    [Crossref]
  13. W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
    [Crossref]
  14. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38(5), 655–657 (2013).
    [Crossref] [PubMed]
  15. G. P. Agrawal, Nonlinear fiber optics (Academic, 2001).
  16. S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2015).
    [Crossref]
  17. L. Yi, W. Wei, Y. Jaouën, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering,” J. Lightwave Technol. 34(2), 669–675 (2016).
    [Crossref]
  18. M. Shi, L. Yi, W. Wei, G. Pu, and W. Hu, “System performance optimization of frequency-sweeping pump based rectangular Brillouin optical filter,” IEEE Photonics J. 9(1), 1–8 (2017).
    [Crossref]
  19. X. S. Yao, “High-quality microwave signal generation by use of Brillouin scattering in optical fibers,” Opt. Lett. 22(17), 1329–1331 (1997).
    [Crossref] [PubMed]
  20. B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
    [Crossref]
  21. Y. Qiao, M. Pan, S. Zheng, H. Chi, X. Jin, and X. Zhang, “An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering,” J. Opt. 15(3), 035406 (2013).
    [Crossref]
  22. H. Peng, C. Zhang, X. Xie, T. Sun, P. Guo, X. Zhu, W. Hu, and Z. Chen, “Tunable DC-60GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering,” J. Lightwave Technol. 33(13), 2707–2715 (2015).
    [Crossref]
  23. M. Shi, L. Yi, and W. Hu, “SBS-based OEO with high tuning resolution and wide tuning range by selecting different-order phase modulation sideband as pump”, in Optical Fiber Communication Conference (OFC, 2018), paper. M1H.4.
    [Crossref]
  24. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
    [Crossref]
  25. X. S. Yao and L. Maleki, “Multi-loop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
    [Crossref]
  26. H. Peng, Y. Xu, X. Peng, X. Zhu, R. Guo, F. Chen, H. Du, Y. Chen, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering,” Opt. Express 25(9), 10287–10305 (2017).
    [Crossref] [PubMed]
  27. W. Shieh and L. Maleki, “Phase noise of optical interference in photonic RF systems,” IEEE Photonics Technol. Lett. 10(11), 1617–1619 (1998).
    [Crossref]

2017 (2)

2016 (3)

2015 (2)

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2015).
[Crossref]

H. Peng, C. Zhang, X. Xie, T. Sun, P. Guo, X. Zhu, W. Hu, and Z. Chen, “Tunable DC-60GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering,” J. Lightwave Technol. 33(13), 2707–2715 (2015).
[Crossref]

2014 (2)

J. Zhang and J. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

K. Balakier, M. J. Fice, L. Ponnampalam, A. J. Seeds, and C. C. Renaud, “Monolithically integrated optical phase lock loop for microwave photonics,” J. Lightwave Technol. 32(20), 3893–3900 (2014).
[Crossref]

2013 (3)

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38(5), 655–657 (2013).
[Crossref] [PubMed]

Y. Qiao, M. Pan, S. Zheng, H. Chi, X. Jin, and X. Zhang, “An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering,” J. Opt. 15(3), 035406 (2013).
[Crossref]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

2012 (2)

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

2011 (2)

2009 (1)

2000 (1)

X. S. Yao and L. Maleki, “Multi-loop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

1998 (1)

W. Shieh and L. Maleki, “Phase noise of optical interference in photonic RF systems,” IEEE Photonics Technol. Lett. 10(11), 1617–1619 (1998).
[Crossref]

1997 (2)

1996 (2)

X. S. Yao and L. Maleki, “Converting light into spectrally pure microwave oscillation,” Opt. Lett. 21(7), 483–485 (1996).
[Crossref] [PubMed]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Balakier, K.

Baumann, E.

Chen, F.

Chen, H.

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

Chen, Y.

Chen, Z.

Chi, H.

Y. Qiao, M. Pan, S. Zheng, H. Chi, X. Jin, and X. Zhang, “An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering,” J. Opt. 15(3), 035406 (2013).
[Crossref]

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

Du, H.

Eggleton, B. J.

Fice, M. J.

Giorgetta, F. R.

Guo, P.

Guo, R.

Han, B.

Hu, W.

Jaouën, Y.

Jin, X.

Y. Qiao, M. Pan, S. Zheng, H. Chi, X. Jin, and X. Zhang, “An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering,” J. Opt. 15(3), 035406 (2013).
[Crossref]

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

Kabakova, I. V.

Koonen, T.

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

Li, S.

Li, W.

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

Madden, S. J.

Maleki, L.

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

X. S. Yao and L. Maleki, “Multi-loop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

W. Shieh and L. Maleki, “Phase noise of optical interference in photonic RF systems,” IEEE Photonics Technol. Lett. 10(11), 1617–1619 (1998).
[Crossref]

X. S. Yao and L. Maleki, “Dual microwave and optical oscillator,” Opt. Lett. 22(24), 1867–1869 (1997).
[Crossref] [PubMed]

X. S. Yao and L. Maleki, “Converting light into spectrally pure microwave oscillation,” Opt. Lett. 21(7), 483–485 (1996).
[Crossref] [PubMed]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Merklein, M.

Morvan, M.

Murakowski, J. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Mutugala, U. S.

Newbury, N. R.

Pan, M.

Y. Qiao, M. Pan, S. Zheng, H. Chi, X. Jin, and X. Zhang, “An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering,” J. Opt. 15(3), 035406 (2013).
[Crossref]

Peng, H.

Peng, X.

Ponnampalam, L.

Prather, D. W.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Preussler, S.

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2015).
[Crossref]

Pu, G.

M. Shi, L. Yi, W. Wei, G. Pu, and W. Hu, “System performance optimization of frequency-sweeping pump based rectangular Brillouin optical filter,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Qiao, Y.

Y. Qiao, M. Pan, S. Zheng, H. Chi, X. Jin, and X. Zhang, “An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering,” J. Opt. 15(3), 035406 (2013).
[Crossref]

Renaud, C. C.

Schneider, G. J.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Schneider, T.

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2015).
[Crossref]

Schuetz, C. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Seeds, A. J.

Shi, M.

M. Shi, L. Yi, W. Wei, G. Pu, and W. Hu, “System performance optimization of frequency-sweeping pump based rectangular Brillouin optical filter,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

L. Yi, W. Wei, Y. Jaouën, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering,” J. Lightwave Technol. 34(2), 669–675 (2016).
[Crossref]

Shi, S.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Shieh, W.

W. Shieh and L. Maleki, “Phase noise of optical interference in photonic RF systems,” IEEE Photonics Technol. Lett. 10(11), 1617–1619 (1998).
[Crossref]

Slavík, R.

Stiller, B.

Sun, T.

Swann, W. C.

Tangdiongga, E.

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

Vu, K.

Wei, W.

M. Shi, L. Yi, W. Wei, G. Pu, and W. Hu, “System performance optimization of frequency-sweeping pump based rectangular Brillouin optical filter,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

L. Yi, W. Wei, Y. Jaouën, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering,” J. Lightwave Technol. 34(2), 669–675 (2016).
[Crossref]

Xiao, X.

Xie, X.

Xie, Z.

Xu, Y.

Yan, H.

Yang, B.

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

Yao, J.

J. Zhang and J. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Yao, X. S.

Yi, L.

M. Shi, L. Yi, W. Wei, G. Pu, and W. Hu, “System performance optimization of frequency-sweeping pump based rectangular Brillouin optical filter,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

L. Yi, W. Wei, Y. Jaouën, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering,” J. Lightwave Technol. 34(2), 669–675 (2016).
[Crossref]

Zhang, C.

Zhang, J.

J. Zhang and J. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

Zhang, X.

Y. Qiao, M. Pan, S. Zheng, H. Chi, X. Jin, and X. Zhang, “An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering,” J. Opt. 15(3), 035406 (2013).
[Crossref]

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

Zheng, S.

Y. Qiao, M. Pan, S. Zheng, H. Chi, X. Jin, and X. Zhang, “An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering,” J. Opt. 15(3), 035406 (2013).
[Crossref]

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

Zheng, X.

Zhou, B.

Zhu, L.

Zhu, X.

Zou, S.

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Multi-loop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

IEEE Photonics J. (1)

M. Shi, L. Yi, W. Wei, G. Pu, and W. Hu, “System performance optimization of frequency-sweeping pump based rectangular Brillouin optical filter,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. Zhang and J. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

B. Yang, X. Jin, H. Chi, X. Zhang, S. Zheng, S. Zou, H. Chen, E. Tangdiongga, and T. Koonen, “Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation,” IEEE Photonics Technol. Lett. 24(12), 1051–1053 (2012).
[Crossref]

W. Shieh and L. Maleki, “Phase noise of optical interference in photonic RF systems,” IEEE Photonics Technol. Lett. 10(11), 1617–1619 (1998).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (1)

Y. Qiao, M. Pan, S. Zheng, H. Chi, X. Jin, and X. Zhang, “An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering,” J. Opt. 15(3), 035406 (2013).
[Crossref]

Nat. Photonics (2)

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

Opt. Eng. (1)

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Other (4)

E. Camargo, Design of FET Frequency Multipliers and Harmonic Oscillators (Artech House, 1998).

E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University, 2008).

G. P. Agrawal, Nonlinear fiber optics (Academic, 2001).

M. Shi, L. Yi, and W. Hu, “SBS-based OEO with high tuning resolution and wide tuning range by selecting different-order phase modulation sideband as pump”, in Optical Fiber Communication Conference (OFC, 2018), paper. M1H.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Operation principle of the frequency tuning using high-order phase modulation sideband as the SBS pump, and the single mode selection by the dual-loop structure. (b) Experimental setup. PM, phase modulator, EDFA, erbium-doped fiber amplifier, OBPF, optical band-pass filter, PC, polarization controller, ISO, isolator, HNLF, high nonlinear fiber, SMF, single mode fiber, PD, photodiode, PS, power splitter, BPF, band-pass filter, LNA, low noise amplifier, ESA, electrical spectrum analyzer, PNA, phase noise analyzer.
Fig. 2
Fig. 2 (a) The optical spectrum of the phase modulated signal. (b) The zoom-in optical spectrum after the OBPF when the 3rd right sideband of the modulated signal is selected.
Fig. 3
Fig. 3 Frequency tunability of the proposed SBS-OEO. (a) Coarsely OEO frequency tuning by selecting different order phase modulation sideband as the pump with the drive signal of 15 GHz. (b) Finely OEO frequency tuning with the tuning step of 10 MHz.
Fig. 4
Fig. 4 The measured amplitude and phase noise variation of the obtained frequency from 4.99 GHz to 5.10 GHz with the tuning step of 10 MHz. The insert is the zoom-in electrical spectrum of generated OEO signal at the frequency of 5 GHz.
Fig. 5
Fig. 5 SSB phase noise of MS1 and MS2 at 15 GHz and the corresponding generated microwave signal at various frequencies with different order phase modulation sideband as the SBS pump.
Fig. 6
Fig. 6 (a) Structure for measuring the SSB phase noise of the power amplifiers under various frequencies. (b) SSB phase noise of amplifiers and the generated OEO microwave signals at different frequencies.
Fig. 7
Fig. 7 (a) Electrical spectrums of the OEO signal with wide band tuning frequency range up to 40 GHz. (b) The zoom-in electrical spectrum of generated OEO signal under the frequency of 20.34 GHz.
Fig. 8
Fig. 8 SSB phase noise of the OEO output signal under various frequencies.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f OEO =| f p f SBS f c |
f p = f c ±n f m
f OEO =| ±n f m f SBS |
S SBS (f)= [ exp( g p I p L) 1exp( g p I p L) g p I p L Δ v B ] 2 [ S s ( f )+ S p ( f )]
S p ( f )= S s ( f )+n S m ( f )
S SBS (f)= [ exp( g p I p L) 1exp( g p I p L) g p I p L Δ v B ] 2 2 S s ( f ).
S OEO (f)=( FkT+2q I ph R+ N rin I ph 2 R 2 P OEO + b 1 f + S SBS (f)+ S CD (f)+ S interference (f)+ S ASE (f)) | H dualloop (jf) | 2
S SBS_ASE = h v s n sp 2η J 0 (β) [ J 1 (β)] 2 P 0

Metrics